Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 64-78.doi: 10.3864/j.issn.0578-1752.2023.01.005

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province

CHAI HaiYan1,2(),JIA Jiao2,BAI Xue2,MENG LingMin2,ZHANG Wei2,JIN Rong1,2,WU HongBin2,SU QianFu2()   

  1. 1. College of Plant Protection, Jilin Agricultural University, Changchun 130022
    2. Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Key Laboratory of Integrated Crop Pest Management in Northeast China, Ministry of Agriculture and Rural Affairs, Changchun 130033
  • Received:2022-07-21 Accepted:2022-09-06 Online:2023-01-01 Published:2023-01-17
  • Contact: QianFu SU E-mail:3222181805@qq.com;qianfusu@126.com

Abstract:

【Objective】The objective of this study is to clarify the population distribution of Fusarium spp. of maize ear rot in Jilin Province and the inhibitory effect of fungicides on the growth of Fusarium mycelium, and to provide a basis for the targeted control of maize ear rot. 【Method】149 samples of maize ear rot collected from 36 cities and counties in Jilin Province in 2020 were isolated and identified by tissue isolation and molecular biology methods. The specific toxin synthesis primers of related genes were synthesized using Fusarium graminearum species complex (FGSC) toxin. The toxigenic chemotypes were detected, and the pathogenicity of some FGSC was determined. The inhibitory effect of 7 fungicides on FGSC was determined by the mycelial growth rate method. 【Result】A total of 233 Fusarium strains were isolated, belonging to 4 Fusarium complex species, including 9 Fusarium species, which were F. verticillioides, F. boothii, F. graminearum, F. proliferatum, F. asiaticum, F. chlamydosporum, F. fujikuroi, F. equiseti and F. subglutinans. The isolation frequencies were 33.05%, 26.18%, 25.32%, 12.45%, 0.86%, 0.86%, 0.43%, 0.43% and 0.43%, respectively. The isolate frequency of FGSC was the highest, which was 52.36%, and it was the dominant pathogen of maize ear rot in Jilin Province. The proportions of F. boothii, F. graminearum and F. asiaticum in FGSC were 50.00%, 48.36% and 1.46%, respectively. The phylogenetic tree showed that the interspecific and intraspecific genetic diversity of FGSC was rich. The results of pathogenicity assay showed that 52.73% of FGSC were medium pathogenic strains. F. graminearum isolated from the main maize producing areas in the east had the strongest pathogenicity. Toxigenic chemotype detection showed that F. asiaticum produced nivalenol (NIV) chemotype, F. graminearum and F. boothii produced 15-acetyl-deoxynivalenol (15-AcDON) chemotype. The EC50 of the 7 fungicides for inhibiting the growth of FGSC ranged from 0.02 to 19.45 μg·mL-1. Fludioxonil (FS), imazalil (FS), flusilazole (EC), tebuconazole (TC) and myclobutanil (EW) had good inhibitory effects on FGSC and the difference was not significant. The EC50 of FGSC was less than 1.20 μg·mL-1 and EC90 was less than 100 μg·mL-1. The difference of EC50 between F. graminearum and F. boothii was significant under 30% pyraclostrobin treatment. The EC50 of F. graminearum was 10.24 times higher than that of F. boothii. 【Conclusion】The dominant pathogenic Fusarium of maize ear rot in different maize producing areas of Jilin Province is different. F. graminearum and F. boothii are dominant species in the east and west, and F. verticillioides is dominant species in the middle. The interspecific and intraspecific genetic diversity of FGSC is rich. Fludioxonil, imazalil, flusilazole, tebuconazole and myclobutanil have better antifungal effect on FGSC. There is no significant difference in the fungicides susceptibility among FGSC.

Key words: maize, ear rot, Fusarium spp., Fusarium graminearum species complex (FGSC), fungicide

Table 1

Specific primers for Fusarium spp. identification"

真菌
Fungi
引物
Primer
引物序列
Primer sequence (5′-3′)
扩增片段
Target fragment (bp)
退火温度
Tm (℃)
镰孢菌属
Fusarium spp.
ItsF AACTCCCAAACCCCTGTGAACATA 431
58
ItsR TTTAACGGCGTGGCCGC
禾谷镰孢复合种
F. graminearum species complex
Fg16NF ACAGATGACAAGATTCAGGCACA 280
57
Fg16NR TTCTTTGACATCTGTTCAACCCA
拟轮枝镰孢
F. verticillioides
VER1 CTTCCTGCGATGTTTCTCC 578
56
VER2 AATTGGCCATTGGTATTATATATCTA
层出镰孢
F. proliferatum
PRO1 CTTTCCGCCAAGTTTCTTC 585
56
PRO2 TGTCAGTAACTCGACGTTGTTG
亚黏团镰孢
F. subglutinans
SUB1 CTGTCGCTAACCTCTTTATCCA 340
58
SUB2 CAGTATGGACGTTGGTATTATATCTAA

Fig. 1

Conidia of some Fusarium spp."

Table 2

Isolation frequency of Fusarium spp. causing maize ear rot in different main maize areas of Jilin Province"

镰孢菌
Fusarium spp.
总分离频率
Total isolation frequency (%)
分离频率<BOLD>I</BOLD>solation frequency (%)
东部East 中部Central 西部West
禾谷镰孢 F. graminearum 25.32 33.85 19.86 36.36
亚洲镰孢 F. asiaticum 0.86 0 1.37 0
布氏镰孢 F. boothii 26.18 30.77 13.01 54.55
拟轮枝镰孢 F. verticillioides 33.05 27.69 40.41 0
层出镰孢 F. proliferatum 12.45 6.15 17.12 0
厚垣镰孢 F. chlamydosporum 0.86 1.54 0.68 4.55
藤仓镰孢 F. fujikuroi 0.43 0 0 0
木贼镰孢F. equiseti 0.43 0 0.68 0
亚黏团镰孢 F. subglutinans 0.43 0 0 4.55

Fig. 2

Specific PCR products of F. graminearum species complex (280 bp)"

Fig. 3

Construction of phylogenetic tree of some F. graminearum species complex strains based on TEF-1α gene sequence"

Table 3

The average disease grade of ear rot caused by F. graminearum species complex"

区域
Area
禾谷镰孢 F. graminearum 亚洲镰孢 F. asiaticum 布氏镰孢 F. boothii
菌株数
Number of strains
平均病情级别
Average disease grade
菌株数
Number of strains
平均病情级别
Average disease grade
菌株数
Number of strains
平均病情级别
Average disease grade
东部East 3 5.23 - - 2 3.42
中部Middle 18 4.47 2 3.47 18 4.48
西部West 3 3.73 - - 9 3.29
合计Total 24 4.55 2 3.47 29 4.13

Table 4

Analysis of pathogenicity and toxigenic chemotype of F. graminearum species complex"

菌株
Strain
禾谷镰孢复合种
FGSC
来源
Source
平均病情级别
Average disease grade
致病类型
Pathogenic type
毒素化学型
Toxigenic chemotype
DASJ-1 F. b 大安Daan 1.48 LV 15-AcDON
DASJ-2 F. b 大安Daan 3.51 MV 15-AcDON
DASJ-4 F. b 大安Daan 4.00 MV 15-AcDON
DASJ-5 F. b 大安Daan 3.29 SL 15-AcDON
DATSZ-1 F. b 大安Daan 3.68 MV 15-AcDON
DATSZ-2 F. b 大安Daan 4.26 MV 15-AcDON
DHXST-1 F. a 德惠Dehui 4.43 MV NIV
DHXST-2 F. g 德惠Dehui 4.28 MV 15-AcDON
DHXST-3 F. g 德惠Dehui 5.29 SH 15-AcDON
DHXST-4 F. g 德惠Dehui 3.86 MV 15-AcDON
DHXCZ-2 F. g 德惠Dehui 6.06 MV 15-AcDON
DHXCZ-3 F. b 德惠Dehui 2.95 SL 15-AcDON
DF-1 F. g 东丰Dongfeng 3.69 MV 15-AcDON
DFHH-3 F. b 东丰Dongfeng 3.97 MV 15-AcDON
DL-1 F. g 东辽Dongliao 2.95 SL 15-AcDON
DL-2 F. g 东辽Dongliao 5.55 SH 15-AcDON
FYYP-1 F. b 扶余Fuyu 4.48 MV 15-AcDON
SJZ-1 F. b 扶余Fuyu 6.77 SH 15-AcDON
SJZ-2 F. b 扶余Fuyu 3.60 MV 15-AcDON
SJZ-3 F. b 扶余Fuyu 5.59 SH 15-AcDON
SJZ-4 F. g 扶余Fuyu 4.22 MV 15-AcDON
SJZ-5 F. b 扶余Fuyu 3.05 SL 15-AcDON
SJZ-6 F. b 扶余Fuyu 3.34 SL 15-AcDON
HLZ-11 F. g 公主岭Gongzhuling 5.12 MV 15-AcDON
HLZ-12 F. a 公主岭Gongzhuling 2.52 SL NIV
HLZ-25 F. g 公主岭Gongzhuling 4.28 MV 15-AcDON
HLZ-26 F. g 公主岭Gongzhuling 6.42 SH 15-AcDON
HLZ-35 F. b 公主岭Gongzhuling 5.42 MV 15-AcDON
JHXZWHC-2 F. g 蛟河Jiaohe 5.00 MV 15-AcDON
JHXZWHC-3 F. g 蛟河Jiaohe 5.98 SH 15-AcDON
JYXJ-1 F. g 靖宇Jingyu 4.62 MV 15-AcDON
LY-1 F. g 辽源市区Liaoyuan 4.39 MV 15-AcDON
LYDT-2 F. b 辽源市区Liaoyuan 5.63 SH 15-AcDON
NAXQKJ-1 F. g 农安Nongan 6.57 SH 15-AcDON
NAXQKJ-2 F. g 农安Nongan 8.58 HV 15-AcDON
QG-1 F. b 前郭Qianguo 5.04 SH 15-AcDON
QG-2 F. b 前郭Qianguo 5.72 SH 15-AcDON
QG-4 F. g 前郭Qianguo 4.05 MV 15-AcDON
QG-5 F. b 前郭Qianguo 6.35 SH 15-AcDON
1SL-1 F. g 舒兰Shulan 3.27 SL 15-AcDON
SLSYZ-1 F. g 舒兰Shulan 1.70 SL 15-AcDON
SL-1 F. b 双辽Shuangliao 2.79 SL 15-AcDON
SYSNJQ-1 F. b 松原市区Songyuan 4.36 MV 15-AcDON
SYSNJQ-2 F. b 松原市区Songyuan 5.15 MV 15-AcDON
SYSNJQ-3 F. b 松原市区Songyuan 3.76 MV 15-AcDON
TNHS-1 F. g 洮南Taonan 3.61 MV 15-AcDON
TNHS-2 F. g 洮南Taonan 3.74 MV 15-AcDON
TYNLB-1 F. g 洮南Taonan 3.85 MV 15-AcDON
WQ-1 F. b 汪清Wangqing 2.76 SL 15-AcDON
WQ-3 F. b 汪清Wangqing 4.09 MV 15-AcDON
YJ-1 F. g 永吉Yongji 2.00 MV 15-AcDON
TJT-2 F. b 榆树Yushu 3.33 SL 15-AcDON
CL-2 F. b 长岭Changling 3.10 SL 15-AcDON
CL-3 F. b 长岭Changling 3.69 MV 15-AcDON
CL-8 F. b 长岭Changling 1.67 SL 15-AcDON

Fig. 4

Chemotype-specific PCR amplification product of F. graminearum species complex toxin"

Table 5

Determination of laboratory toxicity of 7 fungicides to F. graminearum species complex"

药剂
Fungicide
禾谷镰孢复合种
FGSC
毒力回归方程
Toxic regression equation (y=)
相关系数
Correlation coefficient (r)
P
P value
EC50 (μg·mL-1) EC90
(μg·mL-1)
1%咯菌腈
1% Fludioxonil (FS)
F. g 6.7459+1.1782x 0.9867 0.0003 0.03 0.40
F. a 7.0660+1.3816x 0.9864 0.0003 0.03 0.27
F. b 6.5108+0.8802x 0.9956 0 0.02 0.55
97%戊唑醇
97% Tebuconazole (TC)
F. g 5.1913+0.6573x 0.9810 0.0001 0.51 45.57
F. a 5.2057+0.6911x 0.9901 0 0.50 36.05
F. b 5.1031+0.6849x 0.9817 0.0001 0.71 52.55
400 g·L-1氟硅唑
400 g·L-1 Flusilazole (EC)
F. g 5.5130+0.7766x 0.9944 0.0000 0.63 28.36
F. a 5.0412+0.7940x 0.9755 0.0009 0.89 36.48
F. b 5.2173+0.6697x 0.9963 0 0.47 38.84
10%抑霉唑
10% Imazalil (FS)
F. g 5.4567+2.4924x 0.9642 0.0019 0.66 2.14
F. a 5.2131+2.1992x 0.9397 0.0053 0.80 3.06
F. b 6.0591+2.1246x 0.9525 0.0033 0.32 1.27
12.5%腈菌唑
12.5% Myclobutanil (EW)
F. g 5.0197+0.8285x 0.9829 0.0004 0.95 33.35
F. a 4.9353+0.9961x 0.9821 0.0005 1.16 22.46
F. b 5.1448+0.9618x 0.9961 0 0.71 15.20
80%福美双
80% Famous Double (WG)
F. g 4.5324+0.4878x 0.9697 0.0003 9.09 3855.64
F. a 4.5260+0.5899x 0.9820 0.0001 6.36 946.20
F. b 4.4917+0.7141x 0.9739 0.0002 5.15 320.84
30%吡唑醚菌酯
30% Pyraclostrobin (SC)
F. g 4.6753+0.2519x 0.9619 0.0021 19.45 2378665.18
F. a 4.7013+0.2785x 0.9661 0.0017 11.81 471493.34
F. b 4.9428+0.2048x 0.9601 0.0024 1.90 3434875.02
[1] 段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48(11): 2152-2164.
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D. Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164. (in Chinese)
[2] TORRES A M, PALACIOS S A, YERKOVICH N, PALAZZINI J M, BATTILANI P, LESLIE J F, LOGRIECO A F, CHULZE S N. Fusarium head blight and mycotoxins in wheat: Prevention and control strategies across the food chain. World Mycotoxin Journal, 2019, 12(4): 333-355.
doi: 10.3920/WMJ2019.2438
[3] LEE H J, RYU D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7034-7051.
doi: 10.1021/acs.jafc.6b04847 pmid: 27976878
[4] SUN X D, SU P, SHAN H. Mycotoxin contamination of rice in China. Journal of Food Science, 2017, 82(3): 573-584.
doi: 10.1111/1750-3841.13631 pmid: 28135406
[5] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48(9): 2155-2167.
DUAN C X, CUI L N, XIA Y S, DONG H Y, YANG Z H, HU Q Y, SUN S L, LI X, ZHU Z D, WANG X M. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agronomica Sinica, 2022, 48(9): 2155-2167. (in Chinese)
[6] SCHAAFSMA A W, LIMAY-RIOS V, TAMBUR-ILLINCI L. Mycotoxins and Fusarium species associated with maize ear rot in Ontario, Canada. Cereal Research Communications, 2008, 36(Suppl. B): 525-527.
[7] PFORDT A, ROMERO L R, SCHIWEK S, KARLOVSK P, VON TIEDENANN A. Impact of environmental conditions and agronomic practices on the prevalence of Fusarium species associated with ear and stalk rot in maize. Pathogens, 2020, 9(3): 236.
doi: 10.3390/pathogens9030236
[8] STUMPF R, SANTOS J, GOMES L B, SILVA C N, TESSMANN D J, FERRERIA F D, MACHINSKI M, DEL PONTE E M. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 2013, 44(1): 89-95.
doi: 10.1590/S1517-83822013000100012
[9] SAMPIETRO D A, DIAZ C G, GONZALEZ V, VATTUNE M A, PLOPE L D, CATALAN C A, WARD T J. Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. International Journal of Food Microbiology, 2011, 145(1): 359-364.
doi: 10.1016/j.ijfoodmicro.2010.12.021
[10] DESJARDINS A E, PROCTOR R H. Genetic diversity and trichothecene chemotypes of the Fusariurn graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology, 2011, 115(1): 38-48.
doi: 10.1016/j.funbio.2010.10.002
[11] STEPIEN Ł, GROMADZK K, CHELKOWSKI J,. BASINSKA- BARCZAK A, LALAK-KANCZUGOWSKA J. Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as causal agents of pre-harvest Fusarium maize ear rot in Poland. Journal of Applied Genetics, 2019, 60: 113-121.
doi: 10.1007/s13353-018-0478-x
[12] COVARELLI L, STIFANO S, BECCAR G, RAGGI L, LATTANZIO V M T, ALBERTINI E. Characterization of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, pathogenicity and genetic variability. Food Microbiology, 2012, 31(1): 17-24.
doi: 10.1016/j.fm.2012.02.002
[13] SMALL I M, FLETT B C, MARASAS W F O, MCLEOD A, STADER M A, VILJOEN A. Resistance in maize inbred lines to Fusarium verticillioides and fumonisin accumulation in South Africa. Plant Disease, 2012, 96(6): 881-888.
doi: 10.1094/PDIS-08-11-0695
[14] ALIAKBARI F, MIRABILFATHY M, EMAMI M, MAZHAR S F, KARAMI-OSBOO R. Natural occurrence of Fusarium species in maize kernels at Gholestan Province in Northern Iran. Asian Journal of Plant Sciences, 2007, 6(8): 1276-1281.
doi: 10.3923/ajps.2007.1276.1281
[15] DESJARDINS A E, MUNKVOLD G P, PLANTTNER R D, PROCTOR R H. FUM1—a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Molecular Plant-Microbe Interactions, 2002, 15(11): 1157-1164.
doi: 10.1094/MPMI.2002.15.11.1157
[16] SCHAAFSMA A W, NICOL R W, REID L M. Evaluating commercial maize hybrids for resistance to Gibberella ear rot. European Journal of Plant Pathology, 1997, 103: 737-746.
doi: 10.1023/A:1008629629069
[17] 郭成, 魏宏玉, 郭满库, 何苏琴, 金社林, 陈红梅, 王晓鸣, 郭建国. 甘肃玉米穗腐病样品中轮枝镰孢菌的分离鉴定及生物学特性. 植物病理学报, 2014, 44(1): 17-25.
GUO C, WEI H Y, GUO M K, HE S Q, JIN S L, CHEN H M, WANG X M, GUO J G. Isolation, identification and biological characteristics of Fusarium verticillioides from maize ear rot samples in Gansu Province. Acta Phytopathologica Sinica, 2014, 44(1): 17-25. (in Chinese)
[18] 杜青, 唐照磊, 李石初, 上官玲玲, 李华娇, 段灿星. 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019, 52(11): 1895-1907.
DU Q, TANG Z L, LI S C, SHANGGUAN L L, LI H J, DUAN C X. Composition of Fusarium species causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Scientia Agricultura Sinica, 2019, 52(11): 1895-1907. (in Chinese)
[19] 王宝宝, 毕四刚, 肖明纲, 张冬英, 闫强, 张彦彦, 杨树龙, 朱振东, 段灿星. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163-174.
WANG B B, BI S G, XIAO M G, ZHANG D Y, YAN Q, ZHANG Y Y, YANG S L, ZHU Z D, DUAN C X. Isolation and identification of pathogenic Fusarium spp. causing maize ear rot and analysis of their toxin-producing genotype in Heilongjiang Province. Acta Prataculturae Sinica, 2020, 29(1): 163-174. (in Chinese)
[20] 魏琪, 廖露露, 陈莉, 齐永霞. 安徽省玉米穗腐病主要致病镰孢菌的分离与鉴定. 植物保护, 2019, 45(5): 221-225.
WEI Q, LIAO L L, CHEN L, QI Y X. Isolation and identification of main Fusarium species causing maize ear rot in Anhui Province. Plant Protection, 2019, 45(5): 221-225. (in Chinese)
[21] 丁梦军, 杨扬, 孙华, 马红霞, 刘树森, 石洁. 山东省玉米穗腐病病原菌的分离鉴定及优势种的系统发育分析. 华北农学报, 2019, 34(5): 216-223.
doi: 10.7668/hbnxb.201751508
DING M J, YANG Y, SUN H, MA H X, LIU S S, SHI J. Isolation and identification of maize ear rot pathogens and phylogenetic analysis of dominant species in Shandong Province. Acta Agriculturae Boreali- Sinica, 2019, 34(5): 216-223. (in Chinese)
doi: 10.7668/hbnxb.201751508
[22] ZHOU D N, WANG X M, CHEN G K, SUN S L, YANG Y, ZHU Z D, DUNG C X. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018, 10(2): 90.
doi: 10.3390/toxins10020090
[23] 孙华, 郭宁, 石洁, 张海剑, 马红霞, 刘树森. 海南玉米穗腐病病原菌分离鉴定及优势种的遗传多样性分析. 植物病理学报, 2017, 47(5): 577-583.
SUN H, GUO N, SHI J, ZHANG H J, MA H X, LIU S S. Characterization of the maize ear rot pathogens and genetic diversity analysis of dominant species in Hainan. Acta Phytopathologica Sinica, 2017, 47(5): 577-583. (in Chinese)
[24] 陈晓娟, 文成敬. 四川省玉米穗腐病研究初报. 西南农业大学学报, 2002, 24(1): 21-23, 25.
CHEN X J, WEN C J. Preliminary study of maize ear rot in Sichuan. Journal of Southwest Agricultural University, 2002, 24(1): 21-23, 25. (in Chinese)
[25] 孙华, 丁梦军, 张家齐, 石洁, 郭宁, 李坡. 河北省玉米穗腐病病原菌鉴定及潜在产伏马毒素镰孢菌系统发育分析. 植物病理学报, 2019, 49(2): 151-159.
SUN H, DING M J, ZHANG J Q, SHI J, GUO N, LI P. Identification of pathogens causing maize ear rot and the phylogenetic analysis of fumonisins-producing Fusarium species in Hebei Province. Acta Phytopathologica Sinica, 2019, 49(2): 151-159. (in Chinese)
[26] 李新凤, 王建明, 张作刚, 高俊明, 郝晓娟, 贺运春. 山西省玉米穗腐病病原镰孢菌的分离与鉴定. 山西农业大学学报(自然科学版), 2012, 32(3): 218-223.
LI X F, WANG J M, ZHANG Z G, GAO J M, HAO X J, HE Y C. Isolation and identification of the pathogen Fusarium causing maize ear rot in Shanxi Province. Journal of Shanxi Agricultural University (Natural Science Edition), 2012, 32(3): 218-223. (in Chinese)
[27] 马秉元, 龙书生, 李多川, 李亚玲. 陕西省玉米穗粒腐病的病原菌鉴定及各分离菌分布频率. 西北农林科技大学学报(自然科学版), 1995, 23(增刊): 98-103.
MA B Y, LONG S S, LI D C, LI Y L. Identification of pathogenic bacteria of maize ear rot and distribution frequency of each isolate in Shaanxi Province. Journal of Northwest A&F University (Natural Science Edition), 1995, 23(Suppl.): 98-103. (in Chinese)
[28] 肖淑芹, 许佳宁, 闫丽斌, 隋韵涵, 薛春生, 陈捷. 辽宁省玉米镰孢穗腐病病原菌的鉴定与分布. 植物保护学报, 2017, 44(5): 803-808.
XIAO S Q, XU J N, YAN L B, SUI Y H, XUE C S, CHEN J. Identification and distribution of Fusarium species causing maize ear rot in Liaoning Province. Journal of Plant Protection, 2017, 44(5): 803-808. (in Chinese)
[29] 吴畏, 田宇昂, 白宇汐, 梁琳悦, 余洋, 梁鹏宽, 蒋中华, 石海春, 柯永培, 孙群. 云南玉米穗腐病致病菌鉴定与共生群落分析. 中国测试, 2022, 48(2): 56-65.
WU W, TIAN Y A, BAI Y X, LIANG L Y, YU Y, LIANG P K, JIANG Z H, SHI H C, KE Y P, SUN Q. Pathogen identification and symbiotic community analysis of maize ear rot in Yunnan Province. China Measurement and Test, 2022, 48(2): 56-65. (in Chinese)
[30] CHIOTTA M L, ALANIZ ZANON M S, PALAZZINI J M, SCANDIANI M M, FORMENTO A N, BARROS G G, CHULZE S N. Pathogenicity of Fusarium graminearum and F. meridionale on soybean pod blight and trichothecene accumulation. Plant Pathology, 2016, 65(9): 1492-1497.
doi: 10.1111/ppa.12532
[31] HAO J J, XIE S N, SUN J, YANG G Q, LIU J Z, XU F, RU Y Y, SONG Y L. Analysis of Fusarium graminearum species complex from wheat-maize rotation regions in Henan (China). Plant Disease, 2017, 101(5): 720-725.
doi: 10.1094/PDIS-06-16-0912-RE
[32] 秦子惠, 任旭, 江凯, 武小菲, 杨知还, 王晓鸣. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41(5): 589-596.
QIN Z H, REN X, JIANG K, WU X F, YANG Z H, WANG X M. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. Journal of Plant Protection, 2014, 41(5): 589-596. (in Chinese)
[33] 孙华, 张海剑, 马红霞, 石洁, 郭宁, 陈丹, 李坡. 春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定. 植物病理学报, 2018, 48(1): 8-15.
SUN H, ZHANG H J, MA H X, SHI J, GUO N, CHEN D, LI P. Composition and distribution of pathogens causing ear rot in spring maize region and identification of Fusarium graminearum species complex. Acta Phytopathologica Sinica, 2018, 48(1): 8-15. (in Chinese)
[34] 卢宝慧, 吴庠玉, 刘燕妮, 南楠, 夏纬跃, 马贵龙, 高洁. 玉米穗腐病药剂防治研究. 吉林农业大学学报, 2014, 36(5): 519-523.
LU B H, WU X Y, LIU Y N, NAN N, XIA W Y, MA G L, GAO J. Study on chemical control of maize ear rot caused by Fusarium graminearum. Journal of Jilin Agricultural University, 2014, 36(5): 519-523. (in Chinese)
[35] 郭聪聪, 付萌, 庞民好, 刘颖超, 董金皋. 杀菌剂对玉米穗腐病菌的毒力及毒素产生的影响. 植物保护学报, 2015, 42(6): 1036-1043.
GUO C C, FU M, PANG M H, LIU Y C, DONG J G. Effects of fungicides on growth and mycotoxins of Fusarium species causing maize ear rot. Journal of Plant Protection, 2015, 42(6): 1036-1043. (in Chinese)
[36] 晏明, 张磊, 盛国志. 吉林省农业功能区划研究. 中国农业资源与区划, 2011, 32(5): 36-41.
YAN M, ZHANG L, SHENG G Z. Studies on regional planning of agriculture function of Jilin Province. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(5): 36-41. (in Chinese)
[37] 张昊, 张争, 许景升, 徐进, 张丽勍, 潘哲超, 田茜, 冯洁. 一种简单快速的赤霉病菌单孢分离方法——平板稀释画线分离法. 植物保护, 2008, 34(6): 134-136.
ZHANG H, ZHANG Z, XU J S, XU J, ZHANG L Q, PAN Z C, TIAN Q, FENG J. A rapid and simple method for obtaining single-spore isolates of Fusarium species—agar dilution lineation separation. Plant Protection, 2008, 34(6): 134-136. (in Chinese)
[38] LESELIE J F, SUMMERELL B A. The Fusarium Laboratory Manual. Iowa: Blackwell Publishing, 2006.
[39] 陈鸿逵, 王拱辰. 浙江镰刀菌志. 杭州: 浙江科学技术出版社, 1992.
CHEN H K, WANG G C. Zhejiang Fusarium spp. Hangzhou: Zhejiang Science and Technology Press, 1992. (in Chinese)
[40] 杨谦. 植物病原菌抗药性分子生物学. 2版. 北京: 科学出版社, 2011.
YANG Q. Molecular Biology of Drug Resistance of Plant Pathogens. 2nd ed. Harbin: Science Press, 2011. (in Chinese)
[41] 张婷, 孙晓东, 吕国忠. 我国东北地区玉米穗腐镰孢菌的种类及其分离频率. 菌物研究, 2011, 9(1): 9-14, 36.
ZHANG T, SUN X D, LÜ G Z. Fusarium species and its isolation frequency from rot ears of maize in Northeast China. Journal of Fungal Research, 2011, 9(1): 9-14, 36. (in Chinese)
[42] 许佳宁. 辽吉地区玉米穗腐病病原鉴定及防治基础研究[D]. 沈阳: 沈阳农业大学, 2018.
XU J N. Identification of pathogen of maize ear rot in Liaoning and Jilin provinces and control[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[43] SHANG G F, LI S Q, YU H, YANG J, LI S M, YU Y Q, WANG J M, WANG Y, ZENG Z, ZHANG J B, HU Z Q. An efficient strategy combining immunoassays and molecular identification for the investigation of Fusarium infections in ear rot of maize in Guizhou Province, China. Frontier in Microbiology, 2022, 13: 849698.
[44] WANG J H, ZHANG J B, LI H P, GONG A D, XUE S, AGBOOLA R S, LIAO Y C. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. Journal of Phytopathology, 2014, 162: 147-157.
doi: 10.1111/jph.12164
[45] DUAN C X, QIN Z H, YANG Z H, LI W X, SUN S L, ZHU Z D, WANG X M. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016, 8(6): 186.
doi: 10.3390/toxins8060186
[46] 马红霞, 孙华, 郭宁, 张海剑, 石洁, 常佳迎. 禾谷镰孢复合种毒素化学型及遗传多样性分析. 中国农业科学, 2018, 51(1): 82-95.
MA H X, SUN H, GUO N, ZHANG H J, SHI J, CHANG J Y. Analysis of toxigenic chemotype and genetic diversity of the Fusarium graminearum species complex. Scientia Agricultura Sinica, 2018, 51(1): 82-95. (in Chinese)
[47] 王宝宝, 郭成, 孙素丽, 夏玉生, 朱振东, 段灿星. 玉米穗腐病致病禾谷镰孢复合种的遗传多样性、致病力与毒素化学型分析. 中国农业科学, 2020, 53(23): 4777-4790.
WANG B B, GUO C, SUN S L, XIA Y S, ZHU Z D, DUAN C X. The genetic diversity, pathogenicity, and toxigenic chemotypes of Fusarium graminearum species complex causing maize ear rot. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790. (in Chinese)
[48] 李晓鸯. 东北地区玉米穗腐病致病镰孢菌种群结构及品种抗性分析[D]. 沈阳: 沈阳农业大学, 2018.
LI X Y. Population structure of Fusarium spp. and the resistance of maize to maize ear rot in Northeast China[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[49] SAMPIETRO D A, MARIN P, IGLESIAS J, PRESELLO D A, VATTUONE M A, CATALAN C A, GONZALEZ JAEN M T. A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biology, 2010, 114(1): 74-81.
doi: 10.1016/j.mycres.2009.10.008
[50] 汪锟. 杀菌剂对安徽凤阳玉米穗腐病菌的毒力及相关调控基因表达的研究[D]. 合肥: 合肥工业大学, 2019.
WANG K. Study on the virulence of fungicides against maize ear rot fungus in Fengyang, Anhui and the expression of related genes[D]. Hefei: Hefei University of Technology, 2019. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[4] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[7] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[8] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!