Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1695-1709.doi: 10.3864/j.issn.0578-1752.2022.09.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI ZhouShuai(),DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua*(),XUE JiQuan*()
[1] | 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. |
LI S K, ZHANG J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. (in Chinese) | |
[2] | 李鹏, 白永新, 张润生, 魏振飞, 张建华. 浅议我国玉米育种发展现状与方向. 种子科技, 2019, 37(2): 18-19. |
LI P, BAI Y X, ZHANG R S, WEI Z F, ZHANG J H. Discussion on the development status and direction of maize breeding in China. Seed Science and Technology, 2019, 37(2): 18-19. (in Chinese) | |
[3] |
BIRCHLER J A, AUGER D L, RIDDLE N C. In search of the molecular basis of heterosis. The Plant Cell, 2003, 15(10): 2236-2239.
doi: 10.1105/tpc.151030 |
[4] | BIRCHLER J A, YAO H, CHUDALAYANDI S. Unraveling the genetic basis of hybrid vigor. Proceedings of the National Academy of Sciences of the USA, 2006, 103(35): 12957. |
[5] |
BIRCHLER J A, YAO H, CHUDALAYANDI S, VAIMAN D, VEITIA R A. Heterosis. The Plant Cell, 2010, 22(7): 2105-2112.
doi: 10.1105/tpc.110.076133 |
[6] | 堵纯信, 曹春景, 曹青, 毕蒙蒙, 董战鲲, 张发林. 玉米杂交种郑单958的选育与应用. 玉米科学, 2006(6): 43-45+49. |
DU C X, CAO C J, CAO Q, BI M M, DONG Z K, ZHANG F L. The breeding and application of maize hybrid Zhengdan 958. Journal of Maize Sciences, 2006(6): 43-45+49. (in Chinese) | |
[7] | 钏兴宽. 配合力理论及其在水稻育种中的应用. 种子, 2014, 33(6): 39-41+46. |
CHUAN X K. Combining ability theory and its application in rice breeding. Seed, 2014, 33(6): 39-41+46. (in Chinese) | |
[8] |
SPRAGUE G, TATUM L. General vs. specific combining ability in single crosses of corn. Agronomy Journal, 1942, 34: 923-932.
doi: 10.2134/agronj1942.00021962003400100008x |
[9] | 李明顺, 张世煌, 李新海, 潘光堂, 白丽, 彭泽斌. 根据产量特殊配合力分析玉米自交系杂种优势群. 中国农业科学, 2002, 35(6): 600-605. |
LI M S, ZHANG S H, LI X H, PAN G T, BAI L, PENG Z B. Study on heterotic groups among maize inbred lines based on SCA. Scientia Agricultura Sinica, 2002, 35(6): 600-605. (in Chinese) | |
[10] | 杨爱国, 张世煌, 李明顺, 荣廷昭, 潘光堂. CIMMYT和我国玉米种质群体的配合力及杂种优势分析. 作物学报, 2006, 32(9): 1329-1337. |
YANG A G, ZHANG S H, LI M S, RONG T Z, PAN G T. Combining ability and heterosis of 14 CIMMYT and 13 domestic maize populations in an NCⅡ mating design. Acta Agronomica Sinica, 2006, 32(9): 1329-1337. (in Chinese) | |
[11] |
GRIFFING B. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 1955, 9: 463-493.
doi: 10.1071/BI9560463 |
[12] |
LÜ A Z, ZHANG H, ZHANG Z X, TAO Y S, YUE B, ZHENG Y L. Conversion of the statistical combining ability into a genetic concept. Journal of Integrative Agriculture, 2012, 11(1): 43-52.
doi: 10.1016/S1671-2927(12)60781-0 |
[13] |
QI H, HUANG J, ZHENG Q, HUANG Y, SHAO R, ZHU L, ZHANG Z, QIU F, ZHOU G, ZHENG Y, YUE B. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theoretical and Applied Genetics, 2013, 126(2): 369-377.
doi: 10.1007/s00122-012-1985-5 |
[14] |
WANG H, XU C, LIU X, GUO Z, XU X, WANG S, XIE C, LI W X, ZOU C, XU Y. Development of a multiple-hybrid population for genome-wide association studies: Theoretical consideration and genetic mapping of flowering traits in maize. Scientific Reports, 2017, 7(1): 40239.
doi: 10.1038/srep40239 |
[15] |
ZHOU Z, ZHANG C, LU X, WANG L, HAO Z, LI M, ZHANG D, YONG H, ZHU H, WENG J, LI X. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Frontiers in Plant Science, 2018, 9: 1117.
doi: 10.3389/fpls.2018.01117 |
[16] |
CHEN J, ZHOU H, XIE W, XIA D, GAO G, ZHANG Q, WANG G, LIAN X, XIAO J, HE Y Q. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology Journal, 2019, 17(11): 2211-2222.
doi: 10.1111/pbi.13134 |
[17] |
XIAO Y, JIANG S, CHENG Q, WANG X, YAN J, ZHANG R, QIAO F, MA C, LUO J, LI W, LIU H, YANG W, SONG W, MENG Y, WARBURTON M, ZHAO J, WANG X, YAN J. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1): 148.
doi: 10.1186/s13059-021-02370-7 |
[18] |
HUANG X, YANG S, GONG J, ZHAO Q, FENG Q, ZHAN Q, ZHAO Y, LI W, CHENG B, XIA J, CHEN N, HUANG T, ZHANG L, FAN D, CHEN J, ZHOU C, LU Y, WENG Q, HAN B. Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537(7622): 629-633.
doi: 10.1038/nature19760 |
[19] |
WANG H, QIN F. Genome-wide association study reveals natural variations contributing to drought resistance in crops. Frontiers in Plant Science, 2017, 8: 1110.
doi: 10.3389/fpls.2017.01110 |
[20] |
LI H, PENG Z, YANG X, WANG W, FU J, WANG J, HAN Y, CHAI Y, GUO T, YANG N, LIU J, WARBURTON M L, CHENG Y, HAO X, ZHANG P, ZHAO J, LIU Y, WANG G, LI J, YAN J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
doi: 10.1038/ng.2484 |
[21] |
LI X, WANG M, ZHANG R, FANG H, FU X, YANG X, LI J. Genetic architecture of embryo size and related traits in maize. The Crop Journal, 2022, 10(1): 204-215.
doi: 10.1016/j.cj.2021.03.007 |
[22] |
CHEN Q, HAN Y, LIU H, WANG X, SUN J, ZHAO B, LI W, TIAN J, LIANG Y, YAN J, YANG X, TIAN F. Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. The Plant Cell, 2018, 30(7): 1404-1423.
doi: 10.1105/tpc.18.00109 |
[23] |
LIU N, DU Y, WARBURTON M, XIAO Y, YAN J. Phenotypic plasticity contributes to maize adaptation and heterosis. Molecular Biology and Evolution, 2020, 38(4): 1262-1275.
doi: 10.1093/molbev/msaa283 |
[24] |
MENG L, LI H, ZHANG L, WANG J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[25] |
KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Science, 1985, 25(1): 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[26] | Covarrubias-Pazaran G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE, 2016: e0156744. |
[27] | 黄远樟, 刘来福. 作物数量遗传学基础: 六、配合力: 不完全双列杂交. 遗传, 1980(2): 43-46. |
HUANG Y Z, LIU L F. Basis of crop quantitative genetics: VI. Combining ability: Incomplete diallel hybridization. Genetics, 1980(2): 43-46. (in Chinese) | |
[28] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325.
doi: 10.1093/nar/8.19.4321 |
[29] |
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R. 1000 genomes project analysis group. The variant call format and VCFtools. Bioinformatics (Oxford, England), 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330 |
[30] |
AYRES D L, DARLING A, ZWICKL D J, BEERLI P, HOLDER M T, LEWIS P O, HUELSENBECK J P, RONQUIST F, SWOFFORD D L, CUMMINGS M P, RAMBAUT A, SUCHARD M A. BEAGLE: An application programming interface and high-performance computing library for statistical phylogenetics. Systematic Biology, 2012, 61(1): 170-173.
doi: 10.1093/sysbio/syr100 |
[31] |
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 |
[32] | SAITOU N, NEI M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
[33] |
LETUNIC I, BORK P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 2007, 23(1): 127-128.
doi: 10.1093/bioinformatics/btl529 |
[34] |
YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.
doi: 10.1016/j.ajhg.2010.11.011 |
[35] |
LIPKA A E, TIAN F, WANG Q, PEIFFER J, LI M, BRADBURY P J, GORE M A, BUCKLER E S, ZHANG Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics (Oxford, England), 2012, 28(18): 2397-2399.
doi: 10.1093/bioinformatics/bts444 |
[36] | HUANG M, LIU X, ZHOU Y, SUMMERS R M, ZHANG Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Giga Science, 2019, 8(2): 154. |
[37] |
HUANG X, YANG S, GONG J, ZHAO Y, FENG Q, GONG H, LI W, ZHAN Q, CHENG B, XIA J, CHEN N, HAO Z, LIU K, ZHU C, HUANG T, ZHAO Q, ZHANG L, FAN D, ZHOU C, LU Y, WENG Q, WANG Z X, LI J, HAN B. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(1): 6258.
doi: 10.1038/ncomms7258 |
[38] |
GAO X, STARMER J, MARTIN E R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 2008, 32(4): 361-369.
doi: 10.1002/gepi.20310 |
[39] |
ZHOU H, XIA D, ZENG J, JIANG G, HE Y. Dissecting combining ability effect in a rice NCII-III population provides insights into heterosis in indica-japonica cross. Rice, 2017, 10(1): 39.
doi: 10.1186/s12284-017-0179-9 |
[40] | SHULL G H. The composition of a field of maize. Journal of Heredity, 1908, 4(1): 296-301. |
[41] | 梁文科, 张世煌, 戚廷香, 邱法展, 庹洪章, 刘永忠, 郑用琏, 徐尚忠. 热带温带玉米群体产量性状遗传力及遗传方差分量的剖析. 中国农业科学, 2006, 39(11): 2178-2185. |
LIANG W K, ZHANG S H, QI T X, QIU F Z, TUO H Z, LIU Y Z, ZHENG Y L, XU S Z. Dissection of heritability and genetic variance components for yield traits in tropical and temperate maize populations. Scientia Agricultura Sinica, 2006, 39(11): 2178-2185. (in Chinese) | |
[42] |
MAKUMBI D, BETRÁN J F, BÄNZIGER M, RIBAUT J M. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica, 2011, 180(2): 143-162.
doi: 10.1007/s10681-010-0334-5 |
[43] | ZHANG X, LV L, LV C, GUO B, XU R. Combining ability of different agronomic traits and yield components in hybrid barley. PLoS ONE, 2015: e0126828. |
[44] | 倪先林, 张涛, 蒋开锋, 杨莉, 杨乾华, 曹应江, 文春阳, 郑家奎. 杂交稻特殊配合力与杂种优势、亲本间遗传距离的相关性. 遗传, 2009, 31(8): 849-854. |
NI X L, ZHANG T, JIANG K F, YANG L, YANG Q H, CAO Y J, WEN C Y, ZHENG J K. Correlations between specific combining ability, heterosis and genetic distance in hybrid rice. Genetics, 2009, 31(8): 849-854. (in Chinese) | |
[45] |
JIANG Y, SCHMIDT R H, ZHAO Y, REIF J C. A quantitative genetic framework highlights the role of epistatic effects for grain- yield heterosis in bread wheat. Nature Genetics, 2017, 49(12): 1741-1746.
doi: 10.1038/ng.3974 |
[46] |
ROMERO N J A, WILLCOX M, BURGUEÑO J, ROMAY C, SWARTS K, TRACHSEL S, PRECIADO E, TERRON A, DELGADO H V, VIDAL V, ORTEGA A, BANDA A E, MONTIEL N O G, ORTIZ-MONASTERIO I, VICENTE F S, ESPINOZA A G, ATLIN G, WENZL P, HEARNE S, BUCKLER E S. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nature Genetics, 2017, 49(3): 476-480.
doi: 10.1038/ng.3784 |
[47] |
ESHED Y, BAUM S F, PEREA J V, BOWMAN J L. Establishment of polarity in lateral organs of plants. Current Biology, 2001, 11(16): 1251-1260.
doi: 10.1016/S0960-9822(01)00392-X |
[48] |
ESHED Y, IZHAKI A, BAUM S F, FLOYD S K, BOWMAN J L. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 2004, 131(12): 2997-3006.
doi: 10.1242/dev.01186 |
[49] |
HOOPES G M, HAMILTON J P, WOOD J C, ESTEBAN E, PASHA A, VAILLANCOURT B, PROVART N J, BUELL C R. An updated gene atlas for maize reveals organ-specific and stress-induced genes. The Plant Journal, 2019, 97(6): 1154-1167.
doi: 10.1111/tpj.14184 |
[50] | STELPFLUG S C, SEKHON R S, VAILLANCOURT B, HIRSCH C N, BUELL C R, DE LEON N, KAEPPLER S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9(1): 38-54. |
[51] |
WU X, LI Y, SHI Y, SONG Y, ZHANG D, LI C, BUCKLER E S, LI Y, ZHANG Z, WANG T. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnology Journal, 2016, 14(7): 1551-1562.
doi: 10.1111/pbi.12519 |
[52] |
PEIFFER J A, ROMAY M C, GORE M A, FLINT-GARCIA S A, ZHANG Z, MILLARD M J, GARDNER C A, MCMULLEN M D, HOLLAND J B, BRADBURY P J, BUCKLER E S. The genetic architecture of maize height. Genetics, 2014, 196(4): 1337-1356.
doi: 10.1534/genetics.113.159152 |
[53] |
PEIFFER J A, FLINT-GARCIA S A, DE LEON N, MCMULLEN M D, KAEPPLER S M, BUCKLER E S. The genetic architecture of maize stalk strength. PLoS ONE, 2013, 8(6): e67066.
doi: 10.1371/journal.pone.0067066 |
[54] | WANG Q J, YUAN Y, LIAO Z, JIANG Y, WANG Q, ZHANG L, GAO S, WU F, LI M, XIE W, LIU T, XU J, LIU Y, FENG X, LU Y. Genome-wide association study of 13 traits in maize seedlings under low phosphorus stress. Plant Genome, 2019, 12(3): 1-13. |
[55] |
DONG M Y, LEI L, FAN X W, LI Y Z. Analyses of open-access multi-omics data sets reveal genetic and expression characteristics of maize ZmCCT family genes. AoB Plants, 2021, 13(5): plab048.
doi: 10.1093/aobpla/plab048 |
[56] |
ZHU X M, SHAO X Y, PEI Y H, GUO X M, LI J, SONG X Y, ZHAO M A. Genetic diversity and genome-wide association study of major ear quantitative traits using high-density SNPs in maize. Front Plant Science, 2018, 9: 966.
doi: 10.3389/fpls.2018.00966 |
[1] | ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117. |
[2] | CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78. |
[3] | XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748. |
[4] | LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762. |
[5] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[6] | LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616. |
[7] | ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345. |
[8] | ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081. |
[9] | TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. |
[10] | LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947. |
[11] | QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976. |
[12] | HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691. |
[13] | FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822. |
[14] | DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878. |
[15] | YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613. |
|