Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 61-73.doi: 10.3864/j.issn.0578-1752.2022.01.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning

FENG Chen1,2(),HUANG Bo3,4(),FENG LiangShan1,2,ZHENG JiaMing1,2,BAI Wei1,2,DU GuiJuan1,2,XIANG WuYan1,2,CAI Qian1,2,ZHANG Zhe1,2,SUN ZhanXiang1,2()   

  1. 1Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
    2National Agricultural Experimental Station for Agricultural Environment, Fuxin 123100, Liaoning
    3College of Land and Environment, Shenyang Agricultural University, Shenyang 110866
    4Center of International Cooperation Service, Ministry of Agriculture and Rural Affairs, Beijing 100125
  • Received:2021-02-26 Accepted:2021-04-28 Online:2022-01-01 Published:2022-01-07
  • Contact: ZhanXiang SUN E-mail:sandyla570521@126.com;huangbo@agri.gov.cn;sunzx67@163.com

Abstract:

【Objective】 This study clarified the nitrogen absorption and utilization characteristics in maize-peanut intercropping by studying the nitrogen concentration, nitrogen uptake, nodulation of peanut and nitrogen distribution under different configurations, which provided a basis for regional screening and application of nitrogen efficient model of maize-peanut intercropping system. 【Method】 A field study with 10 treatments was conducted in National Agricultural Experimental Station for Agricultural Environment in Fuxin in 2015 and 2016, including four cropping systems, such as sole maize (M), sole peanut (P), intercropping system of 2 rows maize and 4 rows peanut (M2P4), and intercropping system of 4 rows maize and 4 rows peanut (M4P4). Each maize treatment included three maize planting densities (6, 9 and 12 plants/m2). The characteristics and advantages of nitrogen uptake and utilization in maize-peanut intercropping system with different configurations (row proportion and maize density) were analyzed. 【Result】 Compared with monocropping, the change of nitrogen concentration in maize and peanut plants was not significant, the yield and nitrogen yield of maize and peanut in intercropping was lower than that in monocropping due to the different proportion of land occupy, and was consistent with intercropping biomass performance. Maize-peanut intercropping significantly increased the system nitrogen uptake, nitrogen uptake equivalent ratio (NER)>1, which was mainly due to the nutrient absorption advantage of maize (pNERm was 0.63-0.80). The NER was increased with the row and density of maize increasing. The nitrogen uptake under M4P4 pattern (NER 1.06-1.22) was significantly higher than that under M2P4 pattern (NER 1.0-1.06). In maize-peanut intercropping system, maize was more competitive than peanut (Amp>0), and the competitive ability to absorb nitrogen was also stronger (CRmp>1), and M4P4 pattern and maize densification could enhance maize competition for nitrogen and increase the advantage of nitrogen uptake (△NU>0) and the contribution of intercropping nutrients to yield. Intercropping with maize could promote nodule formation of peanut. The number of nodule, weight of nodule per plant and weight per nodule of peanut under M4P4 pattern were higher than those under M2P4 pattern, and medium and low planting density treatments were better for nodulation. The soil available nitrogen content (Nmin) in the intercropping system was higher in the peanut strip than in the maize strip, and the Nmin in the sole peanut strip was higher than that in the intercropped peanut strip, while the Nmin in the sole maize strip was lower than that in the intercropped maize strip. 【Conclusion】 Maize-peanut intercropping could significantly improve the nitrogen uptake and utilization in the system, and maize contributed more to the system nitrogen uptake. Moderate increase of maize row ratio and density was beneficial to increase the nitrogen uptake equivalent ratio, enhance maize competition for nitrogen nutrition, and the contribution of intercropping nutrients to yield. In this study, M4P4-6 and M4P4-8 were the better pattern for maize-peanut intercropping. The promotion of maize-peanut intercropping on dry matter and peanut biological nitrogen fixation, as well as the competitive ability of maize to absorb nitrogen, were the important reasons for the advantages of maize-peanut intercropping in nitrogen utilization.

Key words: intercropping, configuration, maize, peanut, nitrogen uptake

Table 1

The treatments and codes in the experiment"

序号No. 处理 Treatment 代号Code
1 单作花生 Sole peanut P
2 单作玉米(密度6株/m2,即4 000株/亩) Sole maize (density 6 plants/m2) M-4
3 单作玉米(密度9株/m2,即6 000株/亩) Sole maize (density 9 plants/m2) M-6
4 单作玉米(密度12株/m2,即8 000株/亩) Sole maize (density 12 plants/m2) M-8
5 玉米花生间作2:4(玉米密度6株/m2) Maize-peanut intercropping 2:4 (maize density 6 plants/m2) M2P4-4
6 玉米花生间作2:4(玉米密度9株/m2) Maize-peanut intercropping 2:4 (maize density 9 plants/m2) M2P4-6
7 玉米花生间作2:4(玉米密度12株/m2) Maize-peanut intercropping 2:4 (maize density 12 plants/m2) M2P4-8
8 玉米花生间作4:4(玉米密度6株/m2) Maize-peanut intercropping 4:4 (maize density 6 plants/m2) M4P4-4
9 玉米花生间作4:4(玉米密度9株/m2) Maize-peanut intercropping 4:4 (maize density 9 plants/m2) M4P4-6
10 玉米花生间作4:4(玉米密度12株/m2) Maize-peanut intercropping 4:4 (maize density 12 plants/m2) M4P4-8

Fig. 1

The biomass and grain yield of maize and peanut in 2015-2016 under different treatments Different letters above the bars indicate significant difference among different treatments (P<0.05). The same as below"

Fig. 2

The nitrogen concentration of maize and peanut in 2015-2016 under different treatments"

Table 2

Nitrogen yield and equivalent ratio of nitrogen absorption of maize and peanut under different intercropping configurations (2015-2016)"

年份
Year
间作配置
Configuration
玉米氮产量 N yield of maize (kg·hm-2) 花生氮产量 N yield of peanut (kg·hm-2) 氮吸收当量比 NER
间作 Intercropping 单作 Sole 间作 Intercropping 单作Sole pNERm pNERp NER
2015 M2P4-4 103.6 157.5 67.4 201.7 0.66 0.34 1.00
M2P4-6 122.4 175.5 66.2 0.70 0.33 1.03
M2P4-8 127.9 180.2 70.2 0.71 0.36 1.07
M4P4-4 101.2 157.5 77.3 0.64 0.39 1.03
M4P4-6 121.6 175.5 80.4 0.69 0.41 1.10
M4P4-8 144.1 180.2 77.8 0.80 0.39 1.19
SE 8.78 5.40 2.77 18.3 0.040 0.037 0.065
2016 M2P4-4 101.9 154.7 66.5 196.7 0.66 0.34 1.00
M2P4-6 108.1 164.9 67.5 0.66 0.35 1.00
M2P4-8 115.3 160.5 66.4 0.72 0.34 1.06
M4P4-4 96.3 154.7 93.5 0.62 0.48 1.10
M4P4-6 113.5 164.9 90.7 0.69 0.46 1.15
M4P4-8 128.5 160.5 86.5 0.80 0.44 1.24
SE 8.04 6.03 5.37 7.46 0.033 0.038 0.063
2015-2016 M2P4-4 102.7 156.1 66.9 199.2 0.66 0.34 1.00
M2P4-6 115.3 170.2 66.9 0.68 0.34 1.02
M2P4-8 121.6 170.4 68.3 0.71 0.35 1.06
M4P4-4 98.7 156.1 85.4 0.63 0.43 1.06
M4P4-6 117.6 170.2 85.5 0.69 0.43 1.12
M4P4-8 136.3 170.4 82.2 0.80 0.42 1.22
SE 5.84 4.64 3.34 8.92 0.024 0.026 0.042
P
P value
行比Row proportion (R) 0.3715 1.0000 0.0000 0.2336 0.0003 0.0031
密度Density (D) 0.0001 0.0055 0.9483 0.0002 0.9926 0.0446
行比×密度 (R×D) 0.2813 1.0000 0.7175 0.0747 0.8467 0.5915

Table 3

Nitrogen uptake and utilization advantages, interspecific competitiveness and the contribution of nitrogen uptake and utilization to intercropping yield advantages under different treatments"

年份
Year
间作配置
Configuration
氮吸收优势
N absorption advantage
(△NU)
氮利用效率优势
N use efficiency advantage
竞争能力
Aggressivity
(Amp)
氮竞争比率
Competitive rate
(CRmp)
优势贡献
Contribution
(C)
NUEb NUEy
2015-2016 M2P4-4 -7.86 49.33 47.42 1.762 0.975 0.13
M2P4-6 -3.35 38.07 39.55 1.266 0.991 0.06
M2P4-8 0.83 46.39 26.96 1.149 1.06 0.15
M4P4-4 3.79 8.76 45.86 1.173 1.491 0.12
M4P4-6 10.64 13.28 21.06 0.772 1.596 0.18
M4P4-8 18.60 7.06 1.23 0.699 1.942 0.17
SE 5.20 4.54 17.8 0.334 0.093 0.023
P
P value
行比Row proportion (R) 0.0019 0.0000 0.3018 0.0709 0.0000 0.0219
密度 Density (D) 0.0944 0.7509 0.2046 0.2368 0.0179 0.1312
行比×密度 (R×D) 0.8391 0.1720 0.7857 0.9775 0.1355 0.0179

Table 4

Nodule number and nodule size of peanut (pod-pin stage) under different cropping patterns and maize densities"

不同模式/配置
Planting pattern/Configuration
根瘤数量
Nodule number (No./plant)
单株根瘤重
Nodule weight (mg/plant)
单个瘤重
Weight per nodule (mg/nodule)
单作花生Sole peanut 8±5B 9.0±0.9B 1.23±0.13A
M2P4-4 6±3b 4.17±1.9b 0.74±0.16a
M2P4-6 30±4a 26.5±6.4a 0.83±0.11a
M2P4-8 11±5b 11.7±5.3ab 0.74±0.24a
平均值Mean 16±3B 14.1±3.7B 0.77±0.07B
M4P4-4 40±6a 46.2±11.1a 1.10±0.14a
M4P4-6 21±7b 22.0±6.7b 1.12±0.10a
M4P4-8 23±5b 24.3±5.1b 1.09±0.12a
平均值Mean 28±3A 30.8±3.7A 1.11±0.07A
P
P value
模式Configuration(C) 0.004 0.003 0.003
密度Density (D) 0.208 0.481 0.863
模式×密度(C×D) 0.001 0.004 0.945

Fig. 3

The concentration of ammonium and nitrate nitrogen in different position in maize/peanut intercropping SP, IP1 and IP2 represent the strip of sole peanut, first border row and second border row of intercropped peanut, respectively. SM, IM1and IM2 represent the strip of sole maize, first border row and second border row of intercropped maize, respectively. Different letters above the bars indicate significant difference in nitrogen concentration among different position (P<0.05)"

[1] 白伟, 孙占祥, 郑家明, 郝卫平, 刘勤, 刘洋, 冯良山, 蔡倩. 虚实并存耕层提高春玉米产量和水分利用效率. 农业工程学报, 2014, 30(21): 81-90.
BAI W, SUN Z X, ZHENG J M, HAO W P, LIU Q, LIU Y, FENG L S, CAI Q. Furrow loose and ridge compaction plough layer improves spring maize yield and water use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 81-90. (in Chinese)
[2] 谢齐玥, 张广胜. 辽西玉米主产区农户氮肥减量化意愿因素分析——阜新蒙古族自治县农户低碳生产行为调研报告. 沈阳农业大学学报(社会科学版), 2013, 15(3): 257-261.
XIE Q Y, ZHANG G S. Factors affecting farmers' willingness to reduce nitrogen fertilizer in main maize production areas-A survey of farmers' low-carbon production behavior in Fuxin county. Journal of Shenyang Agricultural University (Social Sciences Edition), 2013, 15(3): 257-261. (in Chinese)
[3] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017, 50(19): 3702-3713.
GAO Y L, SUN Z X, BAI W, FENG L S, YANG N, CAI Q, FENG C, ZHANG Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Scientia Agricultura Sinica, 2017, 50(19): 3702-3713. (in Chinese)
[4] 左元梅, 李晓林, 王永歧, 曹一平, 张福锁. 玉米花生间作对花生铁营养的影响. 植物营养与肥料学报, 1997, 3(2): 153-159.
ZUO Y M, LI X L, WANG Y Q, CAO Y P, ZHANG F S. Effect of maize/peanut intercropping on iron nutrition of peanut. Plant Nutrition and Fertilizer Science, 1997, 3(2): 153-159. (in Chinese)
[5] 左元梅, 李晓林, 王秋杰, 曹一平, 张福锁. 玉米、小麦与花生间作改善花生铁营养机制的探讨. 生态学报, 1998, 18(5): 489-495.
ZUO Y M, LI X L, WANG Q J, CAO Y P, ZHANG F S. Study on mechanisms of improvement of iron nutrition of peanut by intercropping with maize or wheat. Acta Ecologica Sinica, 1998, 18(5): 489-495. (in Chinese)
[6] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37(11): 1010-1017.
doi: 10.3724/SP.J.1258.2013.00104
JIAO N Y, YANG M K, NING T Y, YIN F, XU G W, FU G Z, LI Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)
doi: 10.3724/SP.J.1258.2013.00104
[7] 焦念元, 侯连涛, 宁堂原, 李增嘉, 李友军, 付国占. 玉米花生间作氮磷营养间作优势分析. 作物杂志, 2007(4): 50-53.
JIAO N Y, HOU L T, NING T Y, LI Z J, LI Y J, FU G Z. Analysis of nutrition intercropping advantages of nitrogen and phosphorus in maize/peanut intercropping system. Crops, 2007(4): 50-53. (in Chinese)
[8] 焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉. 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013, 33(14): 4324-4330.
doi: 10.5846/stxb
JIAO N Y, NING T Y, YANG M K, FU G Z, YIN F, XU G W, LI Z J. Effects of maize‖peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 2013, 33(14): 4324-4330. (in Chinese)
doi: 10.5846/stxb
[9] 焦念元, 赵春, 宁堂原, 侯连涛, 付国占, 李增嘉, 陈明灿. 玉米-花生间作对作物产量和光合作用光响应的影响. 应用生态学报, 2008, 19(5): 981-985.
JIAO N Y, ZHAO C, NING T Y, HOU L T, FU G Z, LI Z J, CHEN M C. Effects of maize-peanut intercropping on economic yield and light response of photosynthesis. Chinese Journal of Applied Ecology, 2008, 19(5): 981-985. (in Chinese)
[10] 周苏玫, 马淑琴, 李文, 张石头. 玉米花生间作系统优势分析. 河南农业大学学报, 1998, 32(1): 17-22.
ZHOU S M, MA S Q, LI W, ZHANG S T. Analysis of superiority of maize and peanut row intercropping. Journal of Henan Agricultural University, 1998, 32(1): 17-22. (in Chinese)
[11] 肖焱波, 段宗颜, 金航, 胡万里, 陈拾华, 魏朝富. 小麦/蚕豆间作体系中的氮节约效应及产量优势. 植物营养与肥料学报, 2007, 13(2): 267-271.
XIAO Y B, DUAN Z Y, JIN H, HU W L, CHEN S H, WEI C F. Spared N response and yields advantage of intercropped wheat and faba bean. Journal of Plant Nutrition and Fertilizers, 2007, 13(2): 267-271. (in Chinese)
[12] ASHWORTH A J, TAYLOR A M, REED D L, ALLEN F L, KEYSER P D, TYLER D D. Environmental impact assessment of regional switchgrass feedstock production comparing nitrogen input scenarios and legume-intercropping systems. Journal of Cleaner Production, 2015, 87: 227-234.
doi: 10.1016/j.jclepro.2014.10.002
[13] KERMAH M, FRANKE AC, ADJEI-NSIAH S, AHIABOR B D, ABAIDOO R C, GILLER K E. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research, 2017, 213: 38-50.
doi: 10.1016/j.fcr.2017.07.008
[14] 左元梅, 陈清, 张福锁. 利用14C示踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制. 核农学报, 2004, 18(1): 43-46.
ZUO Y M, CHEN Q, ZHANG F S. The mechanisms of root exudates of maize in improvement of iron nutrition of peanut in peanut/maize intercropping system by 14C tracer technique. Acta Agriculturae Nucleatae Sinica, 2004, 18(1): 43-46. (in Chinese)
[15] 贾曦, 王璐, 刘振林, 李长松, 殷复伟, 王莹莹, 万书波. 玉米//花生间作模式对作物病害发生的影响及分析. 花生学报, 2016, 45(4): 55-60.
JIA X, WANG L, LIU Z L, LI C S, YIN F W, WANG Y Y, WAN S B. Effects and analyses of intercropping pattern for maize and peanut on crops disease occurrence. Journal of Peanut Science, 2016, 45(4): 55-60. (in Chinese)
[16] 刘颖, 王建国, 郭峰, 唐朝辉, 杨莎, 耿耘, 孟静静, 李新国, 张佳蕾, 万书波. 玉米花生间作对作物干物质积累和氮素吸收利用的影响. 中国油料作物学报, 2020, 42(6): 994-1001.
LIU Y, WANG J G, GUO F, TANG Z H, YANG S, GENG Y, MENG J J, LI X G, ZHANG J L, WAN S B. Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 994-1001. (in Chinese)
[17] LIU L, WANG Y, YAN X, LI J, JIAO N, HU S. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agriculture, Ecosystems & Environment, 2017, 237: 16-23.
doi: 10.1016/j.agee.2016.12.026
[18] REDDY S N, RAJU M S, RAMAIAH N V, REDDY A V. Studies of maize-groundnut intercropping systems under rainfed conditions. Indian Journal of Agronomy, 1986, 31(2): 189-191.
[19] NAMBIAR P T C, RAO M R, REDDY M S, FLOYD C N, DART P J, WILLEY R W. Effect of intercropping on nodulation and N2-fixation by groundnut. Experimental Agriculture, 1983, 19(1): 79-86.
doi: 10.1017/S001447970001053X
[20] KONLAN S, SARKODIE-ADDO J, KOMBIOK M J, ASARE E, BAWAH I. Effect of intercropping on nitrogen fixation of three groundnut (Arachis hypogaea L.) genotypes in the Guinea Savanna zone of Ghana. International Journal of Plant & Soil Science, 2015, 5(1): 1-9.
[21] MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 1980, 16(3): 217-228.
doi: 10.1017/S0014479700010978
[22] 李隆. 间套作体系豆科作物固氮生态学原理与应用. 北京: 中国农业大学出版社, 2013: 97-101.
LI L. The Ecological Principles and Applications of Biological N2 Fixation in Legumes-based Intercropping Systems. Beijing: China Agricultural University Press, 2013: 97-101. (in Chinese)
[23] FUJITA K, OFOSU-BUDU K G, OGATA S. Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant and Soil, 1992, 141(1/2): 155-175.
doi: 10.1007/BF00011315
[24] OLJACA S, CVETKOVIC R, KOVACEVIC D, VASIC G, MOMIROVIC N. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaseolus vulgaris) intercropping system. Journal of Agricultural Science, 2000, 135(3): 261-270.
[25] 褚贵新, 沈其荣, 李奕林, 张娟, 王树起. 用15N叶片标记法研究旱作水稻与花生间作系统中氮素的双向转移. 生态学报, 2004, 24(2): 278-284.
CHU G X, SHEN Q R, LI Y L, ZHANG J, WANG S Q. Researches on bi-directional N transfer between the intercropping system of groundnut with rice cultivated in aerobic soil using 15N foliar labeling method. Acta Ecologica Sinica, 2004, 24(2): 278-284. (in Chinese)
[26] 王小春, 杨文钰, 任万军, 邓小燕, 张群, 向达兵, 雍太文. 小麦/玉米/大豆和小麦/玉米/甘薯套作体系中玉米产量及养分吸收的差异. 植物营养与肥料学报, 2012, 18(4): 803-812.
WANG X C, YANG W Y, REN W J, DENG X Y, ZHANG Q, XIANG D B, YONG T W. Study on yield and differences of nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. Plant Nutrition and Fertilizer Science, 2012, 18(4): 803-812. (in Chinese)
[27] 焦念元, 汪江涛, 尹飞, 马超, 齐付国, 刘领, 付国占, 李友军. 施用乙烯利和磷肥对玉米//花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22(6): 1477-1484.
JIAO N Y, WANG J T, YIN F, MA C, QI F G, LIU L, FU G Z, LI Y J. Effects of ethephon and phosphate fertilizer on N absorption and intercropped advantages of maize and peanut intercropping system. Plant Nutrition and Fertilizer Science, 2016, 22(6): 1477-1484. (in Chinese)
[28] 刘振洋, 吴鑫雨, 汤利, 郑毅, 李海叶, 潘浩男, 朱东宇, 王静静, 黄少欣, 覃潇敏, 肖靖秀. 小麦蚕豆间作体系氮素吸收累积动态及其种间氮素竞争关系. 植物营养与肥料学报, 2020, 26(7): 1284-1294.
LIU Z Y, WU X Y, TANG L, ZHENG Y, LI H Y, PAN H N, ZHU D Y, WANG J J, HUANG S X, QIN X M, XIAO J X. Dynamics of N acquisition and accumulation and its interspecific N competition in a wheat-faba bean intercropping system. Plant Nutrition and Fertilizer Science, 2020, 26(7): 1284-1294. (in Chinese)
[29] MANDIMBA G R, GALANDZOU C, GUENGUIE N. Effect of plant population densities on the growth of Zea mays L. and Arachis hypogaea L. in intercropping systems. Biological Agriculture & Horticulture, 1993, 10(2): 141-154.
[30] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41(4): 642-650.
doi: 10.3724/SP.J.1006.2015.00642
YANG F, LOU Y, LIAO D P, GAO R C, YONG T W, WANG X C, LIU W G, YANG W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015, 41(4): 642-650. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00642
[31] 李隆, 李晓林, 张福锁, 孙建好, 杨思存, 芦满济. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6(2): 140-146.
LI L, LI X L, ZHANG F S, SUN J H, YANG S C, LU M J. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in wheat/soybean intercropping. Journal of Plant Nutrition and Fertilizers, 2000, 6(2): 140-146. (in Chinese)
[32] FAN F L, ZHANG F S, SONG Y N, SUN J H, BAO X G, GUO T W, LI L. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil, 2006, 283(1/2): 275-286.
doi: 10.1007/s11104-006-0019-y
[33] XIAO Y B, LI L, ZHANG F S. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant and Soil, 2004, 262(1/2): 45-54.
doi: 10.1023/B:PLSO.0000037019.34719.0d
[34] LIU Y C, QIN X M, XIAO J X, TANG L, WEI C Z, WEI J J, ZHENG Y, et al. Intercropping influences component and content change of flavonoids in root exudates and nodulation of faba bean. Journal of Plant Interactions, 2017, 12(1): 187-192.
doi: 10.1080/17429145.2017.1308569
[35] 张晓娜, 陈平, 杜青, 周颖, 任建锐, 金福, 杨文钰, 雍太文. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响. 中国生态农业学报, 2019, 27(8): 1183-1194.
ZHANG X N, CHEN P, DU Q, ZHOU Y, REN J R, JIN F, YANG W Y, YONG T W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1183-1194. (in Chinese)
[1] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[10] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[11] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[15] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!