Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1332-1345.doi: 10.3864/j.issn.0578-1752.2022.07.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China

ZHANG JiaHua1(),YANG HengShan1(),ZHANG YuQin1,LI CongFeng2,ZHANG RuiFu1,TAI JiCheng1,ZHOU YangChen1   

  1. 1College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2021-06-20 Accepted:2021-09-06 Online:2022-04-01 Published:2022-04-18
  • Contact: HengShan YANG E-mail:zhangjiahua987@126.com;yanghengshan2003@aliyun.com

Abstract:

【Objective】The aim of this study was to explore the effects of different drip irrigation modes on starch accumulation and starch synthesis-related enzyme activities of spring maize, so as to provide a physiological basis for the understanding of the yield formation process in maize under the water-saving conditions. 【Method】 Using maize variety Nonghua 101 as the experimental material, a sub-plot design was selected for this experiment, and two irrigation modes were chosen as the main plot, including mulched drip irrigation (MDI) and shallow drip irrigation (SBDI), and the irrigation amount as the sub-plot included three irrigation levels (W1: 1 440 m3·hm-2; W2: 1 800 m3·hm-2; W3: 2 160 m3·hm-2, which equaled to the amount of 40%, 50% and 60% of the traditional irrigation, respectively). The amount and time of drip irrigation was conducted at the ratio of 1﹕2﹕2﹕3﹕2 for seedling stage to jointing stage, jointing stage to big bell mouth, big bell mouth to silking stage, silking stage to milk stage, and milk stage to harvest stage, respectively. The corn kernels were taken at every 7 days from 20 days after silking. The content of total starch in maize kernel was determined by acid hydrolysis DNS method. The starch synthase activity assay kit was used to determine the activity of adenosine diphosphate glucose pyro phosphorylase (ADPase), bound starch synthase (GBSS), and soluble starch synthase (SSS). On basis of that, the maize grain yield, characteristics of starch accumulation, and the changes enzyme activity of ADPase, GBSS and SSS were investigaged. 【Result】There was no significant difference between effective panicle number and grain number per panicle of the two irrigation modes, and the 1000-grain weight and grain yield in shallow drip irrigation was lower than that of mulched drip irrigation under the treatment of W1, but no significant difference were found under the treatment of W2. The grain yield and 1000-grain weight in shallow drip irrigation were 5.7% and 8.4% higher in grain yield, and 11.9% and 12.1% higher in 1000-grain weight than that in mulched drip irrigation under treatment W3 in 2019 and 2020, respectively. The results of variance analysis showed that irrigation amount, drip irrigation mode and the interaction between irrigation amount and drip irrigation mode had a significant effects (P<0.01 or P<0.001) on 1000 grain weight, and the interaction between years, irrigation amount and drip irrigation mode had a significant effects (P<0.01 or P<0.001) on grain yield. Considering the content and accumulation of starch in grain, the shallow drip irrigation were both lower than that of mulched drip irrigation of W1, and W2 was lower than mulched drip irrigation in 20 days after silking, while no significant difference in 55 days after silking; W3 was lower than mulched drip irrigation in 41 days after silking, while higher than in 55 days after silking. Under the three irrigation amounts, the active accumulation period of starch in grain under shallow drip irrigation was longer than that of mulched drip irrigation, and the time for grain starch accumulation to reach the maximum rate was later than that of shallow drip irrigation. Active accumulation period of starch had the highest influence coefficient on the final accumulation of starch, then was the time of maximum rate. The starch accumulation rate in the late growth stage was highly correlated with the total starch accumulation in grains (P<0.001) and the yield (P<0.01). The activity of ADPase, GBSS and SSS in shallow drip irrigation were lower that of mulched drip irrigation in 20-27 d after silking, while the difference was reducing along with the maize growth; The three enzyme activity were higher under W3 than that of mulched drip irrigation at 48 days after silking, and also under W1 and W2 at 55 days after silking. Except no relationship of accumulation rate of grain starch and activity of ADPase under W1, the accumulation rate of grain starch showed a significantly positive relation with the activities of ADPase, GBSS and SSS under other treatments. 【Conclusion】With the 60% of the traditional irrigation amount in shallow drip irrigation, it showed a higher activity of ADPase, GBSS and SSS at the late filling stage and a longer active starch accumulation period, also enhanced the ability of starch accumulation and increased 1000-grain weight, and possessed the highest maize grain yield. The shallow drip irrigation could increase the activity of the maize starch synthases, enhance the ability of starch accumulation, then increased grain weight and yield, and finally reached the purpose of water-saving and efficiency-improvement.

Key words: drip irrigation modes, spring maize, grain, enzyme activity, starch accumulation

Table 1

Irrigation schemes with different drip irrigation modes"

处理
Treatment
各生育时期灌水量 Irrigation amount in each growth period (m3·hm-2) 总灌水量
Total irrigation amount
苗期—拔节期
Seedling stage-
Jointing stage
拔节期—大喇叭口期
Jointing stage-
Flare opening stage
大喇叭口期—吐丝期
Flare opening stage-
Silking stage
吐丝期—乳熟期
Silking stage-
Milk maturity
乳熟期—收获期
Milk maturity-
Harvest period
W1 膜下滴灌MDI 144 288 288 432 288 1440
浅埋滴灌SBDI
W2 膜下滴灌MDI 180 360 360 540 360 1800
浅埋滴灌SBDI
W3 膜下滴灌MDI 216 432 432 648 432 2160
浅埋滴灌SBDI

Table 2

The yield and its components of spring maize in different drip irrigation modes"

年份
Year
处理
Irrigation method
有效穗数
Effective spike (×104·hm-2)
穗粒数
Gain number per spike
千粒重
1000 grain weight (g)
产量
Yield (t·hm-2)
2019 W1 膜下滴灌MDI 6.6814±0.061b 473.95±4.213ab 374.97±6.538c 11.89±0.139b
浅埋滴灌SBDI 6.6725±0.061b 472.15±4.197b 356.64±9.596d 11.11±0.207c
W2 膜下滴灌MDI 6.8719±0.063a 475.66±4.228ab 388.32±10.449bc 12.26±0.544b
浅埋滴灌SBDI 6.8961±0.063a 472.62±4.201b 378.43±10.183bc 12.04±0.557b
W3 膜下滴灌MDI 6.9359±0.064a 480.62±4.272a 393.03±10.575b 12.53±0.085b
浅埋滴灌SBDI 6.9281±0.063a 476.37±4.234ab 446.17±12.005a 13.28±0.361a
2020 W1 膜下滴灌MDI 6.9300±0.064a 479.16±4.259b 375.46±10.103c 11.67±0.316b
浅埋滴灌SBDI 6.9280±0.064a 475.78±4.229b 356.46±9.591d 11.03±0.295c
W2 膜下滴灌MDI 6.8410±0.063a 489.81±4.354a 395.15±10.632b 12.37±0.561b
浅埋滴灌SBDI 6.9120±0.063a 487.94±4.337a 383.88±10.329bc 12.12±0.342b
W3 膜下滴灌MDI 6.9310±0.064a 493.56±4.387a 397.53±10.696b 12.85±0.510b
浅埋滴灌SBDI 6.9355±0.064a 490.86±4.363a 452.50±12.176a 14.02±0.351a

Table 3

Variance analysis of 1 000-grain weight and yield under different drip irrigation modes"


Source
千粒重 1000-grain weight 产量 Yield
F P F P
年份 Year (A) 1.285 0.268 4.877 0.037
灌水量 Irrigation volume (B) 91.730 0.000 49.252 0.000
滴灌模式 Drip irrigation mode (C) 5.770 0.024 0.026 0.874
年份×灌水量A×B 0.300 0.744 0.953 0.400
年份×滴灌模式A×C 0.000 0.992 0.229 0.637
灌水量×滴灌模式B×C 44.674 0.000 15.906 0.000
年份×灌水量×滴灌模式A×B×C 0.020 0.980 0.372 0.724

Fig. 1

Effects of different drip irrigation modes and irrigation amount on starch content of maize grain W1: 40% of traditional irrigation; W2: 50% of traditional irrigation; W3: 60% of traditional irrigation; MDI: Mulched drip irrigation; SBDI: Shallow burial drip irrigation. The same as below"

Fig. 2

Effects of different drip irrigation patterns and irrigation amount on starch accumulation in maize grain"

Table 4

Model and parameters of starch accumulation in grains in different drip irrigation modes"

处理
Treatment
籽粒淀粉积累方程
Equation of starch
accumulation in grain
活跃积累期
Active accumulation period (d)
最大积累速率
Maximum rate
of accumulation (g·d-1)
平均积累速率
Average rate of accumulation (g·d-1)
达到最大速率的时间
Time to reach maximum velocity (d)
R2
W1 膜下滴灌MDI y=0.243659/(1+129.895×e-0.234907t)0.657312 18.06 1.23608 0.633045 18.9315 0.995
浅埋滴灌SBDI y=0.214038/(1+126.942×e-0.232139t)0.793003 19.43 1.15071 0.539682 19.8665 0.994
W2 膜下滴灌MDI y=0.246778/(1+190.999×e-0.246529t)0.600757 18.17 1.26721 0.651644 19.2379 0.994
浅埋滴灌SBDI y=0.250457/(1+64.3241×e-0.206384t)0.971553 19.99 1.28076 0.591956 20.0359 0.993
W3 膜下滴灌MDI y=0.261923/(1+70.8877×e-0.210563t)0.751041 18.26 1.26044 0.647571 18.877 0.992
浅埋滴灌SBDI y=0.313065/(1+281.947×e-0.244806t)0.739513 21.25 1.76071 0.784787 21.813 0.998

Table 5

Path analysis of starch accumulation parameters in maize grains under different drip irrigation patterns and irrigation amounts"

变量 Variable 直接系数 Direct coefficient X1 X2 X3 X4 X5 X6
X1 2.6396 2.6112 1.9411 -0.7934 -1.8436 2.3242
X2 2.6254 2.6396 -1.8512 0.8148 1.7085 -2.3939
X3 -2.7222 2.6396 2.6254 -0.2599 -1.8967 1.0063
X4 0.9173 2.6396 2.6254 -2.7222 -1.1674 2.5279
X5 -2.3799 2.6396 2.6254 -2.7222 0.9173 -1.3152
X6 2.5594 2.6396 2.6254 -2.7222 0.9173 -2.3799

Fig. 3

Correlation analysis of grain starch accumulation parameters with total accumulation and yield under different drip irrigation patterns and irrigation amounts *, P<0.05"

Fig. 4

Effect of different drip irrigation patterns and irrigation amount on AGPase pyrophosphorylase activity in maize grain"

Fig. 5

Effects of different drip irrigation patterns and irrigation amount on GBSS bound starch synthase activity in maize kernel"

Fig. 6

Effect of different drip irrigation patterns and irrigation amount on SSS soluble starch synthase activity in maize kernel"

Fig. 7

Correlation between starch accumulation rate and enzyme activities related to starch synthesis *, P<0.05; **, P<0.01"

[1] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波. 超高产春玉米的根系特征. 作物学报, 2011, 37(4):735-743.
doi: 10.3724/SP.J.1006.2011.00735
ZHANG Y Q, YANG H S, GAO J L, ZHANG R F, WANG Z G, XU S J, FAN X Y, BI W B. Root characteristics of super high-yield spring maize. Acta Agronomica Sinica, 2011, 37(4):735-743. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00735
[2] 白晓慧. 通辽市2005年—2010年地下水位变化分析. 内蒙古科技与经济, 2016(16):65-66.
BAI X H. Analysis of groundwater level changes in Tongliao city from 2005 to 2010. Inner Mongolia Science Technology & Economy, 2016(16):65-66. (in Chinese)
[3] 曹玉军, 魏雯雯, 徐国安, 王晓慧, 王洪君, 刘春光, 边少锋, 刘慧涛, 王永军. 半干旱区不同地膜覆盖滴灌对土壤水、温变化及玉米生长的影响. 玉米科学, 2013, 21(1):107-113.
CAO Y J, WEI W W, XU G A, WANG X H, WANG H J, LIU C G, BIAN S F, LIU H T, WANG Y J. Effects of differed films on soil water, temperature and corn growth characteristics under drip- irrigation conditions in semi-arid region. Journal of Maize Sciences, 2013, 21(1):107-113. (in Chinese)
[4] 杜利, 李援农, 陈朋朋, 王凯瑜, 李昱鹏. 不同残膜量对土壤环境及玉米生长发育的影响. 节水灌溉, 2018(7):4-9, 14.
DU L, LI Y N, CHEN P P, WANG K Y, LI Y P. Effects of different residual film on the growth and soil environment of maize. Water Saving Irrigation, 2018(7):4-9, 14. (in Chinese)
[5] 林涛, 汤秋香, 郝卫平, 吴凤全, 雷蕾, 严昌荣, 何文清, 梅旭荣. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响. 农业工程学报, 2019, 35(19):117-125.
LIN T, TANG Q X, HAO W P, WU F Q, LEI L, YAN C R, HE W Q, MEI X R. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19):117-125. (in Chinese)
[6] 解红娥, 李永山, 杨淑巧, 王娇娟, 吴秀峰, 武宗信. 农田残膜对土壤环境及作物生长发育的影响研究. 农业环境科学学报, 2007, 26(S1):153-156.
XIE H E, LI Y S, YANG S Q, WANG J J, WU X F, WU Z X. Influence of residual plastic film on soil structure, crop growth and development in fields. Journal of Agro-Environment Science, 2007, 26(S1):153-156. (in Chinese)
[7] 杨恒山, 薛新伟, 张瑞富, 李金琴, 王宇飞, 邰继承, 刘晶. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响. 农业工程学报, 2019, 35(21):69-77.
YANG H S, XUE X W, ZHANG R F, LI J Q, WANG Y F, TAI J C, LIU J. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21):69-77. (in Chinese)
[8] 梅园雪, 冯玉涛, 冯天骄, 汪伟, 孙宝忠. 玉米浅埋滴灌节水种植模式产量与效益分析. 玉米科学, 2018, 26(1):98-102.
MEI Y X, FENG Y T, FENG T J, WANG W, SUN B Z. Brief discussion on the efficient water-saving planting mode of shallow buried drip irrigation. Journal of Maize Sciences, 2018, 26(1):98-102. (in Chinese)
[9] KAUR A, SINGH N, EZEKIEL R, GURAYAL H S. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry, 2007, 101(2):643-651.
doi: 10.1016/j.foodchem.2006.01.054
[10] 李志伟, 钟雨越, 吴权明, 王文斌, 高杰, 刘香香, 康慧敏, 郭东伟, 薛吉全. 高直链玉米淀粉的理化特性研究. 西北农林科技大学学报(自然科学版), 2014, 42(7):53-60.
LI Z W, ZHONG Y Y, WU Q M, WANG W B, GAO J, LIU X X, KANG H M, GUO D W, XUE J Q. Physicochemical properties of high-amylose maize starch. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(7):53-60. (in Chinese)
[11] XIAO Q L, WANG Y Y, LI H, ZHANG C X, WEI B, WANG Y B, HUNAG H H, LI Y P, YU G W, LIU H M, ZHANG J J, LIU Y H, HU Y F, HUANG Y B. Transcription factor ZmNAC126 plays an important role in transcriptional regulation of maize starch synthesis- related genes. The Crop Journal, 2021, 9(1):192-203.
doi: 10.1016/j.cj.2020.04.014
[12] 胡文河, 谷岩, 岳杨, 常莹, 吴春胜. 不同株型玉米籽粒淀粉积累及相关酶活性的研究. 西北农林科技大学学报(自然科学版), 2012, 40(3):104-110.
HU W H, GU Y, YUE Y, CHANG Y, WU C S. Analysis of starch accumulation and key enzymes activities for starch synthesis in different genotype maize. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(3):104-110. (in Chinese)
[13] 陈江, 王燕, 黄斌全, 胡玉峰, 刘应红, 顾勇, 李炀平, 张军杰, 刘汉梅, 黄玉碧. 不同类型玉米籽粒淀粉积累、相关酶活及基因表达差异分析. 核农学报, 2012, 26(2):217-230.
CHEN J, WANG Y, HUANG B Q, HU Y F, LIU Y H, GU Y, LI Y P, ZHANG J J, LIU H M, HUANG Y B. Analysis of starch accumulation, corresponding enzyme activity and gene expression among different types of corns. Journal of Nuclear Agricultural Sciences, 2012, 26(2):217-230. (in Chinese)
[14] KEELING P L, BANISADR R, BARONE L, WASSERMAN B P, SINGLETARY G W. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Functional Plant Biology, 1994, 21(6):807-827.
doi: 10.1071/PP9940807
[15] 杨毅, 李昱, 康建宏, 刘萍. 花后高温胁迫对春小麦籽粒淀粉合成的影响. 麦类作物学报, 2015, 35(11):1535-1541.
YANG Y, LI Y, KANG J H, LIU P. Effect of heat stress after anthesis on starch synthesis in spring wheat. Journal of Triticeae Crops, 2015, 35(11):1535-1541. (in Chinese)
[16] 杜晓东, 赵宏伟, 王敬国, 刘化龙, 杨亮, 许晶, 宋谨同. 氮肥运筹对寒地粳稻淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2012, 38(1):159-167.
doi: 10.3724/SP.J.1006.2012.00159
DU X D, ZHAO H W, WANG J G, LIU H L, YANG L, XU J, SONG J T. Changes in starch accumulation and activity of enzymes associated with starch synthesis under different nitrogen applications in japonica rice in cold region. Acta Agronomica Sinica, 2012, 38(1):159-167. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00159
[17] WALLWORK M A B, LOGUE S J, MACLEOD L C, JENNER C F. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology, 1998, 25(3):173-181.
[18] 赵辉, 戴廷波, 荆奇, 姜东, 曹卫星, 陆玮, 田孝威. 灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响. 作物学报, 2006, 32(3):423-429.
ZHAO H, DAI T B, JING Q, JIANG D, CAO W X, LU W, TIAN X W. Effects of high temperature during grain filling on key enzymes involved in starch synthesisin two wheat cultivars with different quality types. Acta Agronomica Sinica, 2006, 32(3):423-429. (in Chinese)
[19] 王月福, 于振文, 李尚霞, 余松烈. 小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应. 作物学报, 2003, 29(1):75-81.
doi: 10.3724/SP.J.1095.2011.00054
WANG Y F, YU Z W, LI S X, YU S L. Activity of enzymes related to starch synthesis and their effect during the filling of winter wheat. Acta Agronomica Sinica, 2003, 29(1):75-81. (in Chinese)
doi: 10.3724/SP.J.1095.2011.00054
[20] 吕艳梅, 谭伟平, 肖层林, 范美蓉, 廖育林. 高温对优质水稻籽粒淀粉形成及淀粉合成相关酶活性的影响. 华北农学报, 2014, 29(1):135-139.
LÜ Y M, TAN W P, XIAO C L, FAN M R, LIAO Y L. Effect of high temperature on starch formation of grain and activities of enzymes related to starch synthesis of quality rice varieties. Acta Agriculture Boreali-Sinica, 2014, 29(1):135-139. (in Chinese)
[21] 成臣, 曾勇军, 程慧煌, 谭雪明, 商庆银, 曾研华, 石庆华. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响. 中国水稻科学, 2019, 33(1):57-67.
CHENG C, ZENG Y J, CHENG H H, TAN X M, SHANG Q Y, ZENG Y H, SHI Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108. Chinese Journal of Rice Science, 2019, 33(1):57-67. (in Chinese)
[22] AHMADI A, BAKER D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation, 2001, 35(1):81-91.
doi: 10.1023/A:1013827600528
[23] 石慧清, 龚月桦, 张东武. 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响. 植物生态学报, 2011, 35(7):769-778.
doi: 10.3724/SP.J.1258.2011.00769
SHI H Q, GONG Y H, ZHANG D W. Effect of high temperature on leaf senescence and related enzymes of grain starch synthesis in stay-green wheat after anthesis. Chinese Journal of Plant Ecology, 2011, 35(7):769-778. (in Chinese)
doi: 10.3724/SP.J.1258.2011.00769
[24] 闫素辉, 尹燕枰, 李文阳, 梁太波, 李勇, 邬云海, 王平, 耿庆辉, 戴忠民, 王振林. 灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响. 作物学报, 2008, 34(6):1092-1096.
doi: 10.3724/SP.J.1006.2008.01092
YAN S H, YIN Y P, LI W Y, LIANG T B, LI Y, WU Y H, WANG P, GENG Q H, DAI Z M, WANG Z L. Effect of high temperature during grain filling on starch accumulation, starch granule distribution, and activities of related enzymes in wheat grains. Acta Agronomica Sinica, 2008, 34(6):1092-1096. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01092
[25] 汪敏, 王邵宇, 吴佳佳, 许开放, 汪涛, 何启方, 邢肖丽, 姚文政, 张文静. 花后阴雨对小麦籽粒淀粉合成和干物质积累的影响. 中国生态农业学报(中英文), 2020, 28(1):76-85.
WANG M, WANG S Y, WU J J, XU K F, WANG T, HE Q F, XING X L, YAO W Z, ZHANG W J. Effects of shading and waterlogging following anthesis on starch synthesis and dry matter accumulation in wheat grain. Chinese Journal of Eco-Agriculture, 2020, 28(1):76-85. (in Chinese)
[26] 李双, 司转运, 申孝军, 高阳, 段爱旺. 水氮供应对灌浆期冬小麦籽粒淀粉合成相关酶活性及产量的影响. 麦类作物学报, 2018, 38(4):460-468.
LI S, SI Z Y, SHEN X J, GAO Y, DUAN A W. Effect of different water and nitrogen levels on starch synthesis enzyme activity in wheat grains during grain filling stage and wheat yield. Journal of Triticeae Crops, 2018, 38(4):460-468. (in Chinese)
[27] 张智猛, 戴良香, 胡昌浩, 董树亭, 王空军, 宁堂原. 玉米灌浆期水分差异供应对籽粒淀粉积累及其酶活性的影响. 植物生态学报, 2005, 29(4):636-643.
doi: 10.17521/cjpe.2005.0085
ZHANG Z M, DAI L X, HU C H, DONG S T, WANG K J, NING T Y. Effects of different water treatments on starch accumulation and related enzyme activity in grain of maize during grain-filling period. Chinese Journal of Plant Ecology, 2005, 29(4):636-643. (in Chinese)
doi: 10.17521/cjpe.2005.0085
[28] 薛万来, 牛文全, 张俊. 膜下滴灌土壤水盐运移研究进展. 滴灌排水学报, 2013, 32(4):114-118.
XUE W L, NIU W Q, ZHANG J. Review of study on soil water and salt transfer under mulched drip irrigation. Journal of Irrigation and Drainage, 2013, 32(4):114-118. (in Chinese)
[29] 何照范. 粮油籽粒品质及其分析技术. 北京: 中国农业出版社, 1985.
HE Z F. Analysis Technique for Grain Quality of Cereals and Oils. Beijing: China Agriculture Press, 1985. (in Chinese)
[30] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮阴对夏玉米淀粉合成关键酶活性的影响. 作物学报, 2008, 34(8):1470-1474.
doi: 10.3724/SP.J.1006.2008.01470
ZHANG J W, DONG S J, WANG K J, HU C H, LIU P. Effects of shading in field on key enzymes involved in starch synthesis of summer maize. Acta Agronomica Sinica, 2008, 34(8):1470-1474. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01470
[31] 胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018, 44(4):591-600.
doi: 10.3724/SP.J.1006.2018.00591
HU Y Y, LU H F, LIU W X, KANG J, MA G, LI S S, ZHU Y Y, WANG C Y. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat. Acta Agronomica Sinica, 2018, 44(4):591-600. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00591
[32] RANE J, NAGARAJAN S. High temperature index-for field evaluation of heat tolerance in wheat varieties. Agricultural Systems, 2004, 79(2):243-255.
doi: 10.1016/S0308-521X(03)00075-1
[33] ZHANG H Y, DONG S T, GAO R Q, QUAN L Y. Comparison of starch synthesis and related enzyme activities in developing grains among different types of maize. Journal of plant physiology and molecular biology, 2007, 33(1):25-32.
[34] 李莎莎, 马耕, 刘卫星, 康娟, 陈雨露, 胡阳阳, 张盼盼, 王晨阳. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响. 作物学报, 2018, 44(7):1067-1076.
doi: 10.3724/SP.J.1006.2018.01067
LI S S, MA G, LIU W X, KANG J, CHEN Y L, HU Y Y, ZHANG P P, WANG C Y. Effects of long-term irrigation and nitrogen regimes on soil nitrogen content and paste property of wheat grain. Acta Agronomica Sinica, 2018, 44(7):1067-1076. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01067
[35] 王龙飞, 杨倩, 李广浩, 陆卫平, 陆大雷. 吐丝后不同阶段干旱胁迫对糯玉米籽粒产量和淀粉品质的影响. 玉米科学, 2021, 29(1):69-76.
WANG L F, YANG Q, LI G H, LU W P, LU D L. Effect of drought stress at different post-silking stages on grain yield and starch quality of waxy maize. Journal of Maize Sciences, 2021, 29(1):69-76. (in Chinese)
[36] 杜社妮, 白岗栓. 玉米地膜覆盖的土壤环境效应. 干旱地区农业研究, 2007, 25(5):56-59.
DU S N, BAI G S. Studies on effects of plastic film mulching on soil environment of maize field. Agricultural Research in the Arid Areas, 2007, 25(5):56-59. (in Chinese)
[37] 孙仕军, 杨金鑫, 万博, 谷健, 刘泳圻, 赵旺, 尹光华. 不同滴灌方式对辽西半干旱区春玉米生长及产量的影响. 沈阳农业大学学报, 2021, 52(1):32-39.
SUN S J, YANG J X, WAN B, GU J, LIU Y Q, ZHAO W, YIN G H. Effects of different drip irrigation methods on the growth and yield of spring maize in semi-arid areas of western Liaoning. Journal of Shenyang Agricultural University, 2021, 52(1):32-39. (in Chinese)
[38] JENNER C F, UGALDE T D, ASPINALL D. The physiology of starch and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology, 1991, 18:211-226.
[39] OU-LEE T M, SETTER T L. Effect of increased temperature in apical regions of maize ears on starch synthesis enzymes and accumulation of sugar and starch. Plant Physiology, 1985, 79(3):852-855.
doi: 10.1104/pp.79.3.852
[40] 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27(5):658-664.
LI Y G, YU Z W, JIANG D, YU S L. Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat. Acta Agronomica Sinica, 2001, 27(5):658-664. (in Chinese)
[41] SINGLETARY G W, BANISADR R, KEELING P L. Influence of gene dosage on carbohydrate synthesis and enzymatic activities in endosperm of starch-deficient mutants of maize. Plant Physiology, 1997, 113:293-304.
doi: 10.1104/pp.113.1.293
[42] 徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015, 41(2):297-307.
doi: 10.3724/SP.J.1006.2015.00297
XU Y J, GU D J, QIN H, ZHANG H, WANG Z Q, YANG J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agronomica Sinica, 2015, 41(2):297-307. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00297
[43] TIAN Z X, QIAN Q, LIU Q Q, YAN M X, LIU X F, YAN C J, LIU G F, GAO Z Y, TANG S Z, ZENG D L, WANG Y H, YU J M, GU M H, LI J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51):21760-21765.
[44] ZHANG H Y, DONG S T, GAO R Q, SUN Q Q. Starch accumulation and enzyme activities associated with starch synthesis in maize kernels. Agricultural Sciences in China, 2007, 6(7):808-815.
doi: 10.1016/S1671-2927(07)60116-3
[45] 王晓燕, 董树亭, 高荣岐, 张海艳. 不同类型玉米胚乳细胞增殖动态及其与粒重的关系. 华北农学报, 2006, 21(2):23-26.
WANG X Y, DONG S T, GAO R Q, ZHANG H Y. Endosperm cell proliferating and its relation to kernel weight in different types of maize. Acta Agriculturae Boreali-Sinica, 2006, 21(2):23-26. (in Chinese)
[46] 张海艳, 董树亭, 高荣岐, 李玉全. 玉米籽粒淀粉积累及相关酶活性分析. 中国农业科学, 2008, 41(7):2174-2181.
ZHANG H Y, DONG S T, GAO R Q, LI Y Q. Starch accumulation and enzymes activities associated with starch synthesis in maize kernels. Scientia Agricultura Sinica, 2008, 41(7):2174-2181. (in Chinese)
[47] 曹颖妮, 胡卫国, 王根平, 刘录祥, 王成社. 糯性和非糯性小麦灌浆期胚乳直/支链淀粉积累及其相关酶活性研究. 西北植物学报, 2010, 30(10):1995-2001.
CAO Y N, HU W G, WANG G P, LIU L X, WANG C S. Dynamic changes of starch accumulation and enzymes relating to starch biosynthesis of kernel during grain filling in waxy and non-waxy winter wheat. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(10):1995-2001. (in Chinese)
[48] 刘霞, 姜春明, 郑泽荣, 周筑南, 贺明荣, 王振林. 藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较. 中国农业科学, 2005, 38(5):897-903.
LIU X, JIANG C M, ZHENG Z R, ZHOU Z N, HE M R, WANG Z L. Activities of the enzymes involved in starch synthesis and starch accumulation in grains of wheat cultivars GC8901 and SN1391. Scientia Agricultura Sinica, 2005, 38(5):897-903. (in Chinese)
[49] 王自布, 李卫华, 齐军仓, 银永安, 曹连莆, 王泽民, 侯睿睿, 王亮. 小麦籽粒胚乳淀粉合成酶基因表达及酶活性分析. 核农学报, 2010, 24(6):1117-1123.
WANG Z B, LI W H, QI J C, YIN Y A, CAO L P, WANG Z M, HOU R R, WANG L. Analysis of gene expression of enzymes involved in starch synthesis and enzymes activity in wheat grain. Journal of Nuclear Agricultural Sciences, 2010, 24(6):1117-1123. (in Chinese)
[50] 黄天琪. 结实期高温与水分胁迫对糯玉米淀粉品质的影响研究[D]. 扬州: 扬州大学, 2018.
HUANG T Q. Effect of high temperature and water stress during grain filling on starch quality of waxy maize[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
[51] 李媛媛, 杨恒山, 张瑞富, 范秀艳, 李金琴, 罗方. 灌溉定额对浅埋滴灌春玉米生长与产量的影响. 水土保持通报, 2017, 37(2):345-348.
LI Y Y, YANG H S, ZHANG R F, FAN X Y, LI J Q, LUO F. Effects of irrigation quota on growth and yield of spring maize under shallow subsurface drip irrigation. Bulletin of Soil and Water Conservation, 2017, 37(2):345-348. (in Chinese)
[52] 马金平, 王福星, 张岱, 王双喜. 覆膜对玉米根系分布特性的影响. 农业与技术, 2018, 38(4):21-22.
MA J P, WANG F X, ZHANG D, WANG S X. Effect of film mulching on the distribution characteristics of maize root system. Agriculture and Technology, 2018, 38(4):21-22. (in Chinese)
[1] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[2] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[3] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[4] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[5] YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
[6] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[7] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[8] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[9] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[10] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[11] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[12] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[13] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[14] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[15] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!