Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2927-2937.doi: 10.3864/j.issn.0578-1752.2022.15.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System

SHI XiaoLong1(),GUO Pei1,REN JingYao1,ZHANG He1,DONG QiQi1,ZHAO XinHua1,ZHOU YuFei1,ZHANG Zheng2,WAN ShuBo2,YU HaiQiu1()   

  1. 1College of Agronomy, Shenyang Agricultural University, Shenyang 110866
    2Shandong Academy of Agricultural Sciences, Ji’nan 250100
  • Received:2021-11-10 Accepted:2021-12-22 Online:2022-08-01 Published:2022-08-02
  • Contact: HaiQiu YU E-mail:xiaolongshi1993@163.com;yuhaiqiu@syau.edu.cn

Abstract:

【Objective】The main objectives of this study were to investigate the response of peanut to salt stress under peanut//sorghum intercropping, and hope to provide new insights on develop stress cultivation. 【Method】 In this study, peanut cultivar “Huayu 25” and sorghum cultivar “Liaoza 15”, with characteristics of salt tolerance and a high yield potential, were selected as experimental materials to carry out the field planting box experiment for two consecutive years. Sole-cropped peanut (SP) and intercropped peanut (IP) experiments were then performed under normal (N) and salt stress (S) soil conditions, respectively. The experiment was comprised of four treatments: sole-cropped peanut under normal condition (N-SP), intercropped peanut under normal condition (N-IP), sole cropped peanut under salt stress condition (S-SP), and intercropped peanut under salt stress condition (S-IP). Therefore, the salt tolerance index (STI), relative interaction index (RII), Na+/K+, and rhizosphere nutrient of peanut were investigated in the present study to evaluate the response of peanut to salt stress under different planting patterns.【Result】In the peanut//sorghum intercropping system, both RII of peanut were negative. However, the negative RII was decreased significantly and the STI was increased significantly under S-IP with salt stress, especially after continuously being planted for two years. Of these, the negative RII of S-IP decreased by 66.78% in 2019 than that of in 2018, and the negative RII under S-IP decreased by 88.76% than that under N-IP. Furthermore, the STI under S-IP increased by 27.68% than that under S-SP in both 2018 and 2019. Peanut//sorghum intercropping has been found to change the overall root distribution and architecture by favoring the development of different types of roots, and also affected rhizosphere nutrients of peanut, the rhizosphere soil nutrient content of N-IP and S-IP increased by an average of 6.19% and 3.73% than N-SP and S-SP, respectively. Under salt stress, the content of soil potassium increased significantly compared with normal soil conditions, this might be the initial defensive response utilized by plants to maintain Na+/K+ homeostasis in rhizosphere soil, which regulated Na+/K+ homeostasis in peanut by influencing the Na+ and K+ selective absorption and transportation. Compared with S-SP, the leaf Na+/K+ ratio of S-IP decreased by 20.63%, the leaf salinity hazard coefficient (LSHC) decreased by 53.95%, so the photosynthetic potential and light energy conversion efficiency were significantly improved too. Ultimately the dry matter accumulation capacity and yield potential were improved, in which the yield potential under S-IP had the most obvious increase, and the yield under S-IP increased by 17.95% in 2019 compared with 2018.【Conclusion】The continuous peanut intercropped with sorghum under salt stress could be an effective technique to alleviate peanut negative interactions, which significantly improved STI and alleviate salt stress of peanut by improving soil nutrient status and regulating peanut Na+/K+ homeostasis, which ultimately maintained the dry matter accumulation capacity and increased yield potential.

Key words: peanut//sorghum intercropping, salt tolerance, nutrient content, Na+/K+ homeostasis, relative interaction

Fig. 1

Schematic diagram of sole-cropped peanut and intercropped peanut in the growing boxes"

Fig. 2

The total dry mass and yield of sole-cropped peanut and intercropped peanut under different soil conditions N: Normal soil condition; S: Salt-treated condition; SP: Sole-cropped peanut; IP: Intercropped peanut. Different lowercase letters indicate significant difference (P<0.05) among different treatments. The same as below"

Fig. 3

The relative interaction index of intercropped peanut under different soil conditions and the salt tolerance index of sole-cropped peanut and intercropped peanut under salt-treated condition RII: Relative interaction index; STI: Salt tolerance index"

Fig. 4

The leaf salinity hazard coefficient and chlorophyll fluorescence images of sole-cropped peanut and intercropped peanut under different soil conditions LSHC: Leaf salinity hazard coefficient; Fv/Fm: Maximal yield of the photochemical reaction in PSII; NPQ: Non-photochemical quenching; Rfd: Rate of fluorescence decay"

Fig. 5

The root biomass distribution of sole-cropped peanut and intercropped peanut under different soil conditions SP1-L: Root distribution zone of sole-cropped peanut-left; SP1: Root distribution zone of sole-cropped peanut 1; SI: Root distribution of interaction zone in sole-cropped peanut; SP2: Root distribution zone of sole-cropped peanut 2; SP2-R: Root distribution zone of sole-cropped peanut-right; IP-L: Root distribution zone of intercropped peanut-left; IP: Root distribution zone of intercropped peanut; II: Root distribution of interaction zone in intercropped peanut; IS: Root distribution zone of intercropped sorghum; IS-R: Root distribution zone of intercropped sorghum-right"

Fig. 6

The Na+/K+ in each organ of sole-cropped peanut and intercropped peanut under different soil conditions"

Fig. 7

The Na+, K+ selective absorption and selective transport of sole-cropped peanut and intercropped peanut under different soil conditions SA: Na+, K+ selective absorption; ST: Na+, K+ selective transport"

Table 1

The rhizosphere nutrient contents of sole-cropped peanut and intercropped peanut under different soil conditions"

处理 Treatment 总磷 TP (g·kg-1) 总钾 TK (g·kg-1) 总氮 TN (g·kg-1) 有机碳 SOC (g·kg-1) 碳氮比 C/N
N-SP 0.40±0.01b 4.84±0.23b 0.93±0.02b 9.65±0.24b 10.43±0.09bc
N-IP 0.45±0.02a 4.82±0.18b 0.98±0.03a 10.60±0.29a 10.77±0.02a
S-SP 0.37±0.01b 5.58±0.10a 0.88±0.04c 8.88±0.36c 10.13±0.20c
S-IP 0.40±0.02b 5.74±0.28a 0.89±0.02bc 9.24±0.15bc 10.40±0.23bc
[1] 潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制. 生物技术通报, 2020, 36(9): 75-87.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511
PAN J, HUANG C H, PENG F, YOU Q G, LIU F Y, XUE X. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria. Biotechnology Bulletin, 2020, 36(9): 75-87. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511
[2] 李建国, 濮励杰, 朱明, 张润森. 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012, 67(9): 1233-1245.
LI J G, PU L J, ZHU M, ZHANG R S. The present situation and hot issues in the salt-affected soil research. Acta Geographica Sinica, 2012, 67(9): 1233-1245. (in Chinese)
[3] ASSAHA D V M, UEDA A, SANEOKA H, AL-YAHYAI R, YAISH M W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in physiology, 2017, 8: 509-527.
doi: 10.3389/fphys.2017.00509
[4] ZHU J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029
[5] SHI X L, ZHOU D Y, GUO P, ZHANG H, DONG J L, REN J Y, JIANG C J, ZHONG C, ZHAO X H, YU H Q. External potassium mediates the response and tolerance to salt stress in peanut at the flowering and needling stages. Photosynthetica, 2020, 58(5): 1141-1149.
doi: 10.32615/ps.2020.070
[6] 董轲, 许亚萍, 崔冰, 王梦雨, 秦荣凤, 唐亦俐, 范海. 盐胁迫下不同钾素水平对海滨锦葵生长和光合作用的影响. 植物生理学报, 2015, 51(10): 1649-1657.
DONG K, XU Y P, CUI B, WANG M Y, QIN R F, TANG Y L, FAN H. Effects of different potassium levels on the growth and photosynthesis of kostelezkya virginica under salt stress. Plant Physiology Journal, 2015, 51(10): 1649-1657. (in Chinese)
[7] 王旭明, 赵夏夏, 黄露莎, 陈景阳, 莫俊杰, 叶昌辉, 周鸿凯, 谢平. 盐胁迫下4个不同耐盐基因型水稻Na+、K+积累效应. 热带作物学报, 2018, 39(11): 2140-2146.
WANG X M, ZHAO X X, HUANG L S, CHEN J Y, MO J J, YE C H, ZHOU H K, XIE P. The Na+ and K+ accumulative effect of four different salt tolerance genotypes in rice under salt stress. Chinese Journal of Tropical Crops, 2018, 39(11): 2140-2146. (in Chinese)
[8] 王学征, 李秋红, 吴凤芝. NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性. 中国农业科学, 2010, 43(7): 1423-1432.
WANG X Z, LI Q H, WU F Z. Study on the characteristics of absorption, distribution and selective transport of Na+ and K+ in tomato plants under salt stress. Scientia Agricultura Sinica, 2010, 43(7): 1423-1432. (in Chinese)
[9] BETENCOURT E, DUPUTEL M, COLOMB B, DESCLAUX D, HINSINGER P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry, 2012, 46: 181-190.
doi: 10.1016/j.soilbio.2011.11.015
[10] CHANG X L, YAN L, NAEEM M, KHASKHELI M I, ZHANG H, GONG G S, ZHANG M, SONG C, YANG W Y, LIU T G, CHEN W Q. Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species. Pathogens, 2020, 9(3): 211-226.
doi: 10.3390/pathogens9030211
[11] 赵敏, 赵锐锋, 张丽华, 赵海莉, 周远刚. 基于盐分梯度的黑河中游湿地植物多样性及其与土壤因子的关系. 生态学报, 2019, 39(11): 4116-4126.
ZHAO M, ZHAO R F, ZHANG L H, ZHAO H L, ZHOU Y G. Plant diversity and its relationship with soil factors in the middle reaches of the Heihe River based on the soil salinity gradient. Acta Ecologica Sinica, 2019, 39(11): 4116-4126. (in Chinese)
[12] TANG X, ZHONG R, JIANG J, HE L, HUANG Z, SHI G, WU H, LIU J, XIONG F, HAN Z, TANG R, HE L. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents. BMC Biotechnology, 2020, 20(1): 13-24.
doi: 10.1186/s12896-020-00606-1
[13] CAHILL J F, MCNICKLE G G, HAAG J J, LAMB E G, NYANUMBA S M, CLAIR C S. Plants integrate information about nutrients and neighbors. Science, 2010, 328(5986): 1657.
doi: 10.1126/science.1189736
[14] DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, 2017, 240(2): 148-161.
doi: 10.1016/j.agee.2017.02.019
[15] SHI X L, ZHAO X H, REN J Y, DONG J L, ZHANG H, DONG Q Q, JIANG C J, ZHONG C, ZHOU Y F, YU H Q. Influence of peanut, sorghum, and soil salinity on microbial community composition in interspecific interaction zone. Frontiers in microbiology, 2021, 12(1306): 678250-678262.
doi: 10.3389/fmicb.2021.678250
[16] 孙浩. 玉米、大豆间作对盐碱土壤微环境和植物养分状况的影响[D]. 青岛: 青岛农业大学, 2017.
SUN H. Effect of maize and soybean interplanting on rhizosphere soil microenvironment and plant nutrient status under saline-alkali soil condition[D]. Qingdao: Qingdao Agricultural University, 2017. (in Chinese)
[17] 邹询, 王艳秋, 王佳旭, 段有厚, 张飞. 高粱-花生条带状种植群体光合物质生产效应分析. 辽宁农业科学, 2021(3): 29-32.
ZOU X, WANG Y Q, WANG J X, DUAN Y H, ZHANG F. Analysis of the effect of sorghum and peanut strip planting on the production of photosynthetic material. Liaoning Agricultural Sciences, 2021(3): 29-32. (in Chinese)
[18] 左元梅, 张福锁. 不同禾本科作物与花生混作对花生根系质外体铁的累积和还原力的影响. 应用生态学报, 2004, 15(2): 221-225.
ZUO Y M, ZHANG F S. Effects of peanut mixed cropping with different gramineous plants on apoplast iron accumulation and reducing capacity of peanut. Chinese Journal of Applied Ecology, 2004, 15(2): 221-225. (in Chinese)
[19] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16): 3265-3272.
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272. (in Chinese)
[20] 张智猛, 戴良香, 慈敦伟, 杨吉顺, 丁红, 秦斐斐, 穆国俊. 种植密度和播种方式对盐碱地花生生长发育、产量及品质的影响. 中国生态农业学报, 2016, 24(10): 1328-1338.
ZHANG Z M, DAI L X, CI D W, YANG J S, DING H, QIN F F, MU G J. Effects of planting density and sowing method on growth, development, yield and quality of peanut in saline alkali land. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1328-1338. (in Chinese)
[21] BAĞCI S, EKIZ H, YILMAZ A. Salt tolerance of sixteen wheat genotypes during seedling growth. Turkish Journal of Agriculture and Forestry, 2007, 31(6): 363-372.
[22] ARMAS C, ORDIALES R, PUGNAIRE F I. Measuring plant interactions: A new comparative index. Ecology, 2004, 85(10): 2682-2686.
doi: 10.1890/03-0650
[23] 章家恩, 高爱霞, 徐华勤, 罗明珠. 玉米/花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20(7): 1597-1602.
ZHANG J E, GAO A X, XU H Q, LUO M Z. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. Chinese Journal of Applied Ecology, 2009, 20(7): 1597-1602. (in Chinese)
[24] 朱锦惠, 董坤, 杨智仙, 董艳. 间套作控制作物病害的机理研究进展. 生态学杂志, 2017, 36(4): 1117-1126.
ZHU J H, DONG K, YANG Z X, DONG Y. Advances in the mechanism of crop disease control by intercropping. Chinese Journal of Ecology, 2017, 36(4): 1117-1126. (in Chinese)
[25] 宋倩倩, 陈雯雯, 唐建军, 于振兴, 丁丽莲, 刘世俊, 任明磊, 陈欣. 土壤盐梯度下根际因子对植物邻体效应的影响. 浙江大学学报(农业与生命科学版), 2018, 44(5): 601-609, 649.
SONG Q Q, CHEN W W, TANG J J, YU Z X, DING L L, LIU S J, REN M L, CHEN X. Effects of rhizospheric factors on plant neighbor effects along a salinity gradient. Journal of Zhejiang University (Agriculture and Life Sciecces), 2018, 44(5): 601-609, 649. (in Chinese)
[26] 陈雯雯. 沿盐胁迫梯度植物种间相互作用变化规律的研究[D]. 杭州: 浙江大学, 2014.
CHEN W W. Changes in interactions between plant species along a salinity[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[27] 李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展. 生物技术通报, 2019, 35(7): 148-155.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0088
LI X Y, XIE L N. Research progress in Na+ regulation mechanism of plants under salt stress. Biotechnology Bulletin, 2019, 35(7): 148-155. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0088
[28] CHEN F Q, FANG P, PENG Y L, ZENG W J, ZHAO X Q, DING Y F, ZHUANG Z L, GAO Q H, REN B. Comparative proteomics of salt-tolerant and salt-sensitive maize inbred lines to reveal the molecular mechanism of salt tolerance. International Journal of Molecular Sciences, 2019, 20(19): 4725-4746.
doi: 10.3390/ijms20194725
[29] ZAFAR-UL-HYE M, TAHZEEB-UL-HASSAN M, ABID M, FAHAD S, BRTNICKY M, DOKULILOVA T, DATTA R, DANISH S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Scientific Reports, 2020, 10(1): 12159-12170.
doi: 10.1038/s41598-020-69183-9
[30] ZHANG J L, FLOWERS T J, WANG S M. Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritima . Plant and Soil, 2013, 368(1/2): 629-640.
doi: 10.1007/s11104-012-1552-5
[31] SUN J, CHEN S, DAI S, WANG R, LI N, SHEN X, ZHOU X, LU C, ZHENG X, HU Z, ZHANG Z, SONG J, XU Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology, 2009, 149(2): 1141-1153.
doi: 10.1104/pp.108.129494
[32] CHAPAGAIN T, RISEMAN A. Barley-pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crops Research, 2014, 166(9): 18-25.
doi: 10.1016/j.fcr.2014.06.014
[33] 唐秀梅, 黄志鹏, 吴海宁, 刘菁, 蒋菁, 唐荣华. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020, 29(2): 223-230.
TANG X M, HUANG Z P, WU H N, LIU J, JIANG J, TANG R H. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system. Ecology and Environmental Sciences, 2020, 29(2): 223-230. (in Chinese)
[1] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[2] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[3] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[4] ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng,ZOU JianQiu. Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015.
[5] LI XiaoBo,LI Zhen,DAI ShaoJun,PAN JiaoWen,WANG QingGuo,GUAN YanAn,DING GuoHua,LIU Wei. Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice [J]. Scientia Agricultura Sinica, 2019, 52(22): 3976-3986.
[6] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[7] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[8] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[9] Lei NING, ShuGuang WANG, PengJu JU, XingXuan BAI, LinHao GE, Xin QI, QiYan JIANG, XianJun SUN, Ming CHEN, DaiZhen SUN. Rice Overexpression of Millet SiANT1 Gene Increases Salt Tolerance [J]. Scientia Agricultura Sinica, 2018, 51(10): 1830-1841.
[10] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[11] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[12] ZHANG Rui, DENG WenYa, YANG Liu, WANG YaPing, XIAO FangZhi, HE Jian, LU Kun. Genome-Wide Association Study of Root Length and Hypocotyl Length at Germination Stage Under Saline Conditions in Brassica napus [J]. Scientia Agricultura Sinica, 2017, 50(1): 15-27.
[13] WANG Hui-fei, SUN Yan-xiang, FENG Xue, ZHANG Yi-ming, YANG Jiang-tao, MA Mei-fang, CHEN Guang. Cloning and Expression Analysis of Argininosuccinate Synthetase Gene GhASS1 from Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2016, 49(7): 1242-1253.
[14] YAN Bo, ZHOU Ting, WANG Hui-min, CHEN Zhu-jun, CAO Jing-yang, LIU Shu-min, ZHOU Jian-bin. The Relationships Between Magnesium Deficiency of Tomato and Cation Balances in Solar Greenhouse Soil [J]. Scientia Agricultura Sinica, 2016, 49(18): 3588-3596.
[15] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!