Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2261-2272.doi: 10.3864/j.issn.0578-1752.2021.11.002


Genetic Research Advances on Maize Stalk Lodging Resistance

WANG XiaQing(),SONG Wei(),ZHANG RuYang,CHEN YiNing,SUN Xuan,ZHAO JiuRan()   

  1. Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2020-07-23 Accepted:2020-12-25 Online:2021-06-01 Published:2021-06-09
  • Contact: JiuRan ZHAO;;


Maize stalk lodging has a great adverse effect on yield, quality and mechanized harvesting, and is one of the main problems to be solved urgently in current maize production and breeding. Strengthening the research on the lodging resistance of maize stalk will have great significance for improving the lodging resistance of maize. In this paper, we summarize the main factors affecting maize stalk lodging resistance, and their genetic mechanisms. The stalk lodging resistance is closely related to the stalk strength. The greater the stalk strength, the stronger the lodging resistance. The stalk strength is affected by the developmental stage, the internal and external structures of the stalk, and the components of the stalk cell wall. The meristem zone has vigorously dividing cells and is easily broken. After entering the reproductive growth, the rind and sclerenchyma tissue of the stalk are thickened, the vascular bundles are mature, and thus the stalk strength is enhanced. The main components of the stalk cell wall, including cellulose, hemicellulose, lignin, soluble sugars, inorganic substances, can improve the strength of the stalk. To date, based on the high-throughput phenotyping platforms, various maize linkage and natural populations, and mapping methods, researchers have identified a series of QTLs and candidate genes that affect stalk morphology, strength, and cell wall components. The studies have shown that the haplotype-based mapping method is better than SNP-based mapping method. Meta-QTL analysis integrates the mapping results of different genetic populations and can improve the versatility of QTLs. The genetic basis of stalk strength is complex, which is determined by polygenes with minor effect and additive effect. Candidate genes in the QTLs involve cell wall metabolism, transcription factors, protein kinases, and so on. MAIZEWALL is an important database of genes related to maize cell wall. So far, the database contains 1 156 candidate genes related to maize cell wall biology, which provides a powerful resource for research in this field. A series of genes affecting cell wall components, stalk morphology and stalk strength in maize have been identified. Their functions of these genes are related to cellulose synthesis pathways, such as genes of cellulose synthase, Cobra, glycosyltransferase and ribose transport; phenylpropane pathway genes, such as genes regulating bm1-bm5; plant hormones genes, such as genes related to gibberellin, auxin and brassinosteroid; transcription factors such as NAC, MYB; miRNA (ZmmiR528) and F-box genes (stiff1). In the future research, it is needed to explore the mechanical mechanism of stalk lodging at different developmental stages. Develop diverse natural populations and breeding materials for genetic analysis. Employ a various of mapping strategies to improve the efficiency of identification of the QTL and genes related to lodging resistance. Design various molecular markers based on the favorable alleles to improve the molecular marker assisted selection for lodging resistance. These efforts will promote the research of the genetic mechanism of stalk lodging resistance, and provide a reference for the molecular breeding of new varieties with strong lodging resistance.

Key words: maize, lodging, stalk, cell wall, genetic mechanism

Fig. 1

The common types of lodging in maize production A: Root lodging in the jointing stage; B: The stalk bending and fracture in the early stage of tasseling; C: The stalk fracture in the early stage of tasseling; D: The compound lodging of the root and stalk after the grain filling stage; E: The root lodging and stalk bending after maturity; F: The fracture position was at the third internode after maturity"

Table 1

The summary of genetic studies for stalk lodging resistance traits in maize"

Mapping method
Main result
1 茎秆弯曲强度
Stalk bending strength
216 RILs (B73×Ce03005)
Polygenic with minor effect inheritance
2 茎皮穿刺强度
Rind penetrometer strength
4692 NAM, 196 IBM RILs
Linkage analysis, GWAS
QTLs were related to the synthesis of phenylpropane and cellulose
3 茎皮穿刺强度
Rind penetrometer strength
RIL家系(H127R× Chang7- 2)、(B73×By804)
RILs (H127R× Chang7-2), (B73×By804)
Candidate genes were related to cell wall components
4 茎粗、茎秆弯曲强度、茎皮穿刺强度
Stalk diameter, stalk bending strength, rind penetrometer strength
257 inbred lines
Multi-locus association analysis
The improvement of stalk strength can be achieved through the accumulation of multiple favorable alleles
5 茎秆弯曲强度、茎皮穿刺强度
Stalk bending strength, rind penetrometer strength
189个RIL家系 (B73×Ki11)
189 RILs (B73×Ki11)
stiff1 dominates stalk strength
6 茎秆柔韧度
Stalk flexibility
313 F2:3 (J724×J724A1)
One QTL was identified to control stalk flexibility
7 纤维素、半纤维、木质素
Cellulose, hemicellulose, lignin
368 inbred lines
Candidate genes involve cell wall metabolism, transcription factors, protein kinases
8 酸性洗涤纤维、中性洗涤纤维
Acid detergent fiber, neutral detergent fiber
368 inbred lines
ZmC3H2 and 56 candidate genes were identified
9 6个细胞壁成分
6 cell wall components
188个RIL家系 (B73 ×By804)
188 RILs (B73×By804)
More than half of the QTLs explained more than 10% phenotypic variation
10 木质素、葡萄糖和木糖
Lignin, glucose and xylose
263 IBM, 282 inbred lines
Linkage analysis, GWAS
11 QTLs were related to lignin and sugar content
11 木质素及其单体含量
Lignin and its monomer content
242 RILs (F838×F286)
80 QTLs were mapped, including 7 hot spots
12 细胞壁成分
Cell wall components
11 populations
Meta-QTL analysis
QTLs related to cell wall composition and straw digestibility were identified
13 糖分含量
Stalk sugar content
202 RILs (YXD053×Y6-1)
QTLs with strong epistasis effect
14 株高与穗位高比例
Ratio of ear height to plant height
183 tropical maize inbred lines
Haplotype GWAS
Haplotype GWAS was more efficient for the mapping of lodging-related traits
15 茎粗
Stalk diameter
17 populations
Meta-QTL analysis
20 Meta-QTLs were related to stalk diameter
16 玉米最上节茎秆的维管束数目
Vascular bundle number at the uppermost internode of maize stalk
866 BC2S3, HIF
Multiple QTL mapping
Vascular bundle number was dominated by many small-effect QTLs
17 茎皮厚度、维管束数目、密度、茎粗
Rind thickness, vascular bundle number and density, stalk diameter
942 inbred lines
Three loci were associated with vascular bundle density
18 30个维管束性状
30 vascular traits
480 inbred lines
Multi-locus association analysis
84 candidate genes were related to vascular bundle phenotype

Fig. 2

The genetic mechanism of stalk lodging resistance"

[1] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018,51(10):1845-1854.
XUE J, WANG K R, XIE R Z, GOU L, ZHANG W F, MING B, HOU P, LI S K. Research progress of maize lodging during late stage. Scientia Agricultura Sinica, 2018,51(10):1845-1854. (in Chinese)
[2] 马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展. 作物杂志, 2012,2:10-15.
MA Y H, WANG Q X. Research progress on the relationship between corn stalk traits and lodging resistance. Crops, 2012,2:10-15. (in Chinese)
[3] 丰光, 黄长玲, 邢锦丰. 玉米抗倒伏的研究进展. 作物杂志, 2008,4:12-14.
FENG G, HUANG C L, XING J F. The research advances on maize lodging resistance. Crops, 2008,4:12-14. (in Chinese)
[4] 孙世贤, 顾慰连, 戴俊英. 密度对玉米倒伏及其产量的影响. 沈阳农业大学学报, 1989,20:413-416.
SUN S X, GU W L, DAI J Y. Effect of density on corn lodging and yield. Journal of Shenyang Agricultural University, 1989,20:413-416. (in Chinese)
[5] 王恒亮, 吴仁海, 朱昆, 张永超, 张玉聚, 孙建伟. 玉米倒伏成因与控制措施研究进展. 河南农业科学, 2011,40(10):1-5.
WANG H L, WU R H, ZHU K, ZHANG Y C, ZHANG Y J, SUN J W. Reviews of causes and control of maize lodging. Journal of Henan Agricultural Sciences, 2011,40(10):1-5. (in Chinese)
[6] 汪黎明, 姚国旗, 穆春华, 李建生, 戴景瑞. 玉米抗倒性的遗传研究进展. 玉米科学, 2011,19(4):1-4.
WANG L M, YAO G Q, MU C H, LI J S, DAI J R. Advances in genetic research of maize lodging resistance. Journal of Maize Sciences, 2011,19(4):1-4. (in Chinese)
[7] 靳英杰, 李鸿萍, 安盼盼, 程思贤, 赵向阳, 余天雨, 李潮海. 玉米抗倒性研究进展. 玉米科学, 2019,27(2):94-98.
JIN Y J, LI H P, AN P P, CHENG S X, ZHAO X Y, YU T Y, LI C H. Research progress on the lodging resistance of maize. Journal of Maize Sciences, 2019,27(2):94-98. (in Chinese)
[8] 勾玲, 赵明, 黄建军, 张宾, 李涛, 孙锐. 玉米茎秆弯曲性能与抗倒能力的研究. 作物学报, 2008,34(4):653-661.
doi: 10.3724/SP.J.1006.2008.00653
GOU L, ZHAO M, HUANG J J, ZHANG B, LI T, SUN R. Bending mechanical properties of stalk and lodging-resistance of maize (Zea mays L.). Acta Agronomica Sinica, 2008,34(4):653-661. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00653
[9] WANG X, ZHANG R, SHI Z, ZHANG Y, SUN X, JI Y L, ZHAO Y, WANG J, ZHANG Y, XING J, WANG Y, WANG R, SONG W, ZHAO J. Multi-omics analysis of the development and fracture resistance for maize internode. Scientific Reports, 2019,9(1):8183.
doi: 10.1038/s41598-019-44690-6
[10] HU H X, LIU W X, FU Z Y, HOMANN L, TECHNOW F, WANG H W, SONG C L, LI S T, MELCHINGER A E, CHEN S J. QTL mapping of stalk bending strength in a recombinant inbred line maize population. Theoretical and Applied Genetics, 2013,126(9):2257-2266.
doi: 10.1007/s00122-013-2132-7
[11] PEIFFER J A, FLINT-GARCIA S A, DE LEON N, MCMULLEN M D, KAEPPLER S M, BUCKLER E S. The genetic architecture of maize stalk strength. PLoS ONE, 2013,8(6):e67066.
doi: 10.1371/journal.pone.0067066
[12] LI K, YAN J, LI J, YANG X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biology, 2014,14(1):152.
doi: 10.1186/1471-2229-14-152
[13] ZHANG Y, LIU P, ZHANG X, ZHENG Q, CHEN M, GE F, LI Z, SUN W, GUAN Z, LIANG T. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance- related traits in maize. Frontiers in Plant Science, 2018,9:611.
doi: 10.3389/fpls.2018.00611
[14] WANG X, SHI Z, ZHANG R, SUN X, WANG J, WANG S, ZHANG Y, ZHAO Y, SU A, LI C, WANG R, ZHANG Y, WANG S, WANG Y, SONG W, ZHAO J. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biology, 2020,20(1):515.
doi: 10.1186/s12870-020-02728-2
[15] KENDE H, VAN DER KNAAP E, CHO H T. Deepwater rice: A model plant to study stem elongation. Plant Physiology, 1998,118(4):1105-1110.
doi: 10.1104/pp.118.4.1105
[16] SCOBBIE L, RUSSELL W, PROVAN G J, CHESSON A. The newly extended maize internode: A model for the study of secondary cell wall formation and consequences for digestibility. Journal of the Science of Food & Agriculture, 1993,61(2):217-225.
[17] ZHANG Q, CHEETAMUN R, DHUGGA K S, RAFALSKI J A, TINGEY S V, SHIRLEY N J, TAYLOR J, HAYES K R, BEATTY M, BACIC A. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology, 2014,14(1):27.
doi: 10.1186/1471-2229-14-27
[18] MCKIM S M. How plants grow up. Journal of Integrative Plant Biology, 2019,61(3):257-277.
doi: 10.1111/jipb.v61.3
[19] KONG E, LIU D, GUO X, YANG W, SUN J, LIN X, ZHAN K, CUI D, LIN J, ZHANG A. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 2013,1(1):43-49.
doi: 10.1016/j.cj.2013.07.012
[20] 王庭杰, 张亮, 韩琼, 郑凤霞, 王天琪, 冯娜娜, 王太霞. 玉米茎秆细胞壁和组织构建对抗压强度的影响. 植物科学学报, 2015,33(1):109-115.
WANG T J, ZHANG L, HAN Q, ZHENG F X, WANG T Q, FENG N N, WANG T X. Effects of stalk cell wall and tissue on the compressive strength of maize. Plant Science Journal, 2015,33(1):109-115. (in Chinese)
[21] SINDHU A, LANGEWISCH T, OLEK A, MULTANI D S, MCCANN M C, VERMERRIS W, CARPITA N C, JOHAL G. Maize brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiology, 2007,145(4):1444-1459.
doi: 10.1104/pp.107.102582
[22] JIAO S, HAZEBROEK J P, CHAMBERLIN M A, PERKINS M, SANDHU A S, GUPTA R, SIMCOX K D, YINGHONG L, PRALL A, HEETLAND L, MEELEY R B, MULTANI D S. Chitinase-like1 plays a role in stalk tensile strength in maize. Plant Physiology, 2019,181(3):1127-1147.
doi: 10.1104/pp.19.00615
[23] 曹庆军, 崔金虎, 王洪预, 温海娇, 高亚男, 罗利红, 韩海飞. 玉米拔节后不同水分处理对植株性状和水分利用效率的影响. 玉米科学, 2011,19(3):105-109.
CAO Q J, CUI J H, WANG H Y, WEN H J, GAO Y N, LUO L H, HAN H F. Effect of water treatments after jointing stage on plant characters and water use efficiency of maize. Maize Science, 2011,19(3):105-109. (in Chinese)
[24] LE GALL H, PHILIPPE F, DOMON J, GILLET F, PELLOUX J, RAYON C. Cell wall metabolism in response to abiotic stress. Plants (Basel, Switzerland), 2015,4(1):112-166.
[25] QIU X Y, HU S W. “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials, 2013,6(3):738-781.
doi: 10.3390/ma6030738
[26] PAULY M, GILLE S, LIU L, MANSOORI N, DE SOUZA A, SCHULTINK A, XIONG G. Hemicellulose biosynthesis. Planta, 2013,238(4):627-642.
doi: 10.1007/s00425-013-1921-1
[27] ZHONG R, RIPPERGER A, YE Z H. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiology, 2000,123(1):59-70.
doi: 10.1104/pp.123.1.59
[28] 杨世民, 谢力, 郑顺林, 李静, 袁继超. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响. 作物学报, 2009,35(1):93-103.
doi: 10.3724/SP.J.1006.2009.00093
YANG S M, XIE L, ZHENG S L, LI J, YUAN J C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agronomica Sinica, 2009,35(1):93-103. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00093
[29] 李宁, 李建民, 翟志席, 李召虎, 段留生. 化控技术对玉米植株抗倒伏性状、农艺性状及产量的影响. 玉米科学, 2010,18(6):38-42.
LI N, LI J M, ZHAI Z X, LI Z H, DUAN L S. Effects of chemical regulator on the lodging resistance traits, agricultural character and yield of maize. Maize Science, 2010,18(6):38-42. (in Chinese)
[30] ZHANG Z, ZHANG X, LIN Z, WANG J, LIU H, ZHOU L, ZHONG S, LI Y, ZHU C, LAI J, LI X, YU J, LIN Z. A large transposon insertion in the stiff1 promoter increases stalk strength in maize. The Plant Cell, 2020,32(1):152-165.
doi: 10.1105/tpc.19.00486
[31] LI K, WANG H, HU X, LIU Z, WU Y, HUANG C. Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS ONE, 2016,11(8):e0158906.
doi: 10.1371/journal.pone.0158906
[32] WANG H, LI K, HU X, LIU Z, WU Y, HUANG C. Genome-wide association analysis of forage quality in maize mature stalk. BMC Plant Biology, 2016,16(1):227.
doi: 10.1186/s12870-016-0919-9
[33] WANG Q, LI K, HU X, SHI H, LIU Z, WU Y, WANG H, HUANG C. Genetic analysis and QTL mapping of stalk cell wall components and digestibility in maize recombinant inbred lines from B73×By804. The Crop Journal, 2020,8(1):132-139.
doi: 10.1016/j.cj.2019.06.009
[34] PENNING B W, SYKES R W, BABCOCK N C, DUGARD C K, HELD M A, KLIMEK J F, SHREVE J T, FOWLER M, ZIEBELL A, DAVIS M F, DECKER S R, TURNER G B, MOSIER N S, SPRINGER N M, THIMMAPURAM J, WEIL C F, MCCANN M C, CARPITA N C. Genetic determinants for enzymatic digestion of lignocellulosic biomass are independent of those for lignin abundance in a maize recombinant inbred population. Plant Physiology, 2014,165(4):1475-1487.
doi: 10.1104/pp.114.242446
[35] BARRIÈRE Y, THOMAS J, DENOUE D. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838×F286. Plant Science, 2008,175(4):585-595.
doi: 10.1016/j.plantsci.2008.06.009
[36] TRUNTZLER M, BARRIÈRE Y, SAWKINS MC, LESPINASSE D, BETRAN J, CHARCOSSET A, MOREAU L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theoretical and Applied Genetics, 2010,121(8):1465-1482.
doi: 10.1007/s00122-010-1402-x
[37] BIAN Y L, SUN D L, GU X, WANG Y G, YIN Z T, DENG D X, WANG Y Q, WU F F, LI G S. Identification of QTL for stalk sugar-related traits in a population of recombinant inbred lines of maize. Euphytica, 2014,198(1):79-89.
doi: 10.1007/s10681-014-1085-5
[38] MALDONADO C, MORA F, SCAPIM C A, COAN M. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS ONE, 2019,14(3):e0212925.
doi: 10.1371/journal.pone.0212925
[39] 刘福鹏, 曲文利, 房海悦, 李莉莉, 金峰学, 吴委林. 玉米茎粗Meta-QTL及候选基因分析. 东北农业科学, 2019,44(5):30-33.
LIU F P, QU W L, FANG H Y, LI L L, JIN F X, WU W L. Analysis of Meta- QTL and candidate genes related to stem diameter in maize. Journal of Northeast Agricultural Sciences, 2019,44(5):30-33. (in Chinese)
[40] HUANG C, CHEN Q, XU G, XU D, TIAN J, TIAN F. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 2016,58(1):81-90.
doi: 10.1111/jipb.12358
[41] MAZAHERI M, HECKWOLF M, VAILLANCOURT B, GAGE J L, BURDO B, HECKWOLF S, BARRY K, LIPZEN A, RIBEIRO C B, KONO T J Y. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology, 2019,19(1):45.
doi: 10.1186/s12870-019-1653-x
[42] ZHANG Y, WANG J, DU J, ZHAO Y, LU X, WEN W, GU S, FAN J, WANG C, WU S, WANG Y, LIAO S, ZHAO C, GUO X. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnology Journal, 2021,19(1):35-50 .
doi: 10.1111/pbi.v19.1
[43] GUILLAUMIE S, SANCLEMENTE H, DESWARTE C, MARTINEZ Y, LAPIERRE C, MURIGNEUX A, BARRIERE Y, PICHON M, MAIZEWALL G D. database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiology, 2006,143(1):339-363.
doi: 10.1104/pp.106.086405
[44] PENNING B W, HUNTER CT 3RD, TAYENGWA R, EVELAND A L, DUGARD C K, OLEK A T, VERMERRIS W, KOCH K E, MCCARTY D R, DAVIS M F, THOMAS S R, MCCANN M C, CARPITA N C. Genetic resources for maize cell wall biology. Plant Physiology, 2009,151(4):1703-1728.
doi: 10.1104/pp.109.136804
[45] MALEKI S S, MOHAMMADI K, JI K S. Characterization of cellulose synthesis in plant cells. Scientific World Journal, 2016,2016:8641373.
[46] KOTAKE T, AOHARA T, HIRANO K, SATO A, KANEKO Y, TSUMURAYA Y, TAKATSUJI H, KAWASAKI S. Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. Journal of Experimental Botany, 2011,62(6):2053-2062.
doi: 10.1093/jxb/erq395
[47] ZHOU Y, LI S, QIAN Q, ZENG D, ZHANG M, GUO L, LIU X, ZHANG B, DENG L, LIU X, LUO G, WANG X, LI J. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). The Plant Journal, 2009,57(3):446-462.
doi: 10.1111/tpj.2009.57.issue-3
[48] ZHANG B, LIU X, QIAN Q, LIU L, DONG G, XIONG G, ZENG D, ZHOU Y. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(12):5110-5115.
[49] YOON J, CHOI H, AN G. Roles of lignin biosynthesis and regulatory genes in plant development. Journal of Integrative Plant Biology, 2015,57:902-912.
doi: 10.1111/jipb.v57.11
[50] HALPIN C, HOLT K, CHOJECKI J, OLIVER D, CHABBERT B, MONTIES B, EDWARDS K, BARAKATE A, FOXON G A. Brown-midrib maize (bm1)-A mutation affecting the cinnamyl alcohol dehydrogenase gene. The Plant Journal, 1998,14(5):545-553.
doi: 10.1046/j.1365-313X.1998.00153.x
[51] TANG H M, LIU S, HILLSKINNER S, WU W, REED D, YEH C T, NETTLETON D, SCHNABLE P S. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. The Plant Journal, 2014,77(3):380-392.
doi: 10.1111/tpj.2014.77.issue-3
[52] VIGNOLS F, RIGAU J, TORRES M A, CAPELLADES M, PUIGDOMÈNECH P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. The Plant Cell, 1995,7(4):407-416.
[53] LI L, HILL-SKINNER S, LIU S, BEUCHLE D, TANG H M, YEH C T, NETTLETON D, SCHNABLE P S. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. The Plant Journal, 2015,81(3):493-504.
doi: 10.1111/tpj.2015.81.issue-3
[54] XIONG W, WU Z, LIU Y, LI Y, SU K, BAI Z, GUO S, HU Z, ZHANG Z, BAO Y, SUN J, YANG G, FU C. Mutation of 4-coumarate: coenzyme A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnology for Biofuels, 2019,12:82.
doi: 10.1186/s13068-019-1421-z
[55] BENSEN R J, JOHAL G S, CRANE V C, TOSSBERG J T, SCHNABLE P S, MEELEY R B, BRIGGS S P. Cloning and characterization of the maize An1 gene. The Plant Cell, 1995,7(1):75-84.
[56] WINKLER R G, HELENTJARIS T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. The Plant Cell, 1995,7(8):1307-1317.
[57] CASSANI E, BERTOLINI E, BADONE F C, LANDONI M, GAVINA D, SIRIZZOTTI A, PILU R. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Molecular Breeding, 2009,24(4):375-385.
doi: 10.1007/s11032-009-9298-3
[58] HARTWIG T, CHUCK G, FUJIOKA S, KLEMPIEN A, WEIZBAUER R, POTLURI D P V, CHOE S, JOHAL G S, SCHULZ B. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(49):19814-19819.
[59] MAKAREVITCH I, THOMPSON A, MUEHLBAUER G J, SPRINGER N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE, 2012,7(1):e30798.
doi: 10.1371/journal.pone.0030798
[60] XING A, GAO Y, YE L, ZHANG W, CAI L, CHING A, LLACA V, JOHNSON B E, LIU L, YANG X. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015,66(13):3791-3802.
doi: 10.1093/jxb/erv182
[61] AVILA L M, CERRUDO D, SWANTON C J, LUKENS L. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016,67(5):1577-1588.
doi: 10.1093/jxb/erv554
[62] MULTANI D S, BRIGGS S P, CHAMBERLIN M A, BLAKESLEE J J, MURPHY A S, JOHAL G S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302(5642):81-84.
doi: 10.1126/science.1086072
[63] ZHONG R, LEE C, ZHOU J, MCCARTHY R L, YE Z H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell, 2008,20(10):2763-2782.
doi: 10.1105/tpc.108.061325
[64] KUBO M, UDAGAWA M, NISHIKUBO N, HORIGUCHI G, YAMAGUCHI M, ITO J, MIMURA T, FUKUDA H, DEMURA T. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development, 2005,19(16):1855-1860.
doi: 10.1101/gad.1331305
[65] MITSUDA N, SEKI M, SHINOZAKI K, OHMETAKAGI M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 2005,17(11):2993-3006.
doi: 10.1105/tpc.105.036004
[66] OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 2005,10(2):79-87.
doi: 10.1016/j.tplants.2004.12.010
[67] XIAO W, YANG Y, YU J. ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize (Zea mays L.). Plant Science, 2018; 266:83-94.
doi: 10.1016/j.plantsci.2017.03.012
[68] SUN Q, LIU X, YANG J, LIU W, DU Q, WANG H, FU C, LI W X. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Molecular Plant, 2018,11(6):806-814.
doi: 10.1016/j.molp.2018.03.013
[69] ABD-HAMID N A, AHMAD-FAUZI M I, ZAINAL Z, ISMAIL I. Diverse and dynamic roles of F-box proteins in plant biology. Planta, 2020,251(3):68.
doi: 10.1007/s00425-020-03356-8
[70] CAVANAGH C, MORELL M, MACKAY I, POWELL W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 2008,11(2):215-221.
doi: 10.1016/j.pbi.2008.01.002
[71] LIU H, WANG X, XIAO Y, LUO J, QIAO F, YANG W, ZHANG R, MENG Y, SUN J, YAN S, PENG Y, NIU L, JIAN L, SONG W, YAN J, LI C, ZHAO Y, LIU Y, WARBURTON M, ZHAO J, YAN J. CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020,21(1):20.
doi: 10.1186/s13059-020-1930-x
[72] 苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010,36(7):1100-1107.
doi: 10.3724/SP.J.1006.2010.01100
SU C F, ZHAO T J, GAI J Y. Simulation Comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agronomica Sinica, 2010,36(7):1100-1107. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01100
[73] 冯建英, 温阳俊, 张瑾, 章元明. 植物关联分析方法的研究进展. 作物学报, 2016,42(7):945-956.
doi: 10.3724/SP.J.1006.2016.00945
WEN J Y, FENG Y J, ZHANG J, ZHANG Y M. Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016,42(7):945-956. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00945
[74] LIU H, JIAN L, XU J, ZHANG Q, ZHANG M, JIN M, PENG Y, YAN J, HAN B, LIU J, GAO F, LIU X, HUANG L, WEI W, DING Y, YANG X, LI Z, ZHANG M, SUN J, BAI M, SONG W, CHEN H, SUN X, LI W, LU Y, LIU Y, ZHAO J, QIAN Y, JACKSON D, FERNIE A R, YAN J. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell, 2020,32(5):1397-1413.
doi: 10.1105/tpc.19.00934
[75] LIU X, LIU J, REN W, YANG Q, CHAI Z, CHEN R, WANG L, ZHAO J, LANG Z, WANG H, FAN Y, ZHAO J, ZHANG C. Gene-indexed mutations in maize. Molecular Plant, 2017,11(3):496-504.
doi: 10.1016/j.molp.2017.11.013
[76] REN Z, ZHANG D, CAO L, ZHANG W, ZHENG H, LIU Z, HAN S, DONG Y, ZHU F, LIU H, SU H, CHEN Y, WU L, ZHU Y, KU L. Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress. Plant, Cell & Environment, 2020,43(9):2272-2286.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[3] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[6] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[7] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[10] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[11] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
Full text



No Suggested Reading articles found!