Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1749-1762.doi: 10.3864/j.issn.0578-1752.2022.09.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping

LI YiLing1(),PENG XiHong1,CHEN Ping1,DU Qing1,REN JunBo1,YANG XueLi1,LEI Lu2,YONG TaiWen1,*(),YANG WenYu1   

  1. 1College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
    2Renshou Meteorological Bureau, Meishan 620500, Sichuan
  • Received:2021-07-26 Revised:2021-09-06 Online:2022-05-01 Published:2022-05-19
  • Contact: TaiWen YONG E-mail:liyiling0904@qq.com;yongtaiwen@sicau.edu.cn

Abstract:

【Objective】The aim of this study was to explore the characteristics of leaf green retention, photosynthesis and system yield of maize and soybean under different planting modes and nitrogen (N) application levels.【Method】The effects of planting methods (maize monoculture (MM), soybean monoculture (SS), maize intercropping (IM), soybean intercropping (IS)) and N application levels (0 N application (NN), reduced N application (RN: 180 kg N·hm-2) and constant N application (CN: 240 kg N·hm-2)) on leaf stay-green, photosynthetic characteristics, dry matter accumulation and system yield of maize and soybean leaves were studied by field positioning experiment.【Result】The maize yield increased with the increase of N application, and the soybean yield increased first and then decreased with the increase of N application; Under RN, the seed dry matter accumulation of IM was the largest, the total yield of maize-soybean intercropping system was the highest, and the system productivity index (SPI) was the largest too. Under intercropping, the leaf green period of each crop was longer, the photosynthetic characteristics were more stable than that of monoculture, and better than that of monoculture at seed formation stage; Under all N application levels, the percentage of green leaves under intercropping treatment was significantly higher than that under monoculture. The maximum green leaf attenuation rate of IM appeared 7 d, 5 d and 1d later than that of MM, respectively, while IS was 7 d, 0 d and 11 d later than SS, respectively. Compared with monoculture, the intercropping could significantly reduce the average attenuation rate of maize leaves, prolong the days of maximum attenuation rate and reduce the attenuation degree of green leaves. The photosynthetic rate of each crop was higher under intercropping than monoculture, and the reduced N application was higher than the constant N application. At R2 stage, the photochemical quenching coefficient (QP) under IM was 12.78% higher than that under MM, and the non-photochemical quenching coefficient (NPQ) was 21.30% lower; NPQ decreased with the increase of N application level, while the ratio of RN to NN decreased by 17.11%. The fluctuation range of SPAD value of intercropping was weaker than that of monoculture, and showed a stable upward trend. In maize R2 stage, IM was 34.52% higher than MM; In soybean R2 and R6 stage, IS was 10.39% and 29.48% higher than SS, respectively, and the SPAD value of RN was the highest. At R2 stage, IMRN was 17.46% higher than IMNN, and MMRN was 35.02% higher than MMNN; in soybean R6 stage, ISRN was 7.71% and 6.67% higher than that of ISNN and ISCN, and SSRN was 10.03% higher than that of SSCN.【Conclusion】Under reduced N application condition, the maize-soybean intercropping significantly prolonged the green holding period of leaves; After flowering, the photosynthetic rate of leaves, the function of PS Ⅱ photosynthetic mechanism and chlorophyll remained at a high level were more stable than that of monoculture, and the accumulation of seed dry matter was enhanced, which gave full play to the production potential of maize and increased the yield of soybean, so that the total yield of intercropping system was significantly increased.

Key words: maize-soybean relay strip intercropping system, reducing N application, system yield, dry matter accumulation, leaf stay-green, photosynthesis

Fig. 1

Daily rainfall and average daily air temperature of the test site from 2019 to 2020"

Fig. 2

Dynamic changes of green leaf stay-green IM: Intercropping maize; MM: Monoculture maize; IS: Intercropping soybean; SS: Monoculture soybean. NN:0 N application; RN: Reduced N application; CN: Conventional N application. The same as below"

Table 1

Differences of attenuation degree of green leaves under different treatments"

作物
Crop
模式
Cropping
pattern
施氮量
Nitrogen
application
最大衰减速率
Maximum aging rate (cm2·d-1)
平均衰减速率
Average aging rate
(cm2·d-1)
最大衰减速率出现天数
Time of maximum
aging rate (d)
绿叶衰减程度Attenuation degree
(%)
玉米
Maize
IM NN 0.045a** 0.019a** 35a ** 0.779a **
RN 0.044a* 0.012b** 41a ** 0.485b **
CN 0.041b** 0.011b* 41a ns 0.476b *
MM NN 0.040a 0.021a 28b 0.866a
RN 0.041a 0.017a 36b 0.729a
CN 0.030b 0.013b 40a 0.534a
种植模式 Plant pattern (A) 148.253** 176.473** 20.386** 72.130**
施氮水平 N application (B) 42.631** 87.049** 4.103* 16.523**
A×B 26.745** 36.575** 3.667** 24.746**
大豆
Soybean
IS NN 0.064a* 0.015a ns 84a * 0.617a ns
RN 0.050b ns 0.011b ns 86a ns 0.477b ns
CN 0.043c * 0.013a ns 88a * 0.549b ns
SS NN 0.047b 0.017a 77b 0.723a
RN 0.058a 0.013a 86a 0.537b
CN 0.034c 0.015a 73b 0.654a
种植模式 Plant pattern (A) 0.756ns 1.072ns 19.348** 16.134**
施氮水平 N application (B) 38.038** 5.037* 5.838** 7.481**
A×B 5.173* 0.967ns 4.572* 0.637ns

Fig. 3

Changes of photosynthetic rate of leaves in different periods VT: Tasseling stage (maize); V5: Five leaf stage (soybean); R2: Filling stage (maize) / flowering stage (soybean); R6: Seed filling stage (soybean). *, ** and ns indicate significant difference (P<0.05), highly significant difference (P<0.01) and no significant difference (P>0.05), respectively. The small letters indicate that the significant level of the difference between different planting pattern under the same N application level in the same period. The same as below"

Table 2

Fluorescence parameters of maize and soybean in different periods"

作物
Crop
时期
Period
模式
Cropping pattern
施氮量
Nitrogen application
最大光化学量子效率
Fv/Fm
实际光化学量子效率
Fv’/Fm’
光化学淬灭系数
Qp
非光化学淬灭系数
NPQ
玉米
Maize
VT IM NN 0.81a ns 0.12a ns 0.40a ns 0.39a ns
RN 0.81a ns 0.11a ns 0.42a ns 0.28b ns
CN 0.83a ns 0.13a ns 0.44a ns 0.28b ns
MM NN 0.81a 0.11a 0.52a 0.34a
RN 0.81a 0.11a 0.53a 0.31a
CN 0.82a 0.12a 0.54a 0.31a
种植模式 Plant pattern (A) 0.35ns 1.03ns 5.69** 0.75ns
施氮水平 N application (B) 1.74ns 2.98ns 1.08ns 3.37*
A×B 0.89ns 1.54ns 0.36ns 0.41ns
R2 IM NN 0.80a ns 0.13a ns 0.51a ns 0.42a **
RN 0.79a ns 0.15a ns 0.53a ns 0.34b **
CN 0.79a ns 0.14a ns 0.54a ns 0.34b **
MM NN 0.79a 0.12a 0.46b 0.47a
RN 0.80a 0.13a 0.47b 0.42b
CN 0.80a 0.12a 0.50a 0.42b
种植模式 Plant pattern (A) 0.35ns 0.44ns 4.89* 74.28**
施氮水平 N application (B) 1.12ns 0.79ns 3.35* 86.51**
A×B 0.84ns 0.58ns 1.28ns 23.05**
大豆
Soybean
V5 IS NN 0.76a ns 0.17b ns 0.36b ns 2.74a ns
RN 0.76a ns 0.22a * 0.38a ns 2.41b ns
CN 0.77a ns 0.21a * 0.38a ns 2.48b ns
SS NN 0.82a 0.18a 0.39b 2.10a
RN 0.81a 0.17a 0.41a 2.11a
CN 0.81a 0.15a 0.40a 2.15a
种植模式 Plant pattern (A) 6.98* 9.77* 7.42** 9.59**
施氮水平 N application (B) 1.06ns 4.69* 3.27* 3.12*
A×B 0.42ns 3.34* 0.15ns 0.99ns
R2 IS NN 0.78b ns 0.20b ns 0.34b ns 2.64a **
RN 0.81a ns 0.25a ns 0.37a ns 2.21b *
CN 0.81a ns 0.24a ns 0.35a ns 2.18c **
SS NN 0.80a 0.19a 0.33a 2.23b
RN 0.83a 0.19a 0.34a 2.31a
CN 0.82a 0.18a 0.34a 2.35a
种植模式 Plant pattern (A) 0.28ns 14.73** 0.93ns 7.89**
施氮水平 N application (B) 4.32* 3.57* 4.38* 4.45*
A×B 1.32ns 0.43ns 0.71ns 6.70**
R6 IS NN 0.78b ns 0.19b ns 0.32a ns 2.32a *
RN 0.80a ns 0.24a * 0.35a ns 2.15b ns
CN 0.81a ns 0.22a * 0.34a ns 2.12b *
SS NN 0.80a 0.18a 0.28a 2.04a
RN 0.82a 0.20a 0.30a 1.99a
CN 0.81a 0.15b 0.29a 1.75b
种植模式 Plant pattern (A) 0.65ns 3.73* 0.35ns 3.76*
施氮水平 N application (B) 3.57* 6.47** 0.21ns 9.76**
A×B 1.34ns 3.26* 0.37ns 3.82*

Fig. 4

SPAD values of maize and soybean in different periods"

Fig. 5

Dry matter accumulation per plant in different parts of maize and soybean"

Table 3

Maize and soybean yield, SPI and its contribution rate"

作物
Crop
模式
Cropping
pattern
施氮量
Nitrogen
application
产量
Yield (kg·hm-2)
系统生产力指数
System productivity index
产量贡献率
Contribution rate (%)
2019 2020 2019 2020 2019 2020
玉米
Maize
IM NN 3018.54b ns 3788.33b ns 5193.54c 8714.21b 63.19 71.07
RN 5835.61a ** 4904.19a ** 13428.42a 11967.36a 75.57 74.93
CN 5993.85a ns 4808.88a ** 12075.98b 12315.49a 79.97 75.46
MM NN 2509.88b 3919.39b 100 100
RN 6908.57a 6373.94a 100 100
CN 6566.59a 6465.38a 100 100
种植模式 Plant pattern (A) 5.69* 31.54**
施氮水平 N application (B) 223.58** 37.85** 128.19** 36.67**
A×B 8.63* 6.17*
大豆
Soybean
IS NN 1758.64a ns 1542.06a ns 5193.54c 8714.21b 36.81 28.93
RN 1886.33a ns 1641.03a ns 13428.42a 11967.36a 24.43 25.07
CN 1500.64b ns 1563.72a ns 12075.98b 12315.49a 20.03 24.54
SS NN 1868.60a 1368.34a 100 100
RN 1911.30a 1458.22a 100 100
CN 1578.86b 1314.32a 100 100
种植模式 Plant pattern (A) 7.29* 16.05**
施氮水平 N application (B) 67.79** 1.87ns 128.19** 36.67**
A×B 0.89ns 0.224ns
[1] 王永军, 杨今胜, 袁翠平, 柳京国, 李登海, 董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性. 作物学报, 2013, 39(12): 2183-2191.
doi: 10.3724/SP.J.1006.2013.02183
WANG Y J, YANG J S, YUAN C P, LIU J G, Li D H, DONG S T. Characteristics of senescence and antioxidant enzyme activities in leaves at different plant parts of summer maize with the super-high yielding potential after anthesis. Acta Agronomica Sinica, 2013, 39(12): 2183-2191. (in Chinese)
doi: 10.3724/SP.J.1006.2013.02183
[2] 王甜, 庞婷, 杜青, 陈平, 张晓娜, 周颖, 汪锦, 杨文钰, 雍太文. 田间配置对间作大豆光合特性、干物质积累及产量的影响. 华北农学报, 2020, 35(2): 107-116.
WANG T, PANG T, DU Q, CHEN P, ZHANG X N, ZHOU Y, WANG J, YANG W Y, YONG T W. Effects of different field collocation patterns on photosynthetic characteristics and dry matter accumulation and yield in intercropping soybean. Acta Agriculturae Boreali-Sinica, 2020, 35(2): 107-116. (in Chinese)
[3] YANG L, GUO S, CHEN F J, YUAN L X, MI G H. Effects of pollination- prevention on leaf senescence and post-silking nitrogen accumulation and remobilization in maize hybrids released in the past four decades in China. Field Crops Research, 2017, 203: 106-113.
doi: 10.1016/j.fcr.2016.12.022
[4] ROBINSON W D, CARSON I, YING S, ELLIS K, PLAXTON W C. Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. New Phytologist, 2012, 196(4): 1024-1029.
doi: 10.1111/nph.12006
[5] WOO H R, KIM H J, LIM P O, NAM H G. Leaf senescence: Systems and dynamics aspects. Annual Review of Plant Biology, 2019: 7 0: 347-376.
[6] SUN C H, FAN S H, WANG X, LU J, ZHANG Z F, WU D M, SHAN Q, ZHENG Y L. Purple sweet potato color inhibits endothelial premature senescence by blocking the NLRP3 inflammasome. The Journal of Nutritional Biochemistry, 2015, 26(10): 1029-1040.
doi: 10.1016/j.jnutbio.2015.04.012
[7] 李荣发, 刘鹏, 杨清龙, 任昊, 董树亭, 张吉旺, 赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响. 作物学报, 2018, 44(7): 1032-1042.
doi: 10.3724/SP.J.1006.2018.01032
LI R F, LIU P, YANG Q L, REN H, DONG S T, ZHANG J W, ZHAO B. Effects of lower leaf senescence on carbon and nitrogen distribution and yield formation in maize (Zea mays L.) with high planting density. Acta Agronomica Sinica, 2018, 44(7): 1032-1042.. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01032
[8] 刘小明, 雍太文, 苏本营, 刘文钰, 周丽, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作系统中作物产量的影响. 作物学报, 2014, 40(9): 1629-1638.
doi: 10.3724/SP.J.1006.2014.01629
LIU X M, YONG T W, SU B Y, LIU W Y, ZHOU L, SONG C, YANG F, WANG X C, YANG W Y. Effect of reduced N application on crop yield in maize-soybean intercropping system. Acta Agronomica Sinica, 2014, 40(9): 1629-1638. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01629
[9] 邹晓锦, 张鑫, 安景文. 氮肥减量后移对玉米产量和氮素吸收利用及农田氮素平衡的影响. 中国土壤与肥料, 2011(6): 25-29.
ZOU X J, ZHANG X, AN J W. Effect of reducing and postponing of N application on yield, plant N uptake, utilization and N balance in maize. Soil and Fertilizer Sciences in China, 2011(6): 25-29. (in Chinese)
[10] 黄亚萍. 化肥减量对玉米间作大豆模式光和特性和产量的影响[D]. 杨凌: 西北农林科技大学, 2015.
HUANG Y P. Studies on light characteristic and yield of maize and soybean intercropping mode under reduction of fertilizer. Yangling: Northwest A&F University, 2015. (in Chinese)
[11] FENG L Y, RAZA M A, SHI J Y, ANSAR M, TITRIKU J K, MERAJ T A, SHAH G A, AHMED Z, SALEEM A, LIU W G, WANG X C, YONG T W, YUAN S, FENG Y, YANG W Y. Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system. European Journal of Agronomy, 2020, 118: 126092.
doi: 10.1016/j.eja.2020.126092
[12] 战秀梅, 李亭亭, 韩晓日, 邹殿博, 左仁辉, 叶冰. 不同施肥方式对春玉米产量、效益及氮素吸收和利用的影响. 植物营养与肥料学报, 2011, 17(4): 861-868.
ZHAN X M, LI T T, HAN X R, ZOU D B, ZUO R H, YE B. Effects of nitrogen fertilization methods on yield, profit and nitrogen absorption and utilization of spring maize. Plant Nutrition and Fertilizer Science, 2011, 17(4): 861-868. (in Chinese)
[13] 李欣欣, 许锐能, 廖红. 大豆共生固氮在农业减肥增效中的贡献及应用潜力. 大豆科学, 2016, 35(4): 531-535.
LI X X, XU R N, LIAO H. Contributions of symbiotic nitrogen fixation in soybean to reducing fertilization while increasing efficiency in agriculture. Soybean Science, 2016, 35(4): 531-535. (in Chinese)
[14] 刘小明. 减量施氮下玉米-大豆套作系统的氮素高效利用机理研究[D]. 成都: 四川农业大学, 2015.
LIU X M. N utilization mechanism in reduced N and maize-soybean relay strip intercropping system[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese)
[15] 雍太文, 刘小明, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响. 应用生态学报, 2014, 25(2): 474-482.
YONG T W, LIU X M, LIU W Y, SU B Y, SONG C, YANG F, WANG X C, YANG W Y. Effects of reduced N application rate on yield and nutrient uptake and utilization in maize soybean relay strip intercropping system. Chinese Journal of Applied Ecology, 2014, 25(2): 474-482. (in Chinese)
[16] 董茜. 减量施氮对玉米-大豆带状套作系统干物质积累、转移及氮肥吸收利用特性的影响[D]. 成都: 四川农业大学, 2014.
DONG Q. Effect of reduced N application on dry matter accumulation and translocation and N utilization efficiency in maize-soybean relay strip intercropping system[D]. Chengdu: Sichuan Agricultural University, 2014. (in Chinese)
[17] 吕国锋, 范金平, 张伯桥, 高德荣, 王慧, 刘业宇, 吴素兰, 程凯, 王秀娥. 小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析. 作物学报, 2019, 45(1): 144-152.
doi: 10.3724/SP.J.1006.2019.81014
LYU G F, FAN J P, ZHANG B Q, GAO D R, WANG H, LIU Y Y, WU S L, CHENG K, WANG X E. Comparison of different mathematical models describing flag leaf senescence process of wheat and characteristics of leaf senescence process. Acta Agronomica Sinica, 2019, 45(1): 144-152.. (in Chinese)
doi: 10.3724/SP.J.1006.2019.81014
[18] OXBOROUGH K. Imaging of chlorophyll a fluorescence: Theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. Journal of Experimental Botany, 2004, 55(400): 1195-1205.
doi: 10.1093/jxb/erh145
[19] CHEN P, DU Q, LIU X M, ZHOU L, HUSSAIN S, LEI L, SONG C, WANG X G, LIU W C, YANG F, SHU K, LIU J, DU J B, YANG W Y, YONG T W. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE, 2017, 12(9): e0184503.
doi: 10.1371/journal.pone.0184503
[20] ODO P E. Evaluation of short and tall Sorghum varieties in mixtures with cowpea in the Sudan savanna of Nigeria: Land equivalent ratio, grain yield and system productivity index. Experimental Agriculture, 1991, 27(4): 435-441.
doi: 10.1017/S0014479700019426
[21] 陈元凯, 冯铃洋, RAZA M A, 范元芳, 谌俊旭, 雍太文, 杨文钰, 杨峰. 四川地区玉米/大豆带状套作对大豆形态、叶绿素荧光特征及系统产量的影响. 中国生态农业学报(中英文), 2019, 27(6): 870-879.
CHEN Y K, FENG L Y, RAZA M A, FAN Y F, CHEN J X, YONG T W, YANG W Y, YANG F. Effect of maize/soybean relay strip intercropping system on soybean morphology, chlorophyll fluorescence, and yield in Sichuan area. Chinese Journal of Eco-Agriculture, 2019, 27(6): 870-879.. (in Chinese)
[22] 杨兰. 源库调控对玉米叶片衰老和氮素转移的影响及其生理机制[D]. 北京: 中国农业大学, 2016.
YANG L. Physiological mechanism of leaf senescence and nitrogen remobilization in maize (Zea mays L.) as affected by source and sink manipulation[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[23] 刘朝茂, 李成云. 玉米与大豆、马铃薯间作对玉米叶片衰老、产量及病害控制的影响. 江苏农业科学, 2017, 45(6): 75-78.
LIU C M, LI C Y. Effects of maize intercropping with soybean and potato on leaf senescence, yield and disease control of maize. Jiangsu Agricultural Sciences, 2017, 45(6): 75-78. (in Chinese)
[24] 刘朝茂, 李成云. 玉米与大豆间作对玉米叶片衰老的影响. 江苏农业学报, 2017, 33(2): 322-326.
LIU C M, LI C Y. Effects of maize/soybean intercropping on maize leaf senescence. Jiangsu Journal of Agricultural Sciences, 2017, 33(2): 322-326. (in Chinese)
[25] FENG L Y, RAZA M A, CHEN Y K, KHALID M H B, MERAJ T A, AHSAN F, FAN Y F, DU J B, WU X L, SONG C, LIU C Y, BAWA G, ZHANG Z W, YUAN S, YANG F, YANG W Y. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS ONE, 2019, 14(2): e0212885.
doi: 10.1371/journal.pone.0212885
[26] 陈国鹏, 王小春, 蒲甜, 曾红, 陈诚, 彭霄, 丁国辉, 王锐, 杨文钰. 玉米-大豆带状套作中田间小气候与群体产量的关系. 浙江农业学报, 2016, 28(11): 1812-1821.
CHEN G P, WANG X C, PU T, ZENG H, CHEN C, PENG X, DING G H, WANG R, YANG W Y. Relationship of field microclimate and population yield in maize-soybean relay strip intercropping system. Acta Agriculturae Zhejiangensis, 2016, 28(11): 1812-1821. (in Chinese)
[27] 任永福, 陈国鹏, 蒲甜, 陈诚, 曾瑾汐, 彭霄, 马艳玮, 杨文钰, 王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应. 作物学报, 2019, 45(5): 728-739.
doi: 10.3724/SP.J.1006.2019.83040
REN Y F, CHEN G P, PU T, CHEN C, ZENG J X, PENG X, MA Y W, YANG W Y, WANG X C. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system. Acta Agronomica Sinica, 2019, 45(5): 728-739. (in Chinese)
doi: 10.3724/SP.J.1006.2019.83040
[28] 于晓波, 梁建秋, 何泽民, 廖俊华, 张明荣, 吴海英, 明充, 唐琼英, 李小清. 玉米-大豆带状套作对大豆叶片形态及光合特性的影响. 中国油料作物学报, 2016, 38(4): 452-459.
YU X B, LIANG J Q, HE Z M, LIAO J H, ZHANG M R, WU H Y, MING C, TANG Q Y, LI X Q. Response of leaf morphology and photosynthetic characteristics of soybean in maize-soybean relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2016, 38(4): 452-459. (in Chinese)
[29] GAO Y, DUAN A W, QIU X Q, SUN J S, ZHANG J P, LIU H, WANG H Z. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 2010, 102(4): 1149-1157.
doi: 10.2134/agronj2009.0409
[30] LIU H M, GAO Y, GAO C Q, LIU S W, ZHANG J, CHEN G Q, ZHANG S J, WU F Z. Study of the physiological mechanism of delaying cucumber senescence by wheat intercropping pattern. Journal of Plant Physiology, 2019, 234/235: 154-166.
doi: 10.1016/j.jplph.2019.02.003
[31] 雍太文, 陈平, 刘小明, 周丽, 宋春, 王小春, 杨峰, 刘卫国, 杨文钰. 减量施氮对玉米-大豆套作系统土壤氮素氨化、硝化及固氮作用的影响. 作物学报, 2018, 44(10): 1485-1495.
doi: 10.3724/SP.J.1006.2018.01485
YONG T W, CHEN P, LIU X M, ZHOU L, SONG C, WANG X C, YANG F, LIU W G, YANG W Y. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems. Acta Agronomica Sinica, 2018, 44(10): 1485-1495. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01485
[32] 周丽, 付智丹, 杜青, 陈平, 杨文钰, 雍太文. 减量施氮对玉米/大豆套作系统中作物氮素吸收及土壤氨氧化与反硝化细菌多样性的影响. 中国农业科学, 2017, 50(6): 1076-1087.
ZHOU L, FU Z D, DU Q, CHEN P, YANG W Y, YONG T W. Effects of reduced N fertilization on crop N uptake, soil ammonia oxidation and denitrification bacteria diversity in maize/soybean relay strip intercropping system. Scientia Agricultura Sinica, 2017, 50(6): 1076-1087. (in Chinese)
[33] 叶君, 高聚林, 王志刚, 于晓芳, 孙继颖, 李丽君, 高英波, 王海燕, 贾宁, 高鑫, 崔超. 施氮量对超高产春玉米花粒期叶片光合特性及产量的影响. 玉米科学, 2011, 19(6): 74-77.
YE J, GAO J L, WANG Z G, YU X F, SUN J Y, LI L J, GAO Y B, WANG H Y, JIA N, GAO X, CUI C. Effects of nitrogen on leaf photosynthesis and grain yield of super high-yield spring maize during the flowering and milking stages. Journal of Maize Sciences, 2011, 19(6): 74-77. (in Chinese)
[34] NEUGSCHWANDTNER R W, KAUL H-P. Nitrogen uptake, use and utilization efficiency by oat-pea intercrops. Field Crops Research, 2015, 179: 113-119.
doi: 10.1016/j.fcr.2015.04.018
[35] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47(8): 1489-1501.
CUI L, SU B Y, YANG F, YANG W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Scientia Agricultura Sinica, 2014, 47(8): 1489-1501. (in Chinese)
[36] 杨峰, 崔亮, 黄山, 刘卫国, 雍太文, 杨文钰. 不同株型玉米套作大豆生长环境动态及群体产量研究. 大豆科学, 2015, 34(3): 402-407.
YANG F, CUI L, HUANG S, LIU W G, YONG T W, YANG W Y. Soybean growth environment and group yield in soybean relay intercropped with different leaf type maize. Soybean Science, 2015, 34(3): 402-407. (in Chinese)
[37] 谢甫绨, 马兆惠, 张惠君, 敖雪, 王海英. 氮肥对不同品质基因型大豆光合生理和干物质积累的影响. 大豆科学, 2010, 29(2): 223-227.
XIE F T, MA Z H, ZHANG H J, AO X, WANG H Y. Effect of nitrogen fertilizer on photosynthetic physiology and dry matter accumulation of soybean with quality genotypes. Soybean Science, 2010, 29(2): 223-227. (in Chinese)
[38] 房彦飞, 徐文修, 符小文, 张永杰, 杜孝敬, 张娜, 安崇霄. 冬小麦施氮对复播大豆土壤微生物区系及产量的影响. 核农学报, 2020, 34(8): 1826-1833.
FANG Y F, XU W X, FU X W, ZHANG Y J, DU X J, ZHANG N, AN C X. Effect of nitrogen applied in winter wheat on soil microflora and yield of summer-sowing soybean. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1826-1833. (in Chinese)
[39] SINCLAIR T R, BENNETT J M, MUCHOW R C. Relative sensitivity of grain yield and biomass accumulation to drought in field-grown maize. Crop Science, 1990, 30(3): 690-693.
doi: 10.2135/cropsci1990.0011183X003000030043x
[40] 杨峰, 黄山, 崔亮, 王小春, 雍太文, 刘卫国, 杨文钰. 玉米/大豆套作下作物叶片氮、磷动态特征及其相关性分析. 植物营养与肥料学报, 2013, 19(4): 781-789.
YANG F, HUANG S, CUI L, WANG X C, YONG T W, LIU W G, YANG W Y. Dynamic changes and correlations of P and N concentrations in crop leaves under relay intercropping system of maize and soybean. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 781-789. (in Chinese)
[41] 雍太文, 董茜, 刘小明, 刘文钰, 宋春, 杨峰, 王小春, 杨文钰. 施肥方式对玉米-大豆套作体系氮素吸收利用效率的影响. 中国油料作物学报, 2014, 36(1): 84-91.
YONG T W, DONG Q, LIU X M, LIU W Y, SONG C, YANG F, WANG X C, YANG W Y. Effect of N application methods on N uptake and utilization efficiency in maize-soybean relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2014, 36(1): 84-91. (in Chinese)
[42] HAUGGAARD-NIELSEN H, AMBUS P, JENSEN E S. Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Research, 2001, 70(2): 101-109.
doi: 10.1016/S0378-4290(01)00126-5
[43] LI L, SUN J H, ZHANG F S, LI X L, YANG S C, RENGEL Z. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 2001, 71(2): 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[44] WILLEY R W, OSIRU D S O. Studies on mixtures of maize and beans (Phaseolus vulgaris) with particular reference to plant population. The Journal of Agricultural Science, 1972, 79(3): 517-529.
doi: 10.1017/S0021859600025909
[45] YANG W T, LI Z X, WANG J W, WU P, ZHANG Y. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crops Research, 2013, 146: 44-50.
doi: 10.1016/j.fcr.2013.03.008
[1] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[2] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[3] CHU YanMeng, MAO YingChao, CAI Jian, ZHOU Qin, DAI TingBo, WANG Xiao, JIANG Dong. Effect of Phytochlorin Iron on Stress Tolerance to Waterlogging in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(10): 1848-1858.
[4] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[5] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[6] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[7] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[8] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[9] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[10] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[11] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[12] WANG XuMin,LUO WenHe,LIU PengZhao,ZHANG Qi,WANG Rui,LI Jun. Regulation Effects of Water Saving and Nitrogen Reduction on Dry Matter and Nitrogen Accumulation, Transportation and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(15): 3183-3197.
[13] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[14] TONG Jin,SUN Min,REN AiXia,LIN Wen,YU ShaoBo,WANG Qiang,FENG Yu,REN Jie,GAO ZhiQiang. Relationship Between Plant Dry Matter Accumulation, Translocation, Soil Water Consumption and Yield of High-Yielding Wheat Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(17): 3467-3478.
[15] GAO Song,LIU XueNa,LIU Ying,CAO BiLi,CHEN ZiJing,XU Kun. Response Characteristics of Green Onion (Allium fistulosum L.) to LED Light Quality Under Artificial Climate Chamber [J]. Scientia Agricultura Sinica, 2020, 53(14): 2919-2928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!