Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2174-2186.doi: 10.3864/j.issn.0578-1752.2022.11.008
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
BIAN RongJun(),LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing(
)
[1] |
潘根兴, 卞荣军, 程琨. 从废弃物处理到生物质制造业: 基于热裂解的生物质科技与工程. 科技导报, 2017, 35(23): 82-93. doi: 10.3981/j.issn.1000-7857.2017.23.013.
doi: 10.3981/j.issn.1000-7857.2017.23.013 |
PAN G X, BIAN R J, CHENG K. From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis. Science & Technology Review, 2017, 35(23): 82-93. doi: 10.3981/j.issn.1000-7857.2017.23.013. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2017.23.013 |
|
[2] |
LIU W J, LI W W, JIANG H, YU H Q. Fates of chemical elements in biomass during its pyrolysis. Chemical Reviews, 2017, 117(9): 6367-6398. doi: 10.1021/acs.chemrev.6b00647.
doi: 10.1021/acs.chemrev.6b00647 |
[3] |
LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems-A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403-427. doi: 10.1007/s11027-005-9006-5.
doi: 10.1007/s11027-005-9006-5 |
[4] |
BOLAN N, HOANG S A, BEIYUAN J Z, GUPTA S, HOU D Y, KARAKOTI A, JOSEPH S, JUNG S, KIM K H, KIRKHAM M B, KUA H W, KUMAR M, KWON E E, OK Y S, PERERA V, RINKLEBE J, SHAHEEN S M, SARKAR B, SARMAH A K, SINGH B P, SINGH G, TSANG D C W, VIKRANT K, VITHANAGE M, VINU A, WANG H L, WIJESEKARA H, YAN Y B, YOUNIS S A, VAN ZWIETEN L. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2021, 67(2): 1-51. doi: 10.1080/09506608.2021.1922047.
doi: 10.1080/09506608.2021.1922047 |
[5] |
BIEDERMAN L A, HARPOLE W S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 2013, 5(2): 202-214. doi: 10.1111/gcbb.12037.
doi: 10.1111/gcbb.12037 |
[6] |
KLEINER K. The bright prospect of biochar. Nature Climate Change, 2009, 1(906): 72-74. doi: 10.1038/climate.2009.48.
doi: 10.1038/climate.2009.48 |
[7] |
LIU X Y, ZHANG A F, JI C Y, JOSEPH S, BIAN R J, LI L Q, PAN G X, PAZ-FERREIRO J. Biochar's effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant and Soil, 2013, 373(1/2): 583-594. doi: 10.1007/s11104-013-1806-x.
doi: 10.1007/s11104-013-1806-x |
[8] |
PRENDERGAST-MILLER M T, DUVALL M, SOHI S P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, 2014, 65(1): 173-185. doi: 10.1111/ejss.12079.
doi: 10.1111/ejss.12079 |
[9] |
TAGHIZADEH-TOOSI A, CLOUGH T J, SHERLOCK R R, CONDRON L M. Biochar adsorbed ammonia is bioavailable. Plant and Soil, 2012, 350(1/2): 57-69. doi: 10.1007/s11104-011-0870-3.
doi: 10.1007/s11104-011-0870-3 |
[10] |
YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x.
doi: 10.1111/j.1475-2743.2010.00317.x. |
[11] |
GUL S, WHALEN J K, THOMAS B W, SACHDEVA V, DENG H Y. Physico-chemical properties and microbial responses in biochar- amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 2015, 206: 46-59. doi: 10.1016/j.agee.2015.03.015.
doi: 10.1016/j.agee.2015.03.015 |
[12] |
LIN Y, MUNROE P, JOSEPH S, KIMBER S, ZWIETEN L. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant and Soil, 2012, 357(1/2): 369-380. doi: 10.1007/s11104-012-1169-8.
doi: 10.1007/s11104-012-1169-8 |
[13] |
QU X L, FU H Y, MAO J D, RAN Y, ZHANG D N, ZHU D Q. Chemical and structural properties of dissolved black carbon released from biochars. Carbon, 2016, 96: 759-767. doi: 10.1016/j.carbon.2015.09.106.
doi: 10.1016/j.carbon.2015.09.106 |
[14] |
YUAN J, MENG J, LIANG X, YANG E, YANG X, CHEN W F. Organic molecules from biochar leacheates have a positive effect on rice seedling cold tolerance. Frontiers in Plant Science, 2017, 8: 1624. doi: 10.3389/fpls.2017.01624.
doi: 10.3389/fpls.2017.01624 |
[15] |
HAGEMANN N, JOSEPH S, SCHMIDT H P, KAMMANN C I, HARTER J, BORCH T, YOUNG R B, VARGA K, TAHERYMOOSAVI S, ELLIOTT K W, MCKENNA A, ALBU M, MAYRHOFER C, OBST M, CONTE P, DIEGUEZ-ALONSO A, ORSETTI S, SUBDIAGA E, BEHRENS S, KAPPLER A. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 2017, 8: 1089. doi: 10.1038/s41467-017-01123-0.
doi: 10.1038/s41467-017-01123-0 |
[16] |
BIAN R J, LI L, SHI W, MA B, JOSEPH S, LI L Q, LIU X Y, ZHENG J F, ZHANG X H, CHENG K, PAN G X. Pyrolysis of contaminated wheat straw to stabilize toxic metals in biochar but recycle the extract for agricultural use. Biomass and Bioenergy, 2018, 118: 32-39. doi: 10.1016/j.biombioe.2018.08.003.
doi: 10.1016/j.biombioe.2018.08.003 |
[17] | 时薇, 卞荣军, 郑聚锋, 刘晓雨, 张旭辉, 李恋卿, 潘根兴. 基于高通量测序技术分析生物质炭可溶性组分处理不结球白菜叶片的转录组学分析. 南京农业大学学报, 2020, 43(4): 674-681. |
SHI W, BIAN R J, ZHENG J F, LIU X Y, ZHANG X H, LI L Q, PAN G X. Transcriptome analysis of non-heading Chinese cabbage treated with dissolved components of biochar based on high- throughput sequencing technology. Journal of Nanjing Agricultural University, 2020, 43(4): 674-681. (in Chinese) | |
[18] |
VIGER M, HANCOCK R D, MIGLIETTA F, TAYLOR G. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 2015, 7(4): 658-672. doi: 10.1111/gcbb.12182.
doi: 10.1111/gcbb.12182 |
[19] |
ANDERSON C R, CONDRON L M, CLOUGH T J, FIERS M, STEWART A, HILL R A, SHERLOCK R R. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 2011, 54(5/6): 309-320. doi: 10.1016/j.pedobi.2011.07.005.
doi: 10.1016/j.pedobi.2011.07.005 |
[20] |
RIEDEL T, IDEN S, GEILICH J, WIEDNER K, DURNER W, BIESTER H. Changes in the molecular composition of organic matter leached from an agricultural topsoil following addition of biomass- derived black carbon (biochar). Organic Geochemistry, 2014, 69: 52-60. doi: 10.1016/j.orggeochem.2014.02.003.
doi: 10.1016/j.orggeochem.2014.02.003 |
[21] |
NGUELEU S K, GRATHWOHL P, CIRPKA O A. Altered transport of lindane caused by the retention of natural particles in saturated porous media. Journal of Contaminant Hydrology, 2014, 162/163: 47-63. doi: 10.1016/j.jconhyd.2014.05.002.
doi: 10.1016/j.jconhyd.2014.05.002 |
[22] |
WANG Y Y, JING X R, LI L L, LIU W J, TONG Z H, JIANG H. Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 481-488. doi: 10.1021/acssuschemeng.6b01859.
doi: 10.1021/acssuschemeng.6b01859 |
[23] |
FIMMEN R L, CORY R M, CHIN Y P, TROUTS T D, MCKNIGHT D M. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter. Geochimica et Cosmochimica Acta, 2007, 71(12): 3003-3015. doi: 10.1016/j.gca.2007.04.009.
doi: 10.1016/j.gca.2007.04.009 |
[24] | 娄颖梅. 生物质炭浸提液成分分析及其蔬菜喷施应用研究[D]. 南京: 南京农业大学, 2015. |
LOU Y M. Analysis of water extract from biochar and its application on vegetable growth as foliar spray[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese) | |
[25] |
GRABER E R, TSECHANSKY L, LEW B, COHEN E. Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. European Journal of Soil Science, 2014, 65(1): 162-172. doi: 10.1111/ejss.12071.
doi: 10.1111/ejss.12071 |
[26] |
SUN Y Q, XIONG X N, HE M J, XU Z B, HOU D Y, ZHANG W H, OK Y S, RINKLEBE J, WANG L L, TSANG D C W. Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical Engineering Journal, 2021, 424: 130387. doi: 10.1016/j.cej.2021.130387.
doi: 10.1016/j.cej.2021.130387 |
[27] |
SELBERG A, VIIK M, EHAPALU K, TENNO T. Content and composition of natural organic matter in water of Lake Pitkjärv and mire feeding Kuke River (Estonia). Journal of Hydrology, 2011, 400(1/2): 274-280. doi: 10.1016/j.jhydrol.2011.01.035.
doi: 10.1016/j.jhydrol.2011.01.035 |
[28] |
李婉秋, 施暖暖, Marios Drosos, 李恋卿, 潘根兴. 秸秆生物质炭DOM光谱特征及其与Cu2+的相互作用. 中国环境科学, 2021, 41(8): 3714-3722. doi: 10.19674/j.cnki.issn1000-6923.20210326.003.
doi: 10.19674/j.cnki.issn1000-6923.20210326.003 |
LI W Q, SHI N N, DROSOS M, LI L Q, PAN G X. DOM spectral characteristics of straw biochar and its interaction with Cu2+. China Environmental Science, 2021, 41(8): 3714-3722. doi: 10.19674/j.cnki.issn1000-6923.20210326.003. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.20210326.003 |
|
[29] |
LI M, ZHANG A F, WU H M, LIU H, LV J L. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. Journal of Hazardous Materials, 2017, 334: 86-92. doi: 10.1016/j.jhazmat.2017.03.064.
doi: 10.1016/j.jhazmat.2017.03.064 |
[30] |
SMITH C R, HATCHER P G, KUMAR S, LEE J W. Investigation into the sources of biochar water-soluble organic compounds and their potential toxicity on aquatic microorganisms. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2550-2558. doi: 10.1021/acssuschemeng.5b01687.
doi: 10.1021/acssuschemeng.5b01687 |
[31] | 马彪. 生物质炭化下原料与产物性质的关系及规模化生产系统的评价[D]. 南京: 南京农业大学, 2017. |
MA B. The relationship between biomass and biochar properties under biomass carbonization and the evaluation of large-scale production system[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) | |
[32] |
KIM H B, KIM J G, KIM T, ALESSI D S, BAEK K. Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: relationships between lignin content and dissolved organic matter leaching. Chemical Engineering Journal, 2020, 393: 124687. doi: 10.1016/j.cej.2020.124687.
doi: 10.1016/j.cej.2020.124687 |
[33] |
LIU C H, CHU W Y, LI H, BOYD S A, TEPPEN B J, MAO J D, LEHMANN J, ZHANG W. Quantification and characterization of dissolved organic carbon from biochars. Geoderma, 2019, 335: 161-169. doi: 10.1016/j.geoderma.2018.08.019.
doi: 10.1016/j.geoderma.2018.08.019 |
[34] |
DOREZ G, FERRY L, SONNIER R, TAGUET A, LOPEZ-CUESTA J M. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 2014, 107: 323-331. doi: 10.1016/j.jaap.2014.03.017.
doi: 10.1016/j.jaap.2014.03.017 |
[35] |
LIN Y, MUNROE P, JOSEPH S, HENDERSON R, ZIOLKOWSKI A. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere, 2012, 87(2): 151-157. doi: 10.1016/j.chemosphere.2011.12.007.
doi: 10.1016/j.chemosphere.2011.12.007 |
[36] |
WU H M, QI Y S, DONG L, ZHAO X, LIU H. Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis. Chemosphere, 2019, 228: 264-270. doi: 10.1016/j.chemosphere.2019.04.143.
doi: 10.1016/j.chemosphere.2019.04.143 |
[37] |
ZHANG P, HUANG P, XU X J, SUN H W, JIANG B, LIAO Y H. Spectroscopic and molecular characterization of biochar-derived dissolved organic matter and the associations with soil microbial responses. Science of the Total Environment, 2020, 708: 134619. doi: 10.1016/j.scitotenv.2019.134619.
doi: 10.1016/j.scitotenv.2019.134619 |
[38] |
YANG F, ZHANG Q, JIAN H X, WANG C P, XING B S, SUN H W, HAO Y L. Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. Journal of Hazardous Materials, 2020, 396: 122598. doi: 10.1016/j.jhazmat.2020.122598.
doi: 10.1016/j.jhazmat.2020.122598 |
[39] |
RAJAPAKSHA A U, OK Y S, EL-NAGGAR A, KIM H, SONG F H, KANG S, TSANG Y F. Dissolved organic matter characterization of biochars produced from different feedstock materials. Journal of Environmental Management, 2019, 233: 393-399. doi: 10.1016/j.jenvman.2018.12.069.
doi: 10.1016/j.jenvman.2018.12.069 |
[40] |
GUI X Y, LIU C, LI F Y, WANG J F. Effect of pyrolysis temperature on the composition of DOM in manure-derived biochar. Ecotoxicology and Environmental Safety, 2020, 197: 110597. doi: 10.1016/j.ecoenv.2020.110597.
doi: 10.1016/j.ecoenv.2020.110597 |
[41] |
UCHIMIYA M, OHNO T, HE Z Q. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. Journal of Analytical and Applied Pyrolysis, 2013, 104: 84-94. doi: 10.1016/j.jaap.2013.09.003.
doi: 10.1016/j.jaap.2013.09.003 |
[42] |
BIAN R J, JOSEPH S, SHI W, LI L, TAHERYMOOSAVI S, PAN G X. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature. Science of the Total Environment, 2019, 662: 571-580. doi: 10.1016/j.scitotenv.2019.01.224.
doi: 10.1016/j.scitotenv.2019.01.224 |
[43] |
JAMIESON T, SAGER E, GUÉGUEN C. Characterization of biochar-derived dissolved organic matter using UV-visible absorption and excitation-emission fluorescence spectroscopies. Chemosphere, 2014, 103: 197-204. doi: 10.1016/j.chemosphere.2013.11.066.
doi: 10.1016/j.chemosphere.2013.11.066 |
[44] |
LI G, KHAN S, IBRAHIM M, SUN T R, TANG J F, COTNER J B, XU Y Y. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 2018, 348: 100-108. doi: 10.1016/j.jhazmat.2018.01.031.
doi: 10.1016/j.jhazmat.2018.01.031 |
[45] |
HUANG M, LI Z W, LUO N L, YANG R, WEN J J, HUANG B, ZENG G M. Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Science of the Total Environment, 2019, 646: 220-228. doi: 10.1016/j.scitotenv.2018.07.282.
doi: 10.1016/j.scitotenv.2018.07.282 |
[46] |
CAYUELA M L, VAN ZWIETEN L, SINGH B P, JEFFERY S, ROIG A, SÁNCHEZ-MONEDERO M A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 2014, 191: 5-16. doi: 10.1016/j.agee.2013.10.009.
doi: 10.1016/j.agee.2013.10.009 |
[47] |
HAMEED R, CHENG L L, YANG K, FANG J, LIN D H. Endogenous release of metals with dissolved organic carbon from biochar: Effects of pyrolysis temperature, particle size, and solution chemistry. Environmental Pollution, 2019, 255: 113253. doi: 10.1016/j.envpol.2019.113253.
doi: 10.1016/j.envpol.2019.113253 |
[48] |
JI M Y, ZHOU L, ZHANG S C, LUO G, SANG W J. Effects of biochar on methane emission from paddy soil: Focusing on DOM and microbial communities. Science of the Total Environment, 2020, 743: 140725. doi: 10.1016/j.scitotenv.2020.140725.
doi: 10.1016/j.scitotenv.2020.140725 |
[49] |
ZHANG A F, BIAN R J, LI L Q, WANG X D, ZHAO Y, HUSSAIN Q, PAN G X. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environmental Science and Pollution Research International, 2015, 22(23): 18977-18986. doi: 10.1007/s11356-015-4967-8.
doi: 10.1007/s11356-015-4967-8 |
[50] |
HUANG M, LI Z W, CHEN M, WEN J J, LUO N L, XU W H, DING X, XING W L. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors. Science of the Total Environment, 2020, 739: 140378. doi: 10.1016/j.scitotenv.2020.140378.
doi: 10.1016/j.scitotenv.2020.140378 |
[51] |
JAISWAL A K, ALKAN N, ELAD Y, SELA N, PHILOSOPH A M, GRABER E R, FRENKEL O. Molecular insights into biochar- mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Scientific Reports, 2020, 10(1): 13934. doi: 10.1038/s41598-020-70882-6.
doi: 10.1038/s41598-020-70882-6 |
[52] |
WEI J, TU C, YUAN G D, BI D X, WANG H L, ZHANG L J, THENG B K G. Pyrolysis temperature-dependent changes in the characteristics of biochar-borne dissolved organic matter and its copper binding properties. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1): 169-174. doi: 10.1007/s00128-018-2392-7.
doi: 10.1007/s00128-018-2392-7 |
[53] |
DONG X L, MA L Q, GRESS J, HARRIS W, LI Y C. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar. Journal of Hazardous Materials, 2014, 267: 62-70. doi: 10.1016/j.jhazmat.2013.12.027.
doi: 10.1016/j.jhazmat.2013.12.027 |
[54] |
KIM H B, KIM J G, KIM S H, KWON E E, BAEK K. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar. Environmental Pollution, 2019, 253: 231-238. doi: 10.1016/j.envpol.2019.07.026.
doi: 10.1016/j.envpol.2019.07.026 |
[55] |
QUAN G X, FAN Q Y, ZIMMERMAN A R, SUN J X, CUI L Q, WANG H L, GAO B, YAN J L. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. Journal of Hazardous Materials, 2020, 382: 121071. doi: 10.1016/j.jhazmat.2019.121071.
doi: 10.1016/j.jhazmat.2019.121071 |
[56] | 郑聚锋, 程琨, 潘根兴. 生物质炭施用对深层土壤碳库的影响. 南京农业大学学报, 2020, 43(4): 589-593. |
ZHENG J F, CHENG K, PAN G X. Impact of biochar application on deep soil organic carbon pool. Journal of Nanjing Agricultural University, 2020, 43(4): 589-593. (in Chinese) | |
[57] |
LOU Y M, JOSEPH S, LI L Q, GRABER E R, LIU X Y, PAN G X. Water extract from straw biochar used for plant growth promotion: An initial test. BioResources, 2015, 11(1): 249-266. doi: 10.15376/biores.11.1.249-266.
doi: 10.15376/biores.11.1.249-266 |
[58] |
GAO T, BIAN R J, JOSEPH S, TAHERYMOOSAVI S, MITCHELL D R G, MUNROE P, XU J H, SHI J R. Wheat straw vinegar: a more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Science of the Total Environment, 2020, 725: 138359. doi: 10.1016/j.scitotenv.2020.138359.
doi: 10.1016/j.scitotenv.2020.138359 |
[59] |
E Y, MENG J, HU H J, CHEN W F. Chemical composition and potential bioactivity of volatile from fast pyrolysis of rice husk. Journal of Analytical and Applied Pyrolysis, 2015, 112: 394-400. doi: 10.1016/j.jaap.2015.02.021.
doi: 10.1016/j.jaap.2015.02.021 |
[60] |
E Y, MENG J, HU H J, CHENG D M, ZHU C F, CHEN W F. Effects of organic molecules from biochar-extracted liquor on the growth of rice seedlings. Ecotoxicology and Environmental Safety, 2019, 170: 338-345. doi: 10.1016/j.ecoenv.2018.11.108.
doi: 10.1016/j.ecoenv.2018.11.108 |
[61] |
GRABER E R, TSECHANSKY L, MAYZLISH-GATI E, SHEMA R, KOLTAI H. A humic substances product extracted from biochar reduces Arabidopsis root hair density and length under P-sufficient and P-starvation conditions. Plant and Soil, 2015, 395(1/2): 21-30. doi: 10.1007/s11104-015-2524-3.
doi: 10.1007/s11104-015-2524-3 |
[62] | 袁珺. 生物炭表面有机分子对水稻幼苗抗寒性的影响[D]. 沈阳: 沈阳农业大学, 2018. |
YUAN J. Organic molecules from the suface of biochar have effects on rice seedling cold tolerance[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese) | |
[63] |
SUN J L, DROSOS M, MAZZEI P, SAVY D, TODISCO D, VINCI G, PAN G X, PICCOLO A. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of the Total Environment, 2017, 576: 858-867. doi: 10.1016/j.scitotenv.2016.10.095.
doi: 10.1016/j.scitotenv.2016.10.095 |
[64] |
卓亚鲁, 李磊, 郑金伟, 刘晓雨, 李恋卿, 潘根兴. 生物质炭浸提液对大蒜生长品质及土壤的影响. 水土保持通报, 2017, 37(5): 81-85. doi: 10.13961/j.cnki.stbctb.2017.05.014.
doi: 10.13961/j.cnki.stbctb.2017.05.014 |
ZHUO Y L, LI L, ZHENG J W, LIU X Y, LI L Q, PAN G X. Effects of biochar extract on growth quality of garlic and soil properties. Bulletin of Soil and Water Conservation, 2017, 37(5): 81-85. doi: 10.13961/j.cnki.stbctb.2017.05.014. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2017.05.014 |
|
[65] |
王盼, 郑庭茜, 卞荣军, 李恋卿, 潘根兴. 基于生物质裂解活性有机物的有机-无机水溶肥对空心菜产量、品质及养分的影响. 土壤通报, 2018, 49(6): 1377-1382. doi: 10.19336/j.cnki.trtb.2018.06.16.
doi: 10.19336/j.cnki.trtb.2018.06.16 |
WANG P, ZHENG T X, BIAN R J, LI L Q, PAN G X. Effects on yield, quality and nutrients of water spinach by organic/inorganic water-soluble fertilizer based on bioactive extracts from biomass pyrolysis. Chinese Journal of Soil Science, 2018, 49(6): 1377-1382. doi: 10.19336/j.cnki.trtb.2018.06.16. (in Chinese)
doi: 10.19336/j.cnki.trtb.2018.06.16 |
|
[66] |
LIU M L, LIN Z, KE X L, FAN X R, JOSEPH S, TAHERYMOOSAVI S, LIU X Y, BIAN R J, SOLAIMAN Z M, LI L Q, PAN G X. Rice seedling growth promotion by biochar varies with genotypes and application dosages. Frontiers in Plant Science, 2021, 12: 580462. doi: 10.3389/fpls.2021.580462.
doi: 10.3389/fpls.2021.580462 |
[67] |
ELAD Y, DAVID D R, HAREL Y M, BORENSHTEIN M, KALIFA H B, SILBER A, GRABER E R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 2010, 100(9): 913-921. doi: 10.1094/PHYTO-100-9-0913.
doi: 10.1094/PHYTO-100-9-0913 |
[68] |
GONDEK K, MIERZWA-HERSZTEK M, BARAN A, SZOSTEK M, PIENIĄŻEK R, PIENIĄŻEK M, STANEK-TARKOWSKA J, NOGA T. The effect of low-temperature conversion of plant materials on the chemical composition and ecotoxicity of biochars. Waste and Biomass Valorization, 2017, 8(3): 599-609. doi: 10.1007/s12649-016-9621-2.
doi: 10.1007/s12649-016-9621-2 |
[69] |
SUN D Q, MENG J, LIANG H, YANG E, HUANG Y W, CHEN W F, JIANG L L, LAN Y, ZHANG W M, GAO J P. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 2015, 15(2): 271-281. doi: 10.1007/s11368-014-0996-z.
doi: 10.1007/s11368-014-0996-z |
[70] |
GEZAHEGN S, SAIN M, THOMAS S C. Phytotoxic condensed organic compounds are common in fast but not slow pyrolysis biochars. Bioresource Technology Reports, 2021, 13: 100613. doi: 10.1016/j.biteb.2020.100613.
doi: 10.1016/j.biteb.2020.100613 |
[71] |
肖婧, 徐虎, 蔡岸冬, 黄敏, 张琪, 孙楠, 张文菊, 徐明岗. 生物质炭特性及施用管理措施对作物产量影响的整合分析. 中国农业科学, 2017, 50(10): 1827-1837. doi: 10.3864/j.issn.0578-1752.2017.10.008.
doi: 10.3864/j.issn.0578-1752.2017.10.008 |
XIAO J, XU H, CAI A D, HUANG M, ZHANG Q, SUN N, ZHANG W J, XU M G. A meta-analysis of effects of biochar properties and management practices on crop yield. Scientia Agricultura Sinica, 2017, 50(10): 1827-1837. doi: 10.3864/j.issn.0578-1752.2017.10.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.10.008 |
[1] | LI Hui,YIN ShiCai,GUO ZongXiang,MA HaoYun,REN ZiQi,SHE DongMei,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Protoschinia scutosa [J]. Scientia Agricultura Sinica, 2022, 55(9): 1790-1799. |
[2] | REN ZiQi,KANG YuJie,LI HaiZhen,WANG LianGang,MA HaoYun,LI Hui,WANG LiuYang,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4640-4650. |
[3] | ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785. |
[4] | GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561. |
[5] | XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645. |
[6] | DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034. |
[7] | ZHAO XinZhou,ZHANG ShiChun,LI Ying,ZHENG YiMin,ZHAO HongLiang,XIE LiYong. The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain [J]. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751. |
[8] | ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271. |
[9] | ZHANG WeiMing,CHEN WenFu,MENG Jun,JIN Liang,GUO Wei,ZHAO HongLiang. Study of Straw-Biochar on Utilization Potential, Industry Model and Developing Strategy in Northeast China [J]. Scientia Agricultura Sinica, 2019, 52(14): 2406-2424. |
[10] | SUN JianFei,ZHENG JuFeng,CHENG Kun,YE Yi,ZHUANG Yuan,PAN GenXing. Quantifying Carbon Sink by Biochar Compound Fertilizer Project for Domestic Voluntary Carbon Trading in Agriculture [J]. Scientia Agricultura Sinica, 2018, 51(23): 4470-4484. |
[11] | HOU JianWei,XING CunFang,LU ZhiHong,CHEN Fen,YU Gao. Effects of the Different Crop Straw Biochars on Soil Bacterial Community of Yellow Soil in Guizhou [J]. Scientia Agricultura Sinica, 2018, 51(23): 4485-4495. |
[12] | LÜ Bo,WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang. Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil [J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315. |
[13] | GAO MengYu, JIANG Tong, HAN XiaoRi, YANG JinFeng. Effects of Applying Biochar-Based Fertilizer and Biochar on Organic Carbon Fractions and Contents of Brown Soil [J]. Scientia Agricultura Sinica, 2018, 51(11): 2126-2135. |
[14] | Kun CHEN, XiaoNan XU, Jing PENG, XiaoJie FENG, YaPeng LI, XiuMei ZHAN, XiaoRi HAN. Effects of Biochar and Biochar-Based Fertilizer on Soil Microbial Community Structure [J]. Scientia Agricultura Sinica, 2018, 51(10): 1920-1930. |
[15] | WANG YanFang, XIANG Li, XU ShaoZhuo, WANG Sen, WANG XiaoWei, CHEN XueSen, MAO ZhiQuan, ZHANG Min. Effects of Biochar and Chitin Combined Application on Malus hupehensis Rehd. Seedlings and Soil Environment Under Replanting Conditions [J]. Scientia Agricultura Sinica, 2017, 50(4): 711-719. |
|