Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 680-691.doi: 10.3864/j.issn.0578-1752.2022.04.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions

HUANG ZhaoFu(),LI LuLu(),HOU LiangYu,GAO Shang,MING Bo,XIE RuiZhi,HOU Peng,WANG KeRu,XUE Jun(),LI ShaoKun()   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081
  • Received:2021-04-09 Accepted:2021-07-05 Online:2022-02-16 Published:2022-02-23
  • Contact: Jun XUE,ShaoKun LI E-mail:huangzhaofu123@126.com;1044330186@qq.com;xuejun5519@126.com;lishaokun@caas.cn

Abstract:

【Objective】Under the background of mechanical grain harvesting, the purpose of this study was to determine the accumulated temperature requirements of maize in different planting regions after physiological maturity by dehydration to the suitable harvest date, so as to provide the theoretical guidance for selecting suitable grain harvesting varieties, and rationally arrange agricultural operations and improve mechanical utilization efficiency in each planting region. 【Method】From 2014 to 2018, 141 maize varieties with different maturity periods selected to observe the dynamic changes of grain moisture content at typical test points in the northwest maize region (NW), the north maize region (NM) and Huang-huai-hai maize region (HM). Combining with meteorological date, the accumulated temperature requirements of maize field stalk dehydration to 25% and 20% grain moisture content after the physiological maturity were analyzed in different production regions. 【Result】The grain moisture content was different at physiological maturity in different production regions. The average grain moisture content was 28.5%, 29.9% and 29.6% in HM, NW and NM, respectively. Correlation analysis showed that there was no significant correlation between the growth period of different varieties and the grain moisture content at physiological maturity. The accumulated temperature of grain moisture content from physiological maturity to 25%, 20% and grain moisture content at physiological maturity were used as indexes. By using the two-way average method, the tested varieties were divided into 4 types, including low accumulated temperature demand and high moisture content (I), high accumulated temperature demand and high moisture content (II), low accumulated temperature demand and low moisture content (III), and high accumulated temperature and low moisture content (IV). For the northwest China, north China and northeast China, III and IV could be selected, but IV varieties needed to reserve enough accumulated temperature to dehydrate in the field. While the summer maize with growing twice a year in the Huanghuaihai region, III varieties could better coordinate the production and allocation of wheat and maize, and make full use of the excess temperature that could be used for grain dehydration. 【Conclusion】 Because of different dehydrating conditions such as temperature, the days when grain moisture content from physiological maturity to 25%, 20% showed that the northwest maize region was longer than the north maize region and Huang-huai-hai maize region. Grain moisture content and harvest quality can be effectively reduced by selecting the accumulated temperature varieties suitable for different regions and scientifically setting the harvest date.

Key words: maize, physiological maturity, grain moisture content, stand stalk dehydration, accumulated temperature requirements, mechanical grain harvesting

Table 1

Maize varieties planted in different regions"

区域 Region 玉米品种名称 Maize cultivar
西北灌溉春玉米区
The northwest maize
region (NW)
矮单268、登海113、登海117、登海119、登海1733、登海318、登海1786、登海1769、登海105、登海177、登海1739、KWS3376、KWS3564、KWS9384、KWS01、新玉27、新玉30、新玉32、新玉47、新玉65、新玉69、新玉77、陕单628、陕单636、陕单650、陕单16、锦华150、农华205、农华213、农华106、YY119、银玉274、YY137、银玉369、宁玉524、宁玉525、联创808、联创825、泽玉501、泽玉8911、先玉335、京科968、中农777、M753、M751、丰垦139、真金323、真金308、MC670、北斗309、金珠58、利单295、辽单575、辽单585、辽单586、豫单9953、增玉1317、增玉1572、郑单528、郑单958、郑单309、郑单1002、东单913、正泰101、德丰586、富尔116、九玉Y02、吉单66、吉单558
Aidan268(AD268), Denghai113(DH113), Denghai117(DH117), Denghai119(DH119), Denghai1733(DH1733), Denghai318 (DH318), Denghai1786(DH1786), Denghai1769(DH1769), Denghai105(DH105), Denghai177(DH177), Denghai1739(DH1739), KWS3376, KWS3564, KWS9384, KWS01, Xinyu27(XY27), Xinyu30(XY30), Xinyu32(XY32), Xinyu47(XY47), Xinyu65(XY65), Xinyu69(XY69), Xinyu77(XY77), Shandan628(SD628), Shandan636(SD636), Shandan650(SD650), Shandan16(SD16), Jinhua150 (JH150), Nonghua205(NH205), Nonghua213(NH213), Nonghua106(NH106), YY119, Yinyu274(YY274), YY137, Yinyu369(YY369), Ningyu524 (NY524), Ningyu525(NY525), Lianchuang808(LC808), Lianchuang825(LC825), Zeyu501(ZY501), Zeyu8911(ZY8911), Xianyu335(XY335), Jingke968(JK968), Zhongnong777(ZN777), M753, M751, Fengken139(FK139), Zhenjin323(ZJ323), Zhenjin308(ZJ308), MC670, Beidou309(BD309), Jinzhu58(JZ58), Lidan295(LD295), Liaodan575(LD575), Liaodan585(LD585), Liaodan586(LD586), Yudan9953(YD9953), Zengyu1317(ZY1317), Zengyu1572(ZY1572), Zhengdan528 (ZD528), Zhengdan958 (ZD958), Zhengdan309(ZD309), Zhengdan1002(ZD1002), Dongdan913(DD913), Zhengtai101(ZT101), Defeng586(DF586), Fuer116(FE116), JiuyuY02(JYY02), Jidan66(JD66), Jidan558(JD558)
北方春玉米区
The north maize
region (NM)
A6565、BY1、KX9384、M751、丹玉311、德美亚1号、德美亚2号、德美亚3号、德育919、登海739、登海769、登海786、迪卡159、迪卡517、东单1331、东单6531、东单913、敦玉323、丰垦139、富育968、禾田4号、宏硕899、宏玉236、华美1号、吉单1402、吉单66、吉单68、吉单898、吉单96、吉农大935、京农科728、京科968、利单295、粒收1号、联创825、辽单585、辽单586、农大239、农华103、农华213、农华803、瑞普909、陕单620、陕单636、铁研388、铁研58、先玉1321、先玉335、翔玉998、鑫鑫1号、银玉123、银玉274、银玉439、优迪919、泽玉501、泽玉8911、增玉1572、郑单958、中单107、中迪702、中迪710
A6565, BY1, KX9384, M751, Danyu311(DY311), Demeiya1(DMY1), Demeiya2(DMY2), Demeiya3(DMY3), Deyu919(DY919), Denghai739(DH1739), Denghai769(DH769), Denghai786(DH786), Dika159(DK159), Dika517(DK517), Dongdan1331(DD1331), Dongdan6531(DD6531), Dongdan913(DD913), Dunyu323(DY323), Fengken139(FK139), Fuyu968(FY968), Hetian4(HT4), Hongshuo899(HS899), Hongyu236(HY236), Huamei1(HM1), Jidan1402(JD1402), Jidan66(JD66), Jidan68(JD68), Jidan898 (JD898), Jidan96(JD96), Jinongda935(JND935), Jingnongke728(JNK728), Jingke968(JK968), Lidan295(LD295), Lishou1(LS1), Lianchuang825(LC825), Liaodan585(LD585), Liaodan586(LD586), Nongda239(NH239), Nonghua103(NH103), Nonghua213 (NH213), Nonghua803(NH803), Rupu909(RP909), Shandan620(SD620), Shandan636(SD636), Tieyan388(TY388), Tieyan58 (TY58), Xianyu1321(XY1321), Xianyu335(XY335), Xiangyu998(XY998), Xinxin1(XX1), Yinyu123(YY123), Yinyu274(YY274), Yinyu439(YY439), Youdi919(YD919), Zeyu501(ZY501), Zeyu8911(ZY8911), Zengyu1572(ZY1572), Zhengdan958(ZD958), Zhongdan107(ZD107), Zhongdi702(ZD702), Zhongdi710(ZD710)
黄淮海夏玉米区
The Huang-huai-hai
maize region (HM)
KWS1568、KWS3564、M751、MC670、北斗309、丹玉8201、登海618、迪卡517、迪卡519、迪卡653、东单913、丰垦139、富育5152、恒育898、户玉3518、华美1号、吉单66、金通152、锦华207、锦华318、京农科728、利单295、联创805、联创808、联创825、辽单575、辽单585、辽单586、辽单588、宁玉721、农华101、农华5号、农华816、陕单636、陕单650、先玉335、先玉696、新单58、新单65、新单68、新玉77、宇玉30、裕丰303、豫单9953、泽玉501、泽玉8911、真金308、真金323、真金8号、郑单958、中单909、中科玉505、中种8号
KWS1568, KWS3564, M751, MC670, Beidou309(BD309), Danyu8201(DY8201), Denghai618(DH618), Dika517(DK517), Dika519(DK519), Dika653(DK653), Dongdan913(DD913), Fengken139(FK139), Fuyu5152(FY5152), Hengyu898(HY898), Huyu3518(HY3518), Humei1(HM1), Jidan66(JD66), Jintong152(JT152), Jinhua207(JH207), Jinhua318(JH318), Jingnongke728 (JNK728), Lidan295(LD295), Lianchuang805(LC805), Lianchuang808(LC808), Lianchuang825(LC825), Liaodan575(LD575), Liaodan585(LD585), Liaodan586(LD586), Liaodan588(LD588), Ningyu721(NY721), Nonghua101(NH101), Nonghua5(NH5), Nonghua816(NH816), Shandan636(SD636), Shandan650(SD650), Xianyu335(XY335), Xianyu696(XY696), Xindan58(XD58), Xindan65(XD65), Xindan68(XD68), Xinyu77(XY77), Yuyu30(YY30), Yufeng303(YF303), Yudan9953(YD9953), Zeyu501 (ZY501), Zeyu8911(ZY8911), Zhenjin308(ZJ308), Zhenjin323(ZJ323), Zhenjin8(ZJ8), Zhengdan958(ZD958), Zhongdan909 (ZD909), Zhongkeyu505(ZKY505), Zhongzhong8(ZZ8)

Table 2

Test year, number of test varieties, and date of determination in the experimental sites"

区域
Region
地点
Site
年份
Year
测试品种数
Number of varieties tested
开始日期
Start date (M-D)
结束日期
End date (M-D)
西北灌溉春玉米区
NW
奇台 Qitai 2016 33 07-15 10-8
2017 18 07-20 11-20
2018 16 07-17 11-10
昌吉 Changji 2017 12 07-15 10-15
伊犁 Yili 2017 20 07-20 10-10
北方春玉米区
NM
永宁 Yongning 2018 30 07-28 11-30
铁岭 Tieling 2017 19 07-26 10-21
2018 18 08-05 11-05
大庆 Daqing 2016 8 08-01 12-04
2017 20 08-10 12-09
黄淮海夏玉米区
HM
新乡 Xinxiang 2015 11 08-16 11-14
2016 17 08-14 10-17
2017 36 08-18 12-26
北京 Beijing 2014 8 08-01 11-02
2017 12 08-18 12-15

Table 3

Growth process of varieties in different regions"

区域
Region
地点
Site
年份
Year
播种日期
Sowing date (M-D)
吐丝日期
Silking date (M-D)
生理成熟日期
Physiological maturity date (M-D)
生育期
Growth period (d)
极差
Range
(d)
西北灌溉春玉米区
NW
奇台 Qitai 2016 04-14 07-01-07-18 09-08-09-29 148-169 21
2017 04-22 07-01-07-17 09-13-09-29 144-169 25
2018 04-17 07-10-07-17 09-27-10-10 163-176 13
昌吉 Changji 2017 05-05 07-03-07-12 08-25-09-15 112-133 21
伊犁 Yili 2017 04-25 07-07-07-12 09-12-10-02 140-160 20
北方春玉米区
NM
永宁 Yongning 2018 04-28 07-13-07-20 09-04-09-28 129-154 25
铁岭 Tieling 2017 04-28 07-08-07-19 09-09-10-03 134-158 24
2018 05-04 07-14-07-24 09-24-10-10 143-159 16
大庆 Daqing 2016 04-28 07-20-08-02 09-13-10-11 138-167 29
2017 05-08 07-17-08-02 09-20-10-22 134-158 24
黄淮海夏玉米区
HM
新乡 Xinxiang 2015 06-16 07-23-08-10 09-23-10-19 99-125 26
2016 06-04 07-23-07-31 09-05-09-28 93-116 23
2017 06-18 08-02-08-10 09-22-10-26 96-130 34
北京 Beijing 2014 06-01 07-21-08-04 09-13-09-27 104-118 14
2017 06-18 08-03-08-12 10-01-10-20 105-124 19

Fig. 1

Moisture content of maize at physiological maturity and the days of dehydration to 25% and 20% moisture content The main box called the quartile interval (IQR), it contains the distribution area of fifty percent samples in Box-whisker Plot. The two sidelines mean the reasonable sample border in Tukey method. The black solid line in box positions the median sample. The red hidden line stands for the average. The black circle stands for the outlier. GMC represents grain moisture content, and PM represents physiological maturity. The same as below"

Fig. 2

Moisture content at physiological maturity and the days of dehydration to 25% moisture content of different varieties"

Fig. 3

Relationship between growth period of tested maize varieties and moisture content during physiological maturity ns represents no significant difference"

Fig. 4

Relationships between moisture content at physiological maturity and accumulated temperature from dehydrating to 25% and 20% moisture content"

Table 4

The variety classificationin different regions when the moisture content of grain decreased to 25%"

区域
Region
类型
Type
项目 Item
生理成熟至含水率25% GMC decreased from PM to 25% 生理成熟至含水率20% GMC decreased from PM to 25%
西北灌溉
春玉米区
NW
I 郑单528、辽单575、真金323、辽单585、登海1769、新玉27、真金308、MC670、利单295、东单913、陕单628、泽玉501
ZD528, LD575, ZJ323, LD586, DH1769, XY27, ZJ308, MC670, LD295, DD913, SD628, ZY501
辽单586、宁玉524、YY119、郑单958、中农777、登海1769、郑单1002、MC670、富尔116、陕单628、九玉Y02、泽玉501
LD586, NY524, YY119, ZD958, ZN777, DH1769, ZD1002, MC670, FE116, SD628, JYY02, ZY501
II 辽单586、宁玉524、YY119、M751、郑单958、中农777、登海177、新玉69、富尔116、金珠58、登海1786、郑单1002、丰垦139、农华106、正泰101、KWS01、银玉274、新玉77、新玉47、九玉Y02、锦华150、登海113
LD586, NY524, YY119, M751, ZD958, ZN777, DH177, XY69, FE116, JZ58, DH1786, ZD1002, FK139, NH106, ZT101, KWS01, YY274, XY77, XY47, JYY02, JH150, DH113
中农777、新玉27、登海177、真金308、新玉69、金珠58、登海1786、丰垦139、东单913、农华106、新玉77
ZN77, XY27, DH177, ZJ308, XY69, JZ58, DH1786, FK139, DD913, NH106, XY77
III 登海318、YY137、登海119、豫单9953、北斗309、德丰586、新玉32、联创808、银玉369、京科968、增玉1572、新玉65、联创825、农华213、陕单16、矮单268、先玉335、泽玉8911、农华205、吉单66、吉单558、KWS3376、登海1739、新玉30、增玉1317
DH318, YY137, DH119, YD9953, BD309, DF586, XY32, LC808, YY369, JK968, ZY1572, XY65, LC825, NH213, SD16, AD268, XY335, ZY8911, NH205, JD66, JD558, KWS3376, DH1739, XY30, ZY1317
登海318、YY137、豫单9953、德丰586、联创808、联创825、农华213、KWS9384、先玉335、泽玉8911、吉单558、新玉30、增玉1317
DH318, YY137, YD9953, DF586, LC808, LC825, NH213, KWS9384, XY335, ZY8911, JD558, XY30, ZY1317
IV 登海105、KWS9384、KWS3564、陕单650、银玉439
DH105, KWS9384, KWS3564, SD650, YY439
北斗309、新玉32、登海105、新玉65、陕单16、吉单66、陕单650、KWS3376、登海1739
BD309, XY32, DH105, XY65, SD16, JD66, SD650, KWS3376, DH1739
北方春
玉米区
NM
I 银玉123、富育968、泽玉8911、先玉335、泽玉501、优迪919、A6565、农华103、禾田4号、银玉439、德美亚2号、京科968、德育919、登海739
YY123, FY968, ZY8911, XY335, ZY501, YD919, A6565, NH103, HT4, YY439, DMY2, JK968, DY919, DH739
禾田4号、登海739、德美亚3号、增玉1572、京科968、辽单585、德美亚2号、银玉439、A6565、优迪919、先玉335、富育968、德美亚1号、银玉123
HT4, DH739, DMY3, ZY1572, JK968, LD585, DMY2, YY439, A6565, YD919, XY335, FY968, DMY1, YY123
II 宏硕899、BY1、敦玉323、京农科728、铁研58、吉单96、辽单586、粒收1号、辽单585、增玉1572、农华803、吉单898、利单295
HS899, BY1, DY323, JNK728, TY58, JD96, LD586, LS1, LD585, ZY1572, NH803, JD898, LD295
利单295、泽玉501、辽单586、泽玉8911、京农科728、BY1、丰垦139
LD295, ZY501, LD586, ZY8911, JNK728, BY1, FK139
III 中迪702、宏玉236、M751、迪卡517、东单1331、铁研388、辽单575、吉单66、瑞普909、鑫鑫1号、银玉274、翔玉998、迪卡159、吉农大935、吉单68、东单6531、德美亚1号
ZD702, HY236, M751, DK517, DD1331, TY388, LD575, JD66, RP909, XX1, YY274, XY998, DK159, JND935, JD68, DD6531, DMY1
丹玉311、东单6531、迪卡159、联创825、翔玉998、瑞普909、吉单66、辽单575、铁研388、东单1331、迪卡517、先玉1321、M751、华美1号、农华213、中迪702
DY311, DD6531, DK159, LC825, XY998, RP909, JD66, LD575, TY388, DD1331, DK517, XY1321, M751, HM1, NH213, ZD702
IV 农华213、KX9384、吉单1402、农大239、华美1号、先玉1321、中单107、登海786、东单913、联创825、陕单636、陕单620、丹玉311、郑单958、登海769、丰垦139
NH213, KX9384, JD1402, ND239, HM1, XY1321, ZD107, DH786, DD913, LC825, SD636, SD620, DY311, ZD958, DH769, FK139
登海769、郑单958、陕单620、陕单636、银玉274、东单913、登海786、KX9384、宏玉236
DH769, ZD958, SD620, SD636, YY274, DD913, DH786, KX9384, HY236
黄淮海
夏玉米区
HM
I 陕单636、禾田1号、泽玉501、联创805、农华816、辽单586
SD636, HT1, ZY501, LC805, NH816, LD586
农华5号、利单295、陕单636、郑单958、泽玉501、吉单66、联创805、KWS3564、辽单586、MC670、M751
NH5, LD295, SD636, ZD958, ZY501, JD66, LC805, KWS3564, LD586, MC670, M751
II 东单913、郑单958、中单909、新单58、真金323、吉单66、恒育898、宇玉30、富育5152、北斗309、登海618、户玉3518、MC670、辽单585、M751、丰垦139
DD913, ZD958, ZD909, XD58, ZJ323, JD66, HY898, YY30, FY5152, BD309, DH618, HY3518, MC670, LD585, M751, FK139
东单913、中单909、新单58、禾田1号、真金323、恒育898、农华816、宇玉30、富育5152、北斗309、登海618、户玉3518、辽单585、丰垦139
DD913, ZD909, XD58, TH1, ZJ323, HY898, NH816, YY30, FY5152, BD309, DH618, HY3518, LD585, FK139
III 联创808、迪卡517、华美1号、宁玉721、先玉335、新单65、迪卡653、金通152、锦华318、陕单650、裕丰303、农华101、真金308、中科玉505、丹玉8201、豫单9953、农华5号
LC808, DK517, HM1, NY721, XY335, XD65, DK653, JT152, JH318, SD650, YF303, NH101, ZJ308, ZKY505, DY8201, YD9953, NH5
联创808、迪卡517、华美1号、宁玉721、先玉335、新单65、迪卡653、金通152、锦华318、陕单650、新单68、农华101、真金308、中科玉505、丹玉8201、豫单9953
LC808, DK517, HM1, NY721, XY335, XD65, DK653, JT152, JH318, SD650, XD68, NH101, ZJ308, ZKY505, DY8201, YD9953
IV
辽单575、新单68、京农科728、泽玉8911、利单295
LD575, XD68, JNK728, ZY8911, LD295
辽单575、裕丰303、京农科728、泽玉8911
LD575, YF303, JNK728, ZY8911
[1] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017(2):88-92.
LI L L, XIE R Z, WANG K R, MING B, HOU P, LI S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region. Crops, 2017(2):88-92. (in Chinese)
[2] 黄兆福, 明博, 侯鹏, 王克如, 谢瑞芝, 李少昆. 东北春玉米子粒生理成熟期含水率差异分析. 玉米科学, 2020, 28(6):59-64.
HUANG Z F, MING B, HOU P, WANG K R, XIE R Z, LI S K. Analysis on moisture content difference of spring maize at physiological maturity in Northeast China. Journal of Maize Sciences, 2020, 28(6):59-64. (in Chinese)
[3] KANG M S, ZUBER M S, COLBERT T R, HORROCKS R D. Effect of certain agronomic traits on and relationship between rates of grain moisture reduction and grain fill during filling period in maize. Field Crop Research, 1986, 14(4):339-346.
doi: 10.1016/0378-4290(86)90068-7
[4] MUCHOW R C, SINCLAIR T R, BENNETT J M. Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal, 1990, 82(2):338.
doi: 10.2134/agronj1990.00021962008200020033x
[5] BROOKING I R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crop Research, 1990, 23(1):55-67.
doi: 10.1016/0378-4290(90)90097-U
[6] 李璐璐, 明博, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米子粒脱水特征及与灌浆特性的关系. 中国农业科学, 2018, 51(10):1878-1889.
LI L L, MING B, XIE R Z, HOU P, WANG K R, LI S K. Study on grain dehydration characteristics of maize and its relationship with grain filling. Scientia Agricultural Sinica, 2018, 51(10):1878-1889. (in Chinese)
[7] http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_ DAY_V3.0.html.
[8] 孟庆平, 张玉权, 常淑娟, 李桂杰, 李静, 李柏春, 刘凤才. 玉米最佳收获期的主要相关性状研究初探. 玉米科学, 2007, 15(S1):117-118, 122.
MENG Q P, ZHANG Y Q, CHANG S J, LI G J, LI J, LI B C, LI F C. A preliminary study on the main characters related to the optimum harvest time of maize. Journal of Maize Sciences, 2007, 15(S1):117-118, 122. (in Chinese)
[9] DAYNARD T B. Relationships among black layer formation, grain moisture percentage, and heat unit accumulation in corn. Agronomy Journal, 1972, 64(6):716-719.
doi: 10.2134/agronj1972.00021962006400060003x
[10] 杨国航, 张春原, 孙世贤, 刘春阁, 王卫红, 赵久然. 夏玉米子粒收获期判定方法研究. 作物杂志, 2006(5):11-13.
YANG G H, ZHANG C Y, SUN S X, LIU C G, WANG W H, ZHAO J R. Study on the determination method of summer maize grain harvest time. Crops, 2006(5):11-13. (in Chinese)
[11] KIESSELBACH T A, WALKER E R. Structure of certain specialized tissues in the kernel of corn. American journal of botany, 1952, 39(8):561-569.
doi: 10.1002/ajb2.1952.39.issue-8
[12] DAYNAR T B, DUNCAN W G. The black layer and grain maturity in corn. Crop Science, 1969, 9(4):473-476.
doi: 10.2135/cropsci1969.0011183X000900040026x
[13] 秦营营. 玉米籽粒黑层形成、乳线消失与粒重及生理特性关系的研究[D]. 泰安: 山东农业大学, 2014.
QIN Y Y. Research on the relation between corn grain black layer formation, milk line disappear and the grain weight and physiological characteristics[D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese)
[14] HUANG Z F, XUE J, MING B, WANG K R, XIE R Z, HOU P, LI S K. Analysis of factors affecting the impurity rate of mechanically- harvested maize grain in China. International Journal of Agricultural and Biological Engineering, 2020, 13(5):17-22.
doi: 10.25165/j.ijabe.20201305.6038
[15] WARRINGTON I J, KANEMASU E T. Corn growth response to temperature and photoperiod.II. Leaf initiation and leaf appearance rates. Agronomy Journal, 1983, 75:755-761.
doi: 10.2134/agronj1983.00021962007500050009x
[16] 于维学. 积温对玉米生长发育和产量形成初探. 哈尔滨师范大学自然科学学报. 1990, 6(2):92-95.
YU W X. Preliminary study on the influence of accumulated temperature on growth and yield of the corn. Natural Sciences Journal of Harbin Normal University, 1990, 6(2):92-95. (in Chinese)
[17] 毛振强, 宇振荣, 刘洪. 冬小麦及其叶片发育积温需求研究. 中国农业大学学, 2002, 7(5):14-19.
MAO Z Q, YU Z R, LIU H. Experimental research on thermal requirement forwinter wheat and its leaves. Journal of China Agricultural University, 2002, 7(5):14-19. (in Chinese)
[18] MUCHOW R C. Effect of high temperature on grain growth in field grown maize. Field Crops Research, 1990, 23(2):145-158.
doi: 10.1016/0378-4290(90)90109-O
[19] STEWART D W, DWYER L M, CARRIGAN L L. Phenological temperature response of maize. Agronomy Journal, 1998, 90(1):73-79.
doi: 10.2134/agronj1998.00021962009000010014x
[20] 黄兆福, 明博, 王克如, 谢瑞芝, 杨飞, 王志刚, 肖春华, 李少昆. 辽河流域玉米籽粒脱水特点及适宜收获期分析. 作物学报, 2019, 45(6):922-931.
doi: 10.3724/SP.J.1006.2019.83062
HUANG Z F, MING B, WANG K R, XIE R Z, YANG F, WANG Z G, XIAO C H, LI S K. Characteristics of maize grain dehydration and prediction of suitable harvest period in Liao river basin. Acta Agronomica Sinica, 2019, 45(6):922-931. (in Chinese)
doi: 10.3724/SP.J.1006.2019.83062
[21] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 黄淮海夏玉米品种脱水类型与机械粒收时间的确立. 作物学报, 2018, 44(12):1764-1773.
LI L L, MING B, XIE R Z, WANG K R, HOU P, LI S K. Grain dehydration types and establishment of mechanical grain harvesting time for summer maize in the Yellow-Huai-Hai rivers plain. Acta Agronomica Sinica, 2018, 44(12):1764-1773. (in Chinese)
[22] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关. 中国农业科学, 2017, 50(11):2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 2017, 50(11):2036-2043. (in Chinese)
[23] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50(11):2044-2051.
LI L L, LEI X P, XIE R Z, WANG K R, HOU P, ZHANG F L, LI S K. Analysis of influential factors on mechanical grain harvest quality of summer maize. Scientia Agricultura Sinica, 2017, 50(11):2044-2051. (in Chinese)
[24] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018, 51(10):1890-1898.
ZHANG W X, MING B, WANG K R, LIU C W, HOU P, CHEN J L, ZHANG G Q, YANG J J, CHE S L, XIE R Z, LI S K. Analysis of sowing and harvesting allocation of maize based on cultivar maturity and grain dehydration characteristics, 2018, 51(10):1890-1898. (in Chinese)
[25] 白彩云, 李少昆, 柏军华, 张厚宝, 谢瑞芝. 我国东北地区不同生态条件下玉米品种积温需求及利用特征. 应用生态学报, 2011, 22(9):2337-2342.
BAI C Y, LI S K, BAI J H, ZHANG H B, XIE R Z. Characteristics of accumulated temperature demand and its utilization of maize under different ecological conditions in Northeast China. Chinese Journal of Applied Ecology, 2011, 22(9):2337-2342. (in Chinese)
[26] 李萌, 申双和, 吕厚荃, 韩艳, 褚荣浩, 沙修竹. 气候变化情景下黄淮海区域热量资源及夏玉米温度适宜度. 大气科学学报, 2016, 39(3):391-399.
LI M, SHEN S H, LÜ H Q, HAN Y, CHU R H, SHA X Z. Thermal resources and summer maize temperature suitability in the Huang- Huai-Hai region under future climate change. Transactions of Atmospheric Sciences, 2016, 39(3):391-399. (in Chinese)
[27] 田宏伟. 黄淮海地区玉米生育期农业气候资源分析. 气象与环境科学, 2016, 39(4):56-61.
TIAN H W. Study on agricultural climate resources in Huang-Huai- Hai area during summer maize growing eason. Meteorological and Environmental Sciences, 2016, 39(4):56-61. (in Chinese)
[28] 李少昆, 王崇桃. 玉米高产潜力与途径. 北京: 科学出版社, 2010: 213-244.
LI S K, WANG C T. Potential and Ways to Hight Yield in Maize. Beijing: Science Press, 2010: 213-244. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[13] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[14] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!