Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2509-2525.doi: 10.3864/j.issn.0578-1752.2022.13.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances

ZHU ChunYan1(),SONG JiaWei1,BAI TianLiang1,WANG Na1,2,MA ShuaiGuo1,3,PU ZhengFei1,DONG Yan1,LÜ JianDong1,LI Jie1,TIAN RongRong1,LUO ChengKe1,ZHANG YinXia1,MA TianLi1,LI PeiFu1,TIAN Lei1()   

  1. 1College of Agriculture, Ningxia University/Key Laboratory of Modern Molecular Breeding for Dominant and Characteristic Crops in Ningxia, Yinchuan 750021
    2AVIC (Ning Xia) Biology Co., Ltd., Yinchuan 750002
    3College of Agriculture, Tarim University, Alar 843300, Xinjiang
  • Received:2021-10-14 Accepted:2021-12-14 Online:2022-07-01 Published:2022-07-08
  • Contact: Lei TIAN E-mail:2521767012@qq.com;tianlei2012@nxu.edu.cn

Abstract:

【Objective】Chlorophyll fluorescence parameters can reflect the damage degrees and stress resistance of the plant photosynthetic machinery under salt stress. In this study, the analysis of effects of salt stress on chlorophyll fluorescence characteristics of japonica rice with different salt tolerances was performed to reveal its induced kinetic characteristics and preliminarily elucidate the mechanism of OsHCF222 and OsABCI7 regulating salt tolerance of japonica rice at seedling stage, so as to provide a theoretical foundation for screening and breeding salt-tolerant rice varieties.【Method】Eight salt-tolerant and eight salt-sensitive japonica rice germplasm accessions were used as experimental materials in this study. Leaf chlorophyll fluorescence parameters were measured for these materials after treatment using 0 mmol·L-1 or 125 mmol·L-1 NaCl for 3 or 6 days. Principal component analysis (PCA) was used to screen the key indexes for salt tolerance, and a comprehensive evaluation of japonica rice germplasm was carried out with membership functions and weighted standard deviation coefficient method. The resulting salt-tolerant and salt-sensitive germplasm were used to analyze the relative expressions of OsHCF222 and OsABCI7, two chlorophyll fluorescence related genes. 【Result】Compared with the control (CK, 0 mmol·L-1 NaCl for 3 days or 6 days), the salt stress treatment (125 mmol·L-1 NaCl 3 days or 6 days) significantly reduced the maximal fluorescence (Fm) and maximum quantum efficiency of PSII (Fv/Fm) of japonica rice germplasm. For salt tolerant germplasm accessions, the non-photochemical quenching coefficient (NPQ) and coefficient of non-photochemical quenching of variable fluorescence (qN) decreased significantly at 3 days after salt stress, while the initial fluorescence yield (Fo) increased significantly at 6 days after salt stress. The photochemical quenching coefficient (qP) and qN of the salt-sensitive germplasm accessions decreased significantly on the 3rd day after salt stress treatment, while the indexes including yield (Y), NPQ and photosynthetic electron transfer rate (ETR) decreased significantly on the 3rd and 6th day after salt stress treatment. Under salt stress, Fm, Fv/Fm, Y, NPQ and ETR were positively correlated with salt tolerance score (STS), and there were significant differences between salt-tolerant and salt-sensitive japonica rice germplasm accessions. PCA with eight chlorophyll fluorescence parameters revealed two major components, with a cumulative contribution rate of 88.018%. Five key indexes, including Fm, Fv/Fm, Y, NPQ and ETR, were selected based on the loading of each component. The 16 accessions were subsequently assigned to salt tolerant and salt sensitive groups by cluster analysis. A comprehensive evaluation value D (DCF) of chlorophyll fluorescence characteristics under salt stress was obtained by using membership function combined with the index weight method, and then the ranking of the 16 accessions was obtained. Chlorophyll fluorescence induction curves of salt-tolerant Cigalon and Bertone, salt-sensitive Xinzhu8 and Sachiminori under salt stress and CK were created using the Kinetic model. Under CK condition, the four japonica rice germplasm accessions showed similar curve shapes with a large slope and the occurrence time of P peak was basically the same. Under the salt stress treatment, peak P, peak M and the curve slope of salt-sensitive accessions decreased rapidly, while the salt-tolerant accessions still maintained high P peak and curve slope. Through quantitative real-time PCR analysis of OsHCF222 and OsABCI7 in Cigalon and Sachiminori at different times under NaCl stress, the dynamic changes and correlation between leaf chlorophyll content and five key chlorophyll fluorescence parameters, the potential role of the two genes in salt tolerance of japonica rice were preliminarily clarified. 【Conclusion】Chlorophyll fluorescence parameters of japonica rice germplasm with different salt tolerances responded differently to salt stress. Fm, Fv/Fm, Y, NPQ and ETR were closely related to salt tolerance in rice. The expression levels of OsHCF222 and OsABCI7 directly affected the salt tolerance of japonica rice germplasm at seedling stage. In salt-tolerant japonica rice, NPQ and Fv/Fm played as key indexes, while Fm might play an important role in salt-sensitive japonica rice.

Key words: Oryza sativa japonica, salt stress, chlorophyll fluorescence parameters, chlorophyll fluorescence induction curves, quantitative real-time PCR

Table 1

Origins and names of 16 japonica rice germplasm with different salt tolerance, their salt tolerance type, DST value and salt tolerance score (STS)"

编号
No.
种质资源名称
Name of germplasm
原产地或来源
Origin
耐盐性
Salt tolerance
DST
DST value
耐盐级别
STS
1 Bertone 葡萄牙 Portugal 耐盐 ST 0.810 7.5
2 Agostono 意大利 Italy 耐盐 ST 0.716 7.2
3 法国稻 Faguodao 法国 France 耐盐 ST 0.708 6.5
4 湟罗 Huangluo 俄罗斯 Russia 耐盐 ST 0.681 6.6
5 漾濞光壳陆稻Yangbiguangkeludao 中国云南 Yunnan, China 耐盐 ST 0.627 6.3
6 Gostima 阿尔巴尼亚 Aerbaerya 耐盐 ST 0.623 5.8
7 Cigalon 法国 France 耐盐 ST 0.621 6.5
8 Banat2951 澳大利亚 Australia 耐盐 ST 0.612 6.5
9 幸实 Sachiminori 日本 Japan 盐敏感 SS 0.426 2.0
10 加合1号 Jiahe 1 中国浙江 Zhejiang, China 盐敏感 SS 0.389 2.4
11 京香2号 Jingxiang 2 中国北京 Beijing, China 盐敏感 SS 0.361 2.3
12 辽丰8号 Liaofeng 8 中国辽宁 Liaoning, China 盐敏感 SS 0.347 3.1
13 越光 Koshihikari 日本 Japan 盐敏感 SS 0.312 1.8
14 嘉南8号 Jianan 8 中国台湾 Taiwan, China 盐敏感 SS 0.261 2.2
15 Banat 725 澳大利亚 Australia 盐敏感 SS 0.252 2.6
16 新竹8号 Xinzhu 8 中国台湾 Taiwan, China 盐敏感 SS 0.243 2.1

Table 2

Gene names and primer sequences for quantitative real-time PCR"

基因 Gene 正向引物 Forward primer 反向引物 Reverse primer
OsABCI7 ACCGCTGGAACGAAGAAACA TGTCCCGGAGGAATGGCTTA
OsHCF222 TAGAAGGTGGTTGGAGGGG GATCACCGCACTTCTTGCA
OsActin GACCTTCAACACCCCTGCTA GACCTTCAACACCCCTGCTA

Table 3

Distribution range, coefficient of variation, F value and t value of chlorophyll fluorescence parameters under control and salt stress of japonica rice germplasm resources"

叶绿素荧光参数
Chlorophyll fluorescence parameters
盐处理时间
Salt treatment time
耐盐种质Salt tolerant germplasm 盐敏感种质Salt sensitive germplasm
分布范围
Range
变异系数
CV (%)
F
F-value
t
t-value
分布范围
Range
变异系数
CV (%)
F
F-value
t
t-value
Fo 0 mmol·L-1 3d 610.00-704.00 6.12 2.93 1.53 544.00-848.00 15.62 1.38 0.67
125 mmol·L-1 3d 586.00-675.67 4.36 524.00-711.50 9.82
0 mmol·L-1 6d 560.00-716.00 9.02 0.15 -2.20* 614.00-845.00 14.69 2.68 1.43
125 mmol·L-1 6d 629.33-798.50 7.99 331.00-882.00 28.44
Fm 0 mmol·L-1 3d 3006.00-3801.00 6.75 3.07 4.35** 2631.00-3833.00 12.79 1.41 4.86**
125 mmol·L-1 3d 3008.33-3177.00 2.04 1058.00-3016.00 31.01
0 mmol·L-1 6d 3344.00-3831.00 5.88 0.12 2.36* 3350.00-3836.00 9.56 6.96 15.07**
125 mmol·L-1 6d 2949.00-3675.00 7.59 584.00-1684.00 46.93
Fv/Fm 0 mmol·L-1 3d 0.79-0.82 1.23 0.90 3.63** 0.76-0.83 2.50 9.20 3.14**
125 mmol·L-1 3d 0.77-0.80 1.27 0.37-0.79 21.88
0 mmol·L-1 6d 0.80-0.83 1.22 7.98 2.58* 0.78-0.83 2.47 7.28 9.18**
125 mmol·L-1 6d 0.74-0.81 3.80 0.43-0.80 21.43
Y 0 mmol·L-1 3d 0.03-0.08 33.33 0.13 0.52 0.02-0.08 40.00 0.35 3.38**
125 mmol·L-1 3d 0.04-0.07 20.00 0.00-0.04 50.00
0 mmol·L-1 6d 0.03-0.08 40.00 0.28 -0.27 0.03-0.08 40.00 0.30 4.24**
125 mmol·L-1 6d 0.03-0.07 40.00 0.00-0.04 50.00
qP 0 mmol·L-1 3d 0.06-0.92 76.19 12.07 1.86 0.06-0.45 65.00 3.17 2.31*
125 mmol·L-1 3d 0.12-0.31 40.00 0.03-0.17 66.67
0 mmol·L-1 6d 0.09-0.90 108.00 0.40 -0.18 0.07-0.21 33.33 14.57 -1.20
125 mmol·L-1 6d 0.11-0.59 59.26 0.01-0.51 95.00
qN 0 mmol·L-1 3d 0.81-0.99 6.45 1.02 2.87* 0.82-0.96 5.62 0.81 2.57*
125 mmol·L-1 3d 0.79-0.90 4.65 0.72-0.89 7.41
0 mmol·L-1 6d 0.84-0.95 4.40 0.02 0.38 0.81-0.95 32.14 3.97 1.31
125 mmol·L-1 6d 0.81-0.96 5.56 0.24-0.94 29.33
NPQ 0 mmol·L-1 3d 1.83-3.98 23.08 3.44 3.63** 1.68-3.55 29.46 1.50 4.05**
125 mmol·L-1 3d 1.59-2.60 18.98 0.47-2.14 42.40
0 mmol·L-1 6d 2.25-3.48 15.65 0.48 1.33 1.76-3.02 20.00 0.18 6.25**
125 mmol·L-1 6d 1.53-3.49 23.55 0.11-0.52 47.13
ETR 0 mmol·L-13d 1.48-4.22 28.42 0.16 0.39 1.08-3.86 35.29 0.43 3.95**
125 mmol·L-13d 1.78-3.66 23.25 0.10-1.90 67.39
0 mmol·L-1 6d 1.58-3.94 35.47 0.25 -0.37 1.52-4.13 36.36 4.44 5.86**
125 mmol·L-1 6d 1.20-3.66 36.55 0.16-2.00 80.82

Table 4

Significance analysis of chlorophyll fluorescence parameters of japonica rice germplasm with different salt tolerance under NaCl stress"

盐处理时间
Salt treatment
time
种质类别
Germplasm
category
初始荧光产量
F0
最大荧光产量
Fm
原初光能转化效率
Fv/Fm
实际光化学量子产量
Y
光化学淬灭系数
qP
可变荧光的非光化学猝灭系数qN 非光化学荧光淬灭系数NPQ 表观光合电子传递速率ETR
0 mmol·L-1 3d 耐盐 ST 655.13±40.09a 3428.75±231.36a 0.81±0.01a 0.06±0.02a 0.42±0.32a 0.93±0.06a 3.25±0.75a 2.85±0.81a
盐敏感 SS 650.38±101.61a 3410.75±436.31a 0.80±0.02a 0.05±0.02a 0.20±0.13a 0.89±0.05a 2.58±0.76a 2.38±0.84a
0 mmol·L-1 6d 耐盐 ST 641.81±57.89a 3644.44±214.33a 0.82±0.01a 0.05±0.02a 0.25±0.07a 0.91±0.04a 2.94±0.04a 2.34±0.83a
盐敏感 SS 695.00±88.29a 3683.00±172.73a 0.81±0.02a 0.05±0.02a 0.12±0.02a 0.86±0.27a 2.20±0.05b 2.31±0.84a
125 mmol·L-1 3d 耐盐 ST 628.93±27.41a 3060.08±62.55a 0.79±0.01a 0.05±0.01a 0.20±0.08a 0.86±0.04a 2.16±0.41a 2.71±0.63a
盐敏感 SS 622.25±61.12a 2075.87±63.76b 0.64±0.14b 0.02±0.01b 0.09±0.06b 0.81±0.06a 1.25±0.53b 0.92±0.62b
125 mmol·L-1 6d 耐盐 ST 704.61±56.31a 3366.42±255.35a 0.79±0.03a 0.05±0.02a 0.27±0.16a 0.90±0.04a 2.59±0.61a 2.49±0.91a
盐敏感 SS 598.06±170.10a 1319.86±404.97b 0.52±0.08b 0.02±0.01b 0.20±0.19a 0.75±0.22a 0.87±0.41b 0.47±0.25b

Table 5

Correlation coefficient matrix between chlorophyll fluorescence parameters, relative SPAD and salt tolerance score at seedling stage of japonica rice germplasm resources under salt stress"

参数Parameter Fo Fm Fv/Fm Y qP qN NPQ ETR STS RSPAD
Fo 1.000
Fm 0.524* 1.000
Fv/Fm 0.253 0.928** 1.000
Y 0.329 0.894** 0.835** 1.000
qP 0.391 0.224 0.033 0.402 1.000
qN 0.703** 0.558* 0.452 0.462 0.632** 1.000
NPQ 0.369 0.915** 0.872** 0.906** 0.427 0.611* 1.000
ETR 0.329 0.893** 0.834** 1.000** 0.406 0.465 0.905** 1.000
STS 0.409 0.918** 0.840** 0.856** 0.304 0.485 0.933** 0.853** 1.000
RSPAD 0.525* 0.896** 0.824** 0.814** 0.272 0.603* 0.921** 0.810** 0.909** 1.000

Table 6

Eigenvector of principal component, load matrix, eigenvalue and contribution rate of each comprehensive parameter"

主成分1 CI1 主成分2 CI2
特征向量 Feature vector 载荷 Load 特征向量Feature vector 载荷Load
F0 0.201 0.484 0.636 0.717
Fm 0.391 0.940 -0.215 -0.243
Fv/Fm 0.365 0.876 -0.333 -0.376
Y 0.396 0.951 -0.162 -0.183
qP 0.276 0.664 0.483 0.545
qN 0.346 0.831 0.367 0.414
NPQ 0.404 0.971 -0.152 -0.171
ETR 0.396 0.951 -0.144 -0.162
初始特征值 Eigen value 5.769 1.273
贡献率 Contribution (%) 72.108 15.910
累积贡献率 Cumulative contribution (%) 72.108 88.018

Fig. 1

Cluster analysis of 16 japonica rice germplasm resources based on 5 chlorophyll fluorescence parameters under salt stress"

Table 7

Chlorophyll fluorescence comprehensive index, weight, membership function value, DCF value and ranking of 16 japonica rice germplasm resources"

编号
No.
种质名称
Name of germplasm
主成分1
PC1
主成分2
PC2
隶属函数(X1
u( X1 )
隶属函数(X2
u( X2 )
DCF
DCF value
排名
Ranking
1 Bertone 2.857 1.170 0.661 0.992 0.721 2
2 Agostono 2.785 0.162 0.638 0.000 0.523 4
3 法国稻 Faguodao 2.929 0.676 0.684 0.506 0.652 3
4 湟罗 Huangluo 2.532 0.272 0.557 0.108 0.476 5
5 漾濞光壳陆稻
Yangbiguangkeludao
2.059 0.632 0.407 0.462 0.417 7
6 Gostima 2.203 0.344 0.453 0.179 0.403 8
7 Cigalon 3.393 0.602 0.831 0.433 0.759 1
8 Banat2951 2.272 0.518 0.475 0.350 0.452 6
9 幸实 Sachiminori 0.781 0.505 0.000 0.338 0.061 16
10 加合 1 号 Jiahe 1 1.567 1.002 0.250 0.826 0.355 11
11 京香 2 号 Jingxiang 2 1.430 0.842 0.207 0.669 0.290 13
12 辽丰 8 号 Liaofeng 8 1.610 0.355 0.264 0.190 0.251 15
13 越光 Koshihikari 1.820 0.605 0.331 0.436 0.350 12
14 嘉南 8 号 Jianan 8 1.840 0.838 0.337 0.665 0.396 9
15 Banat 725 1.756 0.789 0.310 0.617 0.366 10
16 新竹8 号 Xinzhu 8 1.508 0.419 0.231 0.253 0.235 14
权重Index weight 0.819 0.181

Fig. 2

Chlorophyll fluorescence kinetics curves of japonica rice germplasm with different salt tolerance under CK and salt stress a, b, c and d represent chlorophyll fluorescence kinetic curves of 0 mmo·L-1 3d, 125 mmol·L-1 3d, 0 mmol·L-1 6d, and 125 mmol·L-1 6 d, respectively"

Fig. 3

Relative gene expression, chlorophyll content and chlorophyll fluorescence parameters of japonica rice germplasm resources with different salt tolerance under salt stress at different times A, B, C, D, E, F, G and H represent the relative expression of OsHCF222 and OsABCI7, the total chlorophyll content (mg·g-1), the actual photochemical quantum yield (Y), the maximum fluorescence value (Fm), maximum quantum efficiency of PSII (Fv/Fm), photosynthetic electron transfer rate (ETR) and non photochemical quenching coefficient (NPQ) in Cigalon and Sachiminori, respectively. * indicates significant differences among different japonica rice germplasm types at the same treatment (P<0.05), * * indicates significant differences among different japonica rice germplasm types at the same treatment (P<0.01). Different lowercase letters in the same germplasm indicate significant differences among the same japonica rice germplasm types in different treatments (P<0.05)"

Fig. 4

Hypothetical model of the role of OsABCI7 and OsHCF222 on chlorophyll fluorescence parameters and salt resistance under salinity stress in rice The size of the protein circle represents the amount of protein formed. The larger the circle, the more protein formed. The value in the figure is the correlation coefficient (R2), ** indicates significant correlation at 0.01 level;* indicates significant correlation at 0.05 level"

[1] 杜学军, 闫彬伟, 许可, 汪顺义, 高子登, 任雪芹, 胡树文, 郧文聚. 盐碱地水盐运移理论及模型研究进展. 土壤通报, 2021, 52(3): 713-721.
DU X J, YAN B W, XU K, WANG S Y, GAO Z D, REN X Q, HU S W, YUN W J. Research progress on water-salt transport theories and models in saline-alkali soil. Chinese Journal of Soil Science, 2021, 52(3): 713-721. (in Chinese)
[2] 李红宇, 李逸, 司洋, 杜春颖, 周雪松, 刘梦红, 宁洪钰, 叶飘飘. 北方粳稻耐盐碱相关性状主成分分析及综合评价. 核农学报, 2020, 34(8): 1862-1871.
doi: 10.11869/j.issn.100-8551.2020.08.1862
LI H Y, LI Y, SI Y, DU C Y, ZHOU X S, LIU M H, NING H Y, YE P P. Principal component analysis and comprehensive evaluation of saline-alkaline tolerance related traits of northern japonica rice. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1862-1871. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.08.1862
[3] 刘雅清. 宁夏河套灌区土壤盐碱化变异特征及其与作物类型的互馈关系[D]. 银川: 宁夏大学, 2019.
LIU Y Q. Soil salinization variability and its relationship with crop types in Hetao Irrigation District of Ningxia.[D]. Yinchuan: Ningxia University, 2019. (in Chinese)
[4] 冷春旭, 郑福余, 赵北平, 刘海英, 王玉杰. 水稻耐碱性研究进展. 生物技术通报, 2020, 36(11): 103-111.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0263
LENG C X, ZHNEG F Y, ZHAO B P, LIU H Y, WANG Y J. Advances on alkaline tolerance of rice. Biotechnology Bulletin, 2020, 36(11): 103-111. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0263
[5] KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 2005, 59(1): 1-6.
doi: 10.1007/s11103-005-2159-5
[6] WANKHADE S D, SANZ A. Chronic mild salinity affects source leaves physiology and productivity parameters of rice plants (Oryza sativa L., cv. Taipei 309). Plant and Soil, 2013, 367(1): 663-672.
doi: 10.1007/s11104-012-1503-1
[7] BIMPONG I K, MANNEH B, SOCK M, DIAW F, AMOAH N K A, ISMAIL A M, GREGOYIO G, SINGH R K, WOPEREIS M. Improving salt tolerance of lowland rice cultivar ‘rassi’ through marker-aided backcross breeding in west Africa. Plant Science, 2016, 242: 288-299.
doi: 10.1016/j.plantsci.2015.09.020
[8] SHIN Y K, BHANDARI S R, CHO M C, LEE J G. Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology, 2020, 61(3): 433-443.
doi: 10.1007/s13580-020-00231-z
[9] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展. 生态科学, 2019, 38(3): 225-234.
FANG Y R, XUE L. Research advances in the effect of salt stress on plant chlorophyll fluorescence. Ecological Science, 2019, 38(3): 225-234. (in Chinese)
[10] KALAJI H M, RACˇ KOVĂ L, PAGANOVĂ V, SWOCZYNA T, RUSINOWSKI S, SITKO K. Can chlorophyll a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill.?. Environmental and Experimental Botany, 2018, 152: 149-157.
doi: 10.1016/j.envexpbot.2017.11.001
[11] ZUSH K, MATSUZOE N. Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Scientia Horticulturae, 2017, 219: 216-221.
doi: 10.1016/j.scienta.2017.03.016
[12] MEHTA P, JAIOO A, MATHUR S, BHAYTI S. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiology and Biochemistry, 2010, 48: 16-20.
doi: 10.1016/j.plaphy.2009.10.006
[13] 孙文君, 江晓慧, 付媛媛, 申孝军, 高阳, 王兴鹏. 盐分胁迫对棉花幼苗叶片叶绿素荧光参数的影响. 灌溉排水学报, 2021, 40(7): 23-28, 121.
SUN W J, JIANG X H, FU Y Y, SHEN X J, GAO Y, WANG X P. The effects of salt stress on chlorophyll fluorescence of cotton seedling leaves. Journal of Irrigation and Drainage, 2021, 40(7): 23-28, 121. (in Chinese)
[14] 杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010, 43(8):1585-1593.
YANG S P, WEI C Z, LIANG Y C. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes. Scientia Agricultura Sinica, 2010, 43(8): 1585-1593. (in Chinese)
[15] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16): 3265-3272.
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272. (in Chinese)
[16] 刘莉娜, 张卫强, 黄芳芳, 甘先华, 唐成波, 丘鹏基. 盐胁迫对银叶树幼苗光合特性与叶绿素荧光参数的影响. 森林与环境学报, 2019, 39(6): 601-607.
LIU L N, ZHANG W Q, HUANG F F, GAN X H, TANG C B, QIU P J. Effects of NaCl stress on the photosynthesis and cholorophyll fluorescence of Heritiera littoralis seedlings. Journal of Forest and Environment, 2019, 39(6): 601-607. (in Chinese)
[17] AKHTER M S, NOREEN S, MAHMOOD S, ATHAR H, ASHRAF M, ALSAHLI A A, AHMAD P. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud University-Science, 2021, 33(1): 101239.
doi: 10.1016/j.jksus.2020.101239
[18] ZUSHI K, KAJIWARA S, MATSUZOE N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Scientia Horticulturae, 2012, 148: 39-46.
doi: 10.1016/j.scienta.2012.09.022
[19] DABROWSKI P, BACZEWSKA A H, PAWLUS’ KIEWICZ B, PAUNOV M, ALEXANTROV V, GOLTSEV V, KALAJI M H. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass. Journal of Photochemistry and Photobiology B: Biology, 2016, 157: 22-31.
doi: 10.1016/j.jphotobiol.2016.02.001
[20] BANKS J M. Chlorophyll fluorescence as a tool to identify drought stress in acer genotypes. Environmental and Experimental Botany, 2018, 155: 118-127.
doi: 10.1016/j.envexpbot.2018.06.022
[21] 胡丰姣, 黄鑫浩, 朱凡, 邹志刚, 刘俊文, 郑芬. 叶绿素荧光动力学技术在胁迫环境下的研究进展. 广西林业科学, 2017, 46(1): 102-106.
HU F J, HUANG X H, ZHU F, ZOU Z G, LIU J W, ZHENG F. Application of chlorophyll fluorescence analysis in environmental stress. Guangxi Forestry Science, 2017, 46(1): 102-106. (in Chinese)
[22] 胡文海, 闫小红, 李晓红, 曹灶桂. 24-表油菜素内酯对干旱胁迫下辣椒叶片快速叶绿素荧光诱导动力学曲线的影响. 植物研究, 2021, 41(1): 53-59.
HU W H, YAN X H, LI X H, CAO Z G. Effects of 24-epibrassinolide on the chlorophyll fluorescence transient in leaves of pepper under drought stress. Bulletin of Botanical Research, 2021, 41(1): 53-59. (in Chinese)
[23] 原佳乐, 马超, 冯雅岚, 张均, 杨发强, 李友军. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应. 植物生理学报, 2018, 54(6): 1119-1129.
YUAN J L, MA C, FENG Y L, ZHANG J, YANG F Q, LI Y J. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration. Plant Physiology Journal, 2018, 54(6): 1119-1129. (in Chinese)
[24] 李旭新, 刘炳响, 郭智涛, 常越霞, 贺磊, 陈芳, 路丙社. NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化. 应用生态学报, 2013, 24(9): 2479-2484.
LI X X, LIU B X, GUO Z T, CHANG Y X, HE L, CHEN F, LU B S. Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves. Chinese Journal of Applied Ecology, 2013, 24(9): 2479-2484. (in Chinese)
[25] HE Y, SHI Y F, ZHANG X B, XU X, WANG H M, LI L J, ZHANG Z H, SHANG H H, WANG Z H, WU J L. The OsABCI7 transporter interacts with OsHCF222 to stabilize the thylakoid membrane in rice. Plant Physiology, 2020, 184(1): 283-299.
doi: 10.1104/pp.20.00445
[26] 马帅国, 田蓉蓉, 胡慧, 吕建东, 田蕾, 罗成科, 张银霞, 李培富. 粳稻种质资源苗期耐盐性综合评价与筛选. 植物遗传资源学报, 2020, 21(5): 1089-1101.
MA S G, TIAN R R, HU H, LÜ J D, TIAN L, LUO C K, ZHANG Y X, LI P F. Comprehensive evaluation and selection of rice(Oryza sativa japonica)germplasm for saline tolerance at seedling stage. Journal of Plant Genetic Resources, 2020, 21(5): 1089-1101. (in Chinese)
[27] 王娜, 陈亚萍, 田蕾, 张得雯, 王瑞智, 杨苗, 李培富. 粳稻种质资源苗期根系形态特征与耐盐性相关分析. 广东农业科学, 2015, 42(10): 1-10.
WANG N, CHEN Y P, TIAN L, ZHANG D W, WANG R Z, YANG M, LI P F. Correlation between root morphological characteristics of japonica rice germplasm and salt tolerance at seedling stage. Guangdong Agricultural Sciences, 2015, 42(10): 1-10. (in Chinese)
[28] TIAN L, TAN L B, LIU F X, CAI H W, SUN C Q. Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. Journal of Genetics and Genomics, 2011, 38(12): 593-601.
doi: 10.1016/j.jgg.2011.11.005
[29] 谢海慧, 龚秦文, 吴承祯, 林勇明, 李键, 陈灿, 范海兰, 洪伟. 氮、硫沉降对尾巨桉和杉木幼苗光合特性的影响. 应用与环境生物学报, 2015, 21(3): 555-562.
XIE H H, GONG Q W, WU C Z, LIN Y M, LI J, CHEN C, FAN H L, HONG W. Effects of nitrogen and sulfur deposition on photosynthetic characteristics of Eucalyptus urophylla × Eucalyptus grandis and Cunninghamia lanceolata seedlings under simulated experimental condition. Chinese Journal of Applied and Environmental Biology. 2015, 21(3): 555-562. (in Chinese)
[30] 田蕾, 王彬, 张雪艳, 王娜, 普正菲, 董艳, 许兴. 脱硫石膏改良盐碱土对水稻秧苗素质、根系特征及质膜透性的影响. 广东农业科学, 2014, 41(21): 1-6.
TIAN L, WANG B, ZHANG X Y, WANG N, PU Z F, DONG Y, XU X. Effects of saline-alkail soil improved by desulfurized gypsum on seedling quality, root features and membrane permeability of rice. Guangdong Agricultural Sciences, 2014, 41(21): 1-6. (in Chinese)
[31] 李合生. 现代植物生理学. 3版. 北京: 高等教育出版社, 2012.
LI H S. Modern Plant Physiology. 3rd ed. Beijing: Higher Education Press, 2012. (in Chinese)
[32] 胡慧, 马帅国, 田蕾, 吕建东, 王彬, 王娜, 普正菲, 董艳. 脱硫石膏改良盐碱土对水稻叶绿素荧光特性的影响. 核农学报, 2019, 33(12): 2439-2450.
doi: 10.11869/j.issn.100-8551.2019.12.2439
HU H, MA S G, TIAN L, LÜ J D, WANG B, WANG N, PU Z F, DONG Y. Effects of saline-alkali soil improved by desulfurized gypsum on chlorophyll fluorescence characteristics of rice. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2439-2450. (in Chinese)
doi: 10.11869/j.issn.100-8551.2019.12.2439
[33] 唐玲, 李倩中, 荣立苹, 李淑顺. 盐胁迫对鸡爪槭幼苗生长及其叶绿素荧光参数的影响. 西北植物学报, 2015, 35(10): 2050-2055.
TANG L, LI Q Z, RONG L P, LI S S. Effects of salt stress on the growth and leaf chlorophyll fluorescence in Acer palmatum seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10): 2050-2055. (in Chinese)
[34] 佘汉基, 张潮, 薛立, 邝雷, 郑欣颖, 谢腾芳. 盐胁迫对4种园林植物荧光特性的影响. 生态科学, 2018, 37(5): 87-93.
SHE H J, ZHANG C, XUE L, KUANG L, ZHENG X Y, XIE T F. Effects of salt stress on chlorophyll fluorescence parameters of seedlings of four garden plant species. Ecological Science, 2018, 37(5): 87-93. (in Chinese)
[35] 刘晓龙, 徐晨, 季平, 李前, 杨洪涛, 武志海, 王洪君. 盐胁迫下水稻叶绿素荧光特性与离子积累的相关性分析. 分子植物育种, 2021, 19(3): 972-982.
LIU X L, XU C, JI P, LI Q, YANG H T, WU Z H, WANG H J. Correlation analysis of chlorophyll fluorescence characteristics of leaves and ions accumulation in rice under salt stress. Molecular Plant Breeding, 2021, 19(3): 972-982. (in Chinese)
[36] 刘晓龙, 徐晨, 徐克章, 崔菁菁, 安久海, 凌凤楼, 张治安, 武志海. 盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响. 作物杂志, 2014(2): 88-92.
LIU X L, XU C, XU K Z, CUI J J, AN J H, LING F L, ZHANG Z A, WU Z H. Effects on characteristics of photosynthesis and chlorophyll fluorescence of rice under salt stress. Crops, 2014(2): 88-92. (in Chinese)
[37] SINGH D P, SARKAR R K. Distinction and characterisation of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Functional Plant Biology, 2014, 41(7): 727-736.
doi: 10.1071/FP13229
[38] 王文林, 万寅婧, 刘波, 王国祥, 唐晓燕, 陈昕, 梁斌, 庄巍. 土壤逐渐干旱对菖蒲生长及光合荧光特性的影响. 生态学报, 2013, 33(13): 3933-3940.
doi: 10.5846/stxb201210301506
WANG W L, WAN Y J, LIU B, WANG G X, TANG X Y, CHEN X, LIANG B, ZHUANG W. Influence of soil gradual drought stress on Acorus calamus growth and photosynthetic fluorescence characteristics. Acta Ecologica Sinica, 2013, 33(13): 3933-3940. (in Chinese)
doi: 10.5846/stxb201210301506
[39] 卢广超, 许建新, 薛立, 张柔, 吴彩琼, 邵怡若. 低温胁迫对4种幼苗的叶绿素荧光特性的影响. 中南林业科技大学学报, 2014, 33(2): 44-49.
LU G C, XU J X, XUE L, ZHANG R, WU C Q, SHAO Y R. Effects of low temperature stress on chlorophyll fluorescence characteristics of four types of tree species seedlings. Journal of Central South University of Forestry & Technology, 2014, 33(2): 44-49. (in Chinese)
[40] MORADI F, ISMAIL A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 2007, 99(6): 1161-1173.
doi: 10.1093/aob/mcm052
[41] WRIGHT H, DELONG J, LADA R, PRANGE R. The relationship between water status and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biology and Technology, 2009, 51(2): 193-199.
doi: 10.1016/j.postharvbio.2008.07.004
[42] SHIN Y K, BHANDARI S R, CHO M C. Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology, 2020, 61(3): 433-443.
doi: 10.1007/s13580-020-00231-z
[43] 赵阳阳, 曾志斌, 王永淇. 盐胁迫对姜科8种植物叶绿素荧光参数的影响. 热带农业科学, 2018, 38(9): 18-23, 34.
ZHAO Y Y, ZENG Z B, WANG Y Q. Effects of salt stress on chlorophyll fluorescence coefficient of eight zingiberaceae plants. Chinese Journal of Tropical Agriculture, 2018, 38(9): 18-23, 34. (in Chinese)
[44] YAMANE K, KAWASAKI M, TANIGUCHI M, MIYAKE H. Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. Plant Production Science, 2008, 11(1): 139-145.
doi: 10.1626/pps.11.139
[45] 杨程, 杜思梦, 张德奇, 李向东, 时艳华, 邵运辉, 王汉芳, 方保停. 基于叶绿素荧光参数的小麦叶片叶绿素相对含量估算方法. 应用生态学报, 2021, 32(1):175-181.
YANG C, DU S M, ZHANG D Q, LI X D, SHI Y H, SHAO Y H, WANG H F, FANG B T. Method for estimating relative chlorophyll content in wheat leaves based on chlorophyll fluorescence parameters. Chinese Journal of Applied Ecology, 2021, 32(1): 175-181. (in Chinese)
[46] 刘文娟, 常丽娟, 岳丽杰, 宋君, 张富丽, 王东, 吴佳蔚, 郭灵安, 雷绍荣. 两个玉米品种维管束鞘叶绿体的非光化学淬灭对干旱胁迫的响应. 中国农业科学, 2020, 53(8):1532-1544.
LIU W J, CHANG L J, YUE L J, SONG J, ZHANG F L, WANG D, WU J W, GUO L A, LEI S R. Response of non-photochemical quenching in bundle sheath chloroplasts of two maize hybrids to drought stress. Scientia Agricultura Sinica, 2020, 53(8):1532-1544. (in Chinese)
[1] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[2] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[3] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[4] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[5] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[6] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[7] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[8] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[9] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[10] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[11] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
[12] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[13] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[14] GENG QingWei,XING Hao,ZHAI Heng,JIANG EnShun,DU YuanPeng. Effects of Different Light Intensity and Temperature on PSII Photochemical Activity in ‘Cabernet Sauvignon’ Grape Leaves Under Ozone Stress [J]. Scientia Agricultura Sinica, 2019, 52(7): 1183-1191.
[15] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!