Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 333-344.doi: 10.3864/j.issn.0578-1752.2023.02.010

• HORTICULTURE • Previous Articles     Next Articles

The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits

LI FeiFei1(),LIAN XueFei2,YIN Tao2,CHANG YuanYuan2,JIN Yan2,MA XiaoChuan2,CHEN YueWen2,YE Li2,LI YunSong2,LU XiaoPeng2()   

  1. 1Institute of Horticulture, Hunan Academy of Agricultural Sciences, Changsha 410125
    2College of Horticulture, Hunan Agricultural University/National Centre for Citrus Improvement, Changsha 410128
  • Received:2022-04-06 Accepted:2022-09-09 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】 This study aimed to reveal the development of segment membrane, which contributed to citrus fruit mastication, so as to provide the theoretical basis for fruit mastication trait improvement. 【Method】 Using different citrus types (hybrid citruses including Ehime No. 30 and Nova, Okitsu Wase satsuma mandarin, navel oranges including Yuanfeng and Newhall, and pumeloes including Anjiang and Jiangyong) as reseach materials, the main physiological and biochemical properties of segment membrane were analyzed by comparisons in tissue development and cell ultrastructure. 【Result】 The rough outside but smooth inside of segment membrane occurred in all citrus types. Obviously waxy layer grew on the inside of segment membrane under which one or two cell layers with thickened cell wall arranged neatly. Cell density decreased gradually from inside to outside in segment membrane. Occurrence of wax layer in the inside and morphological changes of cells under the wax layer emblematized the maturation of citrus segment membrane. For pomelo, the thickest segment membrane linked with the worst mastication was caused from a large number of cell layers, enlarged cell size and more pectin in segment membrane. At early fruit development from squaring stage to flower withering stage, the ventricles differentiated already in the ovary, and the intervals between ventricles would develop into segment membranes. In the period, parenchyma cells in the intervals exhibited equal cell size and arranged neatly, having no segment membrane characteristics. With fruit enlargement and maturation, the segment membranes of Shatian pomelo had the most cell layers and the longest cell wall thickening period. Segment membranes of Shatian pomelo showed significantly higher pectin content than that of Yuanfeng navel orange and Juxiangzao Satsuma mandarin. Segment membranes of Yuanfeng navel orange had medium cell layers and moderate cell wall thickening period, in which protopectin was higher than that of Juxiangzao Satsuma mandarin. The segment membranes of Juxiangzao exposed the least cell layers and the shortest cell wall thickening period. In October when Juxiangzao matured, segment membrane protopectins in Shatian pomelo, Yuanfeng navel orange and Juxiangzao Satsuma mandarin were 364.22, 208.48 and 165.39 mg·g-1, respectively, with Shatian pomelo reaching 74.7% and 120.2% higher than another two varieties. 【Conclusion】 Segment membrane thickness, cell layers in segment membrane and degree of cell wall thickening associated with citrus fruit mastication. Pectin content could reflect the mastication of citrus segment membranes.

Key words: citrus, segment membrane, mastication, ultrastructure, cell wall

Fig. 1

Various citrus fruits and ultrastructural comparison of segment membranes A: citrus fruits and segment membrane; B: segment membrane cross-section; C: Outside and inside of the surface of the segment membrane duct"

Table 1

Cell layers of segment membrane in various citrus fruits"

品种
Cultivar
细胞层数(层)
Number of cell layer (layers)
爱媛30杂柑Ehime No.30 hybrid citrus 7.0±3.61b
诺瓦杂柑Nova hybrid citrus 8.7±3.21b
兴津温州蜜柑Okitus wase satsuma mandarin 5.0±0.00b
园丰脐橙Yuanfeng navel orange 5.0±2.00b
纽荷尔脐橙Newhall navel orange 8.3±1.53b
安江香柚Anjiang pomelo 23.3±2.52a
江永香柚Jiangyong pomelo 22.0±1.73a

Fig. 2

Cellulose (A), lignin (B), protopectin (C) and water-soluble pectin (D) contents in segment membranes of various citrus fruits"

Fig. 3

Fruit and segment membrane developments in different citrus types A: Fruits at flowering and cytokinesis stages; B: Fruits at expansion and ripening stages"

Fig. 4

Cytological observations of segment membranes in different citrus fruits A: Ovary at flowering stage; B: Fruits at developing stages"

Fig. 5

Changes of protopectin (A) and water-soluble pectin (B) content in different citrus fruits during segment membrane development"

[1] 张丽芳. 南丰蜜橘果胶代谢与化渣性关系研究[D]. 南昌: 江西农业大学, 2014.
ZHANG L F. Correlation analysis on pectic metabolism and mastication of Nanfeng tangerine fruit[D]. Nanchang: Jiangxi Agricultural University, 2014. (in Chinese)
[2] 魏清江, 汪妙秋, 曾知富, 杨成泉, 彭抒昂, 刘永忠. 南丰蜜橘化渣性评价及不同结果习性果实的品质比较. 中国农业科学, 2014, 47(6): 1162-1170.
WEI Q J, WANG M Q, ZENG Z F, YANG C Q, PENG S A, LIU Y Z. Evaluation of the mastication and comparison of fruit quality with different bearing habits in Nanfeng tangerine (Citrus reticulata Blanco cv. Kinokuni). Scientia Agricultura Sinica, 2014, 47(6): 1162-1170. (in Chinese)
[3] LIU Y Z, DONG T, LEI Y, DENG X X, GU Q Q. Isolation of a polygalacturonase gene from Citrus sinensis fruit and its expression relative to fruit mastication trait, fruit development, and calcium or boron treatments. Plant Molecular Biology Reporter, 2011, 29(1): 51-59. doi: 10.1007/s11105-010-0206-0.
doi: 10.1007/s11105-010-0206-0
[4] 雷莹. 柑橘果实化渣性研究[D]. 华中农业大学, 2010.
LEI Y. Mastication of citrus fruit[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)
[5] 曾秀丽, 张光伦, 李春燕. 三类生境下脐橙果实膳食纤维的变化研究. 安徽农学通报, 2007, 13(16): 19-22, 104.
ZENG X L, ZHANG G L, LI C Y. Study on changes of dietary fiber in three habitats on navel orange [Citrus sinesis (L.) Osb.] fruits. Anhui Agricultural Science Bulletin, 2007, 13(16): 19-22, 104. (in Chinese)
[6] 唐红英. 南丰蜜橘纤维素、半纤维素代谢与化渣性关系研究[D]. 南昌: 江西农业大学, 2015.
TANG H Y. Study on the relationship between cellulose, hemicellulose metabolism and mastication of Nanfeng tangerine[D]. Nanchang: Jiangxi Agricultural University, 2015. (in Chinese)
[7] 古湘. 南丰蜜橘木质素代谢与化渣的关系研究[D]. 南昌: 江西农业大学, 2016.
GU X. Study on the relationship between lignin metabolism and mastication of Nanfeng tangerine[D]. Nanchang: Jiangxi Agricultural University, 2016. (in Chinese)
[8] 曾秀丽, 张光伦, 李春燕, 汪志辉, 罗楠, 胡强. 脐橙果实膳食纤维的动态变化研究. 四川农业大学学报, 2006, 24(1): 69-72.
ZENG X L, ZHANG G L, LI C Y, WANG Z H, LUO N, HU Q. The studying on the dietary fiber of navel orange [Citrus sinesis (L.) Osb.] fruit. Journal of Sichuan Agricultural University, 2006, 24(1): 69-72. (in Chinese)
[9] 辜青青, 唐红英, 魏清江, 古湘, 冯芳芳, 罗正荣. 南丰蜜橘果实纤维素代谢与化渣的关系研究. 园艺学报, 2016, 43(5): 867-875.
GU Q Q, TANG H Y, WEI Q J, GU X, FENG F F, LUO Z R. Studies on the relationship between cellulose metabolism and fruit mastication trait of Nanfeng tangerine. Acta Horticulturae Sinica, 2016, 43(5): 867-875. (in Chinese)
[10] 张丽芳, 魏清江, 辜青青, 古湘, 冯芳芳, 姚鹏. 柑桔果实中囊衣果胶含量与化渣性关系研究. 现代园艺, 2017(9): 3-4.
ZHANG L F, WEI Q J, GU Q Q, GU X, FENG F F, YAO P. Study on the relationship between the pectin content of the encapsulated pectin in citrus fruit and its slagging property. Xiandai Horticulture, 2017(9): 3-4. (in Chinese)
[11] 高婧斐, 汪志辉, 熊博, 石冬冬, 张婷婷, 曾海琼, 廖玲, 曹淑燕, 古咸杰, 李清南. 细胞壁组分及酶活性与清见果实囊衣绵韧的相关性. 食品科学, 2015, 36(23): 131-135.
GAO J F, WANG Z H, XIONG B, SHI D D, ZHANG T T, ZENG H Q, LIAO L, CAO S Y, GU X J, LI Q N. Correlations of albedo fracture toughness with cell wall substances and enzyme activities in kiyomi fruits. Food Science, 2015, 36(23): 131-135. (in Chinese)
[12] WANG X, LIN L J, TANG Y, XIA H, ZHANG X C, YUE M L, QIU X, XU K, WANG Z H. Transcriptomic insights into citrus segment membrane's cell wall components relating to fruit sensory texture. BMC Genomics, 2018, 19(1): 280. doi: 10.1186/s12864-018-4669-y.
doi: 10.1186/s12864-018-4669-y pmid: 29685103
[13] 严敏. 营养元素与柑橘果实化渣性关系探究[D]. 武汉: 华中农业大学, 2020.
YAN M. Study on the relationship between nutrition elements and mastication in citrus fruit[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[14] LU X P, LI F F, XIONG J, CAO X J, MA X C, ZHANG Z M, CAO S Y, XIE S X. Transcriptome and metabolome analyses provide insights into the occurrence of peel roughing disorder on satsuma mandarin (Citrus unshiu Marc.) fruit. Frontiers in Plant Science, 2017, 8: 1907.
doi: 10.3389/fpls.2017.01907
[15] 熊艺. 温州蜜柑隔年交替结果果实品质分析[D]. 武汉: 华中农业大学, 2013.
XIONG Y. Analysis of the quality of alternate bearing fruit of Satsuma[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[16] LIAN X F, LI F F, CHANG Y Y, ZHOU T, CHEN Y W, YIN T, LI Y S, YE L, JIN Y, LU X P. Physiological and ultrastructural alterations linked to intrinsic mastication inferiority of segment membranes in Satsuma mandarin (Citrus unshiu marc.) fruits. Plants, 2021, 11(1): 39. doi: 10.3390/plants11010039.
doi: 10.3390/plants11010039
[17] 董肖昌. 不同柑橘砧木对缺硼的响应差异及结构变化与代谢机制[D]. 武汉: 华中农业大学, 2016.
DONG X C. Different response and structure change and metabolic mechanism of different Citrus rootstock under boron deficiency[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[18] BU J W, YU Y C, AISIKAER G, YING T J. Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and Technology, 2013, 86(3): 337-345.
doi: 10.1016/j.postharvbio.2013.07.026
[19] DENG J J, BI Y, ZHANG Z K, XIE D F, GE Y H, LI W H, WANG J J, WANG Y. Postharvest oxalic acid treatment induces resistance against pink rot by priming in muskmelon (Cucumis melo L.) fruit. Postharvest Biology & Technology, 2015, 106: 53-61.
[20] 魏张奎. 基于质构特性的夏橙化渣性研究[D]. 武汉: 华中农业大学, 2013.
WEI Z K. Research on mastication of late orange base on textural properties[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[21] 郑苍松. 南丰蜜橘果实品质与土壤—树体营养的关系及其调控[D]. 武汉: 华中农业大学, 2015.
ZHENG C S. Relationships between fruit quality and soil-plant nutrients of Nanfeng tangerine and regulation by fertilization application[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[22] 邓秀新, 彭抒昂. 柑橘学. 北京: 中国农业出版社, 2013: 194.
DENG X X, PENG S A. Citrology. Beijing: Chinese Agriculture Press, 2013: 194. (in Chinese)
[23] BUGGENHOUT S V, SILA D N, DUVETTER T, LOEY A V, HENDRICKX M. Pectins in processed fruits and vegetables: Part III-texture engineering. Comprehensive Reviews in Food Science and Food Safety, 2010, 8(2): 105-117.
doi: 10.1111/j.1541-4337.2009.00072.x
[24] ZHENG C S, LAN X, TAN Q L, ZHANG Y, GUI H P, HU C X. Soil application of calcium and magnesium fertilizer influences the fruit pulp mastication characteristics of Nanfeng tangerine (Citrus reticulata Blanco- cv. Kinokuni). Scientia Horticulturae, 2015, 191: 121-126.
doi: 10.1016/j.scienta.2015.05.008
[25] 严敏, 罗丽娟, 韩忠星, 袁野, 李江波, 杜威, 刘永忠. 南丰蜜橘和南丰蜜广果实质构特性、细胞壁成分及营养元素比较研究. 农业科学, 2019, 9(8): 689-696.
doi: 10.12677/HJAS.2019.98098
YAN M, LUO L J, HAN Z X, YUAN Y, LI J B, DU W, LIU Y Z. Comparative study on fruit texture, cell wall structural components and nutrient content between “nanfengmiju” and “nanfengmiguang”. Hans Journal of Agricultural Sciences, 2019, 9(8): 689-696. (in Chinese)
doi: 10.12677/HJAS.2019.98098
[26] LEI Y, LIU Y Z, GU Q Q, YANG X Y, DENG X X, CHEN J Y. Comparison of cell wall metabolism in the pulp of three cultivars of ‘Nanfeng’ tangerine differing in mastication trait. Journal of the Science of Food and Agriculture, 2012, 92(3): 496-502. doi: 10.1002/jsfa.4554.
doi: 10.1002/jsfa.4554
[27] LEI Y, LIU Y Z, ZENG W F, DENG X X. Physicochemical and molecular analysis of cell wall metabolism between two navel oranges (Citrus sinensis) with different mastication traits. Journal of the Science of Food and Agriculture, 2010, 90(9): 1479-1484. doi: 10.1002/jsfa.3970.
doi: 10.1002/jsfa.3970 pmid: 20549800
[1] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[6] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[7] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[8] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[9] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[10] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[11] ZOU YunQian,LIN ZiZhen,XU RangWei,CHENG YunJiang. Development and Evaluation of a Coating Substitute for Individual Polyethylene Film Packaging of Citrus Fruit [J]. Scientia Agricultura Sinica, 2022, 55(12): 2398-2412.
[12] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[13] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[14] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[15] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!