Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 104-117.doi: 10.3864/j.issn.0578-1752.2023.01.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change

ZHAO ZhengXin1,2(),WANG XiaoYun1,2,TIAN YaJie1,2,WANG Rui1,2,PENG Qing1,2,CAI HuanJie1,2()   

  1. 1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi
    2. Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2021-11-10 Accepted:2022-01-17 Online:2023-01-01 Published:2023-01-17
  • Contact: HuanJie CAI E-mail:15840121398@nwafu.edu.cn;caihj@nwsuaf.edu.cn

Abstract:

【Objective】 Returning straw to the field and applying nitrogen fertilizer can increase crop productivity. However, under the conditions of climate change, the different management measures have great uncertainty in the nitrogen utilization of summer maize farmland. It is very important to clarify the impact of straw returning and nitrogen fertilizer types on summer maize yield and soil ammonia volatilization under future climate conditions. 【Method】 This study used the DNDC model to predict the impact of returning straw to the field and different types of nitrogen fertilizers on summer maize yield and soil ammonia volatilization accumulation in Guanzhong area under different scenarios in the future. Through the verification of field soil temperature, moisture, yield and soil ammonia volatilization test data, the DNDC model could simulate crop yields and soil ammonia volatilization accumulations under different treatments under the future climate conditions well. 【Result】Both simulation and actual measurement results showed that returning straw to the field increased summer maize yields and promoted soil ammonia volatilization under the current climate conditions. Compared with ordinary urea, slow-release fertilizers had no significant effect on summer maize yield but would significantly reduce soil ammonia volatilization accumulation. Sensitivity analysis showed that both crop yield and soil ammonia volatilization accumulation were the most sensitive to nitrogen application. Under the RCP4.5 emission scenario, the single application of stable nitrogen fertilizer (NF1) treatment and single application of urea (NF2) treatment significantly reduced the summer maize yield in 2050s-2090s and 2070s-2090s, respectively. Both the treatment of straw combined with stable nitrogen fertilizer (SF1) and the treatment of straw combined with urea (SF2) significant increased summer maize yield in 2050s-2090s; under the RCP8.5 emission scenario, NF1 significantly reduced the summer maize yield from 2070s to 2090s, and NF2 showed no significant change. The summer maize yields under SF1 and SF2 were increased significantly from 2050s to 2090s. For NF1 under the RCP4.5 emission scenario in 2050s-2090s and under the RCP8.5 emission scenario 2030s-2090s, the soil ammonia volatilization accumulation significantly increased compared with current climate conditions; for the remaining treatments, the cumulative amount of soil ammonia volatilization in future periods under different emission scenarios would be significantly reduce compared with current climatic conditions. 【Conclusion】The DNDC forecast results showed that under the climate conditions of rising temperature and CO2 concentration and changing precipitation in the Guanzhong area in the future, the returning straw to the field and applying stable nitrogen fertilizer would significantly increase the summer maize yield and reduce the accumulation of ammonia volatilization in the soil, and it was the best high-yield and emission-reducing farmland management plan. This research provided a theoretical basis for coping with climate change and the rational use of straw and nitrogen fertilizer.

Key words: straw returning, N fertilizer type, ammonia volatilization, summer maize, yield, DNDC model, climate change, Guanzhong area of Shaanxi

Table 1

Soil and crop parameters"

参数种类 Parameter type 参数种名称 Parameter name 取值 Value 单位 Note
土壤参数
Soil parameter
土壤质地 Texture 粉质黏壤土 Silly clay loam
土壤容重 Bulk density 1.40 g·cm-3
田间持水量 Field capacity (WFPS) 0.56 g·cm-3
孔隙度 Porosity 0.477
0—10 cm土层有机碳含量 SOC in surface (0-10 cm soil layer) 5 g·kg-1
表层土壤NO3-含量 Nitrate content in soil suface 2.5 mg·kg-1
表层土壤NH4+含量 Ammoium content in soil suface 2 mg·kg-1
坡度 Slop 1 °
作物参数
Crop parameter
最高生物量 Max biomass production 4500 kg C·hm-2·a-1
生物量比例 Biomass fraction 0.53/0.18/0.18/0.11 grain/leaf/stem/root
生物量C/N Biomass C/N ratio 31/60/60/42 grain/leaf/stem/root
总需氮量 Annual N demand 218.342 kg N·hm-2·a-1
生长积温 TDD 2350
需水量 Water demand 120 mm
最适温度 Optimum temperature 30
固氮系数 Nitrgen fixation index 1

Fig. 1

Yield verification"

Fig. 2

Verification of 0-5 cm soil temperature in 2019"

Fig. 3

Verification of 0-5 cm soil temperature in 2020"

Fig. 4

Verification of 0-10 cm soil moisture in 2019"

Fig. 5

Verification of 0-10 cm soil moisture in 2020"

Fig. 6

Verification of the cumulative amount of soil ammonia volatilization during top dressing in 2019"

Fig. 7

Verification of the cumulative amount of soil ammonia volatilization in 2020"

Table 2

Results of sensitivity test"

输入参数
Input parameter
基础值
Base value
变化范围
Variation range
产量SI SI value of yield 土壤氨挥发SISI value of CAE
NF1 NF2 SF1 SF2 NF1 NF2 SF1 SF2
生育期均温
Average temperature during growth period (℃)
23.7 16.59—30.8 0.02 0.02 0.02 0.02 -0.01 0.02 -0.01 0.02
生育期降水量
Precipitation during growth period (mm)
552 386—718 -0.12 -0.10 -0.11 -0.13 -0.01 -0.01 -0.05 -0.04
土壤黏粒含量
Soil clay content (%)
14.0 10—18 0.47 0.39 0.47 0.44 -0.68 -1.08 -0.87 -1.14
土壤有机碳含量
Soil organic carbon content (g·kg-1)
5 4—7 -0.01 0.01 -0.04 0.01 -0.29 -0.40 -0.43 -0.40
施氮量
Nitrogen application rate (kg·hm-2)
180 126—234 0.89 0.91 0.67 0.67 1.38 2.53 1.30 2.47
秸秆还田量
Amount of straw returned to the field (kg·hm-2)
8000 5600—10400 - - -0.01 -0.01 - - -0.08 -0.08

Fig. 8

The sensitivity of yield and soil ammonia volatilization to the rate of change of nitrogen application"

Fig. 9

Changes in temperature and precipitation output under the backgrounds of RCP4.5 and RCP8.5 in different periods in the future Each histogram contains 33 GCM atmospheric circulation modes. The box boundary represents the 25% and 75% values, the error bar represents the 10% and 90% values, and the box and cross represent the median and mean values, respectively. The dotted line represents the mean value in the current climate. The same as below"

Fig. 10

Changes in summer maize output under the backgrounds of RCP4.5 and RCP8.5 in different periods in the future * Indicates the significance of the simulated value compared with the current climate conditions. The same as below"

Fig. 11

Changes in soil ammonia volatilization accumulation under the backgrounds of RCP4.5 and RCP8.5 in different periods in the future"

[1] 宋敏, 王宏新, 郭慧捷, 肖嘉利. 农业领域面对气候变化的脆弱性与适应性举措. 肥料与健康, 2021, 48(4): 1-9. doi:10.3969/j.issn.2096-7047.2021.04.001.
doi: 10.3969/j.issn.2096-7047.2021.04.001
SONG M, WANG H X, GUO H J, XIAO J L. Vulnerability of agriculture to climate change and adaptive measures. Fertilizer & Health, 2021, 48(4): 1-9. doi:10.3969/j.issn.2096-7047.2021.04.001. (in Chinese)
doi: 10.3969/j.issn.2096-7047.2021.04.001
[2] DING D Y, FENG H, ZHAO Y, LIU W Z, CHEN H X, HE J Q. Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China. Climatic Change, 2016, 138(1/2): 157-171. doi:10.1007/s10584-016-1714-1.
doi: 10.1007/s10584-016-1714-1
[3] PAN B B, LAM S K, MOSIER A, LUO Y Q, CHEN D L. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems & Environment, 2016, 232: 283-289. doi:10.1016/j.agee.2016.08.019.
doi: 10.1016/j.agee.2016.08.019
[4] ZHANG H L, LAL R, ZHAO X, XUE J F, CHEN F. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Advances in Agronomy. Amsterdam: Elsevier, 2014: 1-36. doi:10.1016/b978-0-12-800138-7.00001-2.
doi: 10.1016/b978-0-12-800138-7.00001-2
[5] 王丽波. 秸秆直接还田是农业可持续发展的需要. 农机使用与维修, 2018(4): 74. doi:10.14031/j.cnki.njwx.2018.04.055.
doi: 10.14031/j.cnki.njwx.2018.04.055
WANG L B. The direct return of straw to the field is the need of sustainable agricultural development. Agricultural Mechanization Using & Maintenance, 2018(4): 74. doi:10.14031/j.cnki.njwx.2018.04.055. (in Chinese)
doi: 10.14031/j.cnki.njwx.2018.04.055
[6] LI M N, WANG Y L, ADELI A, YAN H J. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crops Research, 2018, 218: 115-125. doi:10.1016/j.fcr.2018.01.011.
doi: 10.1016/j.fcr.2018.01.011
[7] 赵苗苗, 邵蕊, 杨吉林, 赵芬, 徐明. 基于DNDC模型的稻田温室气体排放通量模拟. 生态学杂志, 2019, 38(4): 1057-1066. doi:10.13292/j.1000-4890.201904.030.
doi: 10.13292/j.1000-4890.201904.030
ZHAO M M, SHAO R, YANG J L, ZHAO F, XU M. Simulation of greenhouse gas fluxes in rice fields based on DNDC model. Chinese Journal of Ecology, 2019, 38(4): 1057-1066. doi:10.13292/j.1000-4890.201904.030. (in Chinese)
doi: 10.13292/j.1000-4890.201904.030
[8] LI C S. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 2000, 58(1/2/3): 259-276. doi:10.1023/A:1009859006242.
doi: 10.1023/A:1009859006242
[9] HU X K, SU F, JU X T, GAO B, OENEMA O, CHRISTIE P, HUANG B X, JIANG R F, ZHANG F S. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environmental Pollution, 2013, 176: 198-207. doi:10.1016/j.envpol.2013.01.040.
doi: 10.1016/j.envpol.2013.01.040
[10] 王朝辉, 刘学军, 巨晓棠, 张福锁. 田间土壤氨挥发的原位测定: 通气法. 植物营养与肥料学报, 2002, 8(2): 205-209. doi:10.3321/j.issn:1008-505X.2002.02.014.
doi: 10.3321/j.issn:1008-505X.2002.02.014
WANG Z H, LIU X J, JU X T, ZHANG F S. Field in situ determination of ammo nia volatilization from soil: Venting method. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209. doi:10.3321/j.issn:1008-505X.2002.02.014. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2002.02.014
[11] LI C S, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776. doi:10.1029/92jd00509.
doi: 10.1029/92jd00509
[12] 高小叶, 袁世力, 吕爱敏, 周鹏, 安渊. DNDC模型评估苜蓿绿肥对水稻产量和温室气体排放的影响. 草业学报, 2016, 25(12): 14-26. doi:10.11686/cyxb2016038.
doi: 10.11686/cyxb2016038
GAO X Y, YUAN S L, LÜ A M, ZHOU P, AN Y. Effects of alfalfa green manure on rice production and greenhouse gas emissions based on a DNDC model simulation. Acta Prataculturae Sinica, 2016, 25(12): 14-26. doi:10.11686/cyxb2016038. (in Chinese)
doi: 10.11686/cyxb2016038
[13] WANG B, DE LI LIU, ASSENG S, MACADAM I, YU Q. Impact of climate change on wheat flowering time in eastern Australia. Agricultural and Forest Meteorology, 2015, 209/210: 11-21. doi:10.1016/j.agrformet.2015.04.028.
doi: 10.1016/j.agrformet.2015.04.028
[14] ZHANG Y J, NIU H S. The development of the DNDC plant growth sub-model and the application of DNDC in agriculture: A review. Agriculture, Ecosystems & Environment, 2016, 230: 271-282. doi:10.1016/j.agee.2016.06.017.
doi: 10.1016/j.agee.2016.06.017
[15] 李长生. 生物地球化学:科学基础与模型方法. 北京: 清华大学出版社, 2016.
LI C S. Biogeochemistry:Scientific Fundamentals and Modeling Approach. Beijing: Tsinghua University Press, 2016. (in Chinese)
[16] ZHANG F, ZHANG W J, LI M, ZHANG Y, LI F M, LI C B. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agricultural Systems, 2017, 150: 67-77. doi:10.1016/j.agsy.2016.10.011.
doi: 10.1016/j.agsy.2016.10.011
[17] YU Y X, TAO H, JIA H T, ZHAO C Y. Impact of plastic mulching on nitrous oxide emissions in China’s arid agricultural region under climate change conditions. Atmospheric Environment, 2017, 158: 76-84. doi:10.1016/j.atmosenv.2017.03.020.
doi: 10.1016/j.atmosenv.2017.03.020
[18] HAN J, JIA Z K, WU W, LI C S, HAN Q F, ZHANG J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Research, 2014, 155: 202-212. doi:10.1016/j.fcr.2013.09.004.
doi: 10.1016/j.fcr.2013.09.004
[19] 卢丽丽, 吴根义. 农田氨排放影响因素研究进展. 中国农业大学学报, 2019, 24(1): 149-162. doi:10.11841/j.issn.1007-4333.2019.01.19.
doi: 10.11841/j.issn.1007-4333.2019.01.19
LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland. Journal of China Agricultural University, 2019, 24(1): 149-162. doi:10.11841/j.issn.1007-4333.2019.01.19. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2019.01.19
[20] 夏文建, 王淳, 张丽芳, 张文学, 冀建华, 陈金, 刘增兵, 刘光荣. 基于DNDC模型的双季稻体系氨挥发损失研究. 长江流域资源与环境, 2020, 29(9): 2035-2046. doi:10.11870/cjlyzyyhj202009014.
doi: 10.11870/cjlyzyyhj202009014
XIA W J, WANG C, ZHANG L F, ZHANG W X, JI J H, CHEN J, LIU Z B, LIU G R. Suitability of DNDC model to simulate ammonia volatilization for double rice cropping system. Resources and Environment in the Yangtze Basin, 2020, 29(9): 2035-2046. doi:10.11870/cjlyzyyhj202009014. (in Chinese)
doi: 10.11870/cjlyzyyhj202009014
[21] 朱影, 庄国强, 吴尚华, 黄占斌, 庄绪亮. 农田土壤氨挥发的过程和控制技术研究. 环境保护科学, 2020, 46(6): 88-96. doi:10.16803/j.cnki.issn.1004-6216.2020.06.015.
doi: 10.16803/j.cnki.issn.1004-6216.2020.06.015
ZHU Y, ZHUANG G Q, WU S H, HUANG Z B, ZHUANG X L. Ammonia volatilization process and control technology of farmland soil. Environmental Protection Science, 2020, 46(6): 88-96. doi:10.16803/j.cnki.issn.1004-6216.2020.06.015. (in Chinese)
doi: 10.16803/j.cnki.issn.1004-6216.2020.06.015
[22] TANG R S, ZHENG J C, JIN Z Q, ZHANG D D, HUANG Y H, CHEN L G. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regulation, 2008, 54(1): 37-43. doi:10.1007/s10725-007-9225-8.
doi: 10.1007/s10725-007-9225-8
[23] XU C H, XU Y. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 2012, 5(6): 527-533. doi:10.1080/16742834.2012.11447042.
doi: 10.1080/16742834.2012.11447042
[24] 谢瑞芝, 明博. 玉米生产系统对气候变化的响应与适应. 中国农业科学, 2021, 54(17): 3587-3591. doi:10.3864/j.issn.0578-1752.2021.17.003.
doi: 10.3864/j.issn.0578-1752.2021.17.003
XIE R Z, MING B. Response and adaptation of maize production system to climate change. Scientia Agricultura Sinica, 2021, 54(17): 3587-3591. doi:10.3864/j.issn.0578-1752.2021.17.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.17.003
[25] 李树岩, 潘学标, 王靖. RCP情景下河南省夏玉米产量的变化及适应措施. 西北农林科技大学学报(自然科学版), 2020, 48(10): 24-37. doi:10.13207/j.cnki.jnwafu.2020.10.004.
doi: 10.13207/j.cnki.jnwafu.2020.10.004
LI S Y, PAN X B, WANG J. Variation of summer maize yield under RCP scenarios and adaptation measures in Henan. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(10): 24-37. doi:10.13207/j.cnki.jnwafu.2020.10.004. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2020.10.004
[26] LÜ F L, SONG J S, GILTRAP D, FENG Y T, YANG X Y, ZHANG S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Science of the Total Environment, 2020, 732: 139321. doi:10.1016/j.scitotenv.2020.139321.
doi: 10.1016/j.scitotenv.2020.139321
[27] 高雪慧, 刘强, 王钧. 基于APSIM模型的旱地春小麦产量对大气CO2浓度和氮肥水平的响应. 作物研究, 2021, 35(5): 544-548, 552. doi:10.16848/j.cnki.issn.1001-5280.2021.05.31.
doi: 10.16848/j.cnki.issn.1001-5280.2021.05.31
GAO X H, LIU Q, WANG J. Response of spring wheat yield in dryland to CO2 concentration and nitrogen fertilizer level based on APSIM model. Crop Research, 2021, 35(5): 544-548, 552. doi:10.16848/j.cnki.issn.1001-5280.2021.05.31. (in Chinese)
doi: 10.16848/j.cnki.issn.1001-5280.2021.05.31
[28] 路文涛, 高飞, 贾志宽, 韩清芳, 杨宝平, 侯贤清. 秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响. 生态学报, 2011, 31(3): 777-783.
LU W T, GAO F, JIA Z K, HAN Q F, YANG B P, HOU X Q. Effects of different straw returning treatments on soil water, maize growth and photosynthetic characteristics in the semi-arid area of Southern Ningxia. Acta Ecologica Sinica, 2011, 31(3): 777-783. (in Chinese)
[29] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10): 1746-1760. doi:10.3864/j.issn.0578-1752.2019.10.008.
doi: 10.3864/j.issn.0578-1752.2019.10.008
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760. doi:10.3864/j.issn.0578-1752.2019.10.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.10.008
[30] 杨杉, 吴胜军, 王雨, 周文佐, 程辉, 叶飞, 黄培, 黄平. 三峡库区农田氨挥发及其消减措施研究进展. 土壤, 2014, 46(5): 773-779. doi:10.13758/j.cnki.tr.2014.05.001.
doi: 10.13758/j.cnki.tr.2014.05.001
YANG S, WU S J, WANG Y, ZHOU W Z, CHENG H, YE F, HUANG P, HUANG P. Ammonia volatilization and its reducing countermeasures in the agro-ecosystem of the Three Gorges area: A review. Soils, 2014, 46(5): 773-779. doi:10.13758/j.cnki.tr.2014.05.001. (in Chinese)
doi: 10.13758/j.cnki.tr.2014.05.001
[31] NICHOLSON F A, BHOGAL A, CHADWICK D, GILL E, GOODAY R D, LORD E, MISSELBROOK T, ROLLETT A J, SAGOO E, SMITH K A, THORMAN R E, WILLIAMS J R, CHAMBERS B J. An enhanced software tool to support better use of manure nutrients: Manner-NPK. Soil Use and Management, 2013, 29(4): 473-484. doi:10.1111/sum.12078.
doi: 10.1111/sum.12078
[32] WANG W Y, AKHTAR K, REN G X, YANG G H, FENG Y Z, YUAN L Y. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Science of the Total Environment, 2019, 652: 471-482. doi:10.1016/j.scitotenv.2018.10.207.
doi: 10.1016/j.scitotenv.2018.10.207
[33] 王峰, 陈玉真, 吴志丹, 江福英, 翁伯琦, 尤志明. 酸性茶园土壤氨挥发及其影响因素研究. 农业环境科学学报, 2016, 35(4): 808-816. doi:10.11654/jaes.2016.04.027.
doi: 10.11654/jaes.2016.04.027
WANG F, CHEN Y Z, WU Z D, JIANG F Y, WENG B Q, YOU Z M. Ammonia volatilization and its influencing factors in tea garden soils. Journal of Agro-Environment Science, 2016, 35(4): 808-816. doi:10.11654/jaes.2016.04.027. (in Chinese)
doi: 10.11654/jaes.2016.04.027
[34] 马晓燕, 王军玲, 郭秀锐, 韩玉花. 不同施氮情景下北京地区露地甘蓝土壤氨的排放. 北方园艺, 2017(13): 140-147. doi:10.11937/bfyy.20164671.
doi: 10.11937/bfyy.20164671
MA X Y, WANG J L, GUO X R, HAN Y H. Ammonia emission from outdoor cabbage soil in Beijing area based on different nitrogen application rate. Northern Horticulture, 2017(13): 140-147. doi:10.11937/bfyy.20164671. (in Chinese)
doi: 10.11937/bfyy.20164671
[35] 王东, 于振文, 于文明, 石玉, 周忠新. 施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响. 应用生态学报, 2006, 17(9): 1593-1598.
WANG D, YU Z W, YU W M, SHI Y, ZHOU Z X. Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field. Chinese Journal of Applied Ecology, 2006, 17(9): 1593-1598. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[6] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[7] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[9] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[10] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[11] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[12] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[15] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!