Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 962-976.doi: 10.3864/j.issn.0578-1752.2022.05.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China

QIAO Yuan1,2(),YANG Huan1,LUO JinLin1,WANG SiXian1,LIANG LanYue1,CHEN XinPing1,2,ZHANG WuShuai1,2()   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400715
    2Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715
  • Received:2021-01-25 Accepted:2021-06-16 Online:2022-03-01 Published:2022-03-08
  • Contact: WuShuai ZHANG E-mail:qy040018@163.com;wszhang@swu.edu.cn

Abstract:

【Objective】Make clear the input and ecological environment risk of maize production in Northwest China. 【Method】Based on the life cycle assessment (LCA) method, the inputs (fertilizer, pesticide, diesel, mulch, seed, and labor) and ecological environment risks (greenhouse gas emissions, soil acidification, water eutrophication and human toxicity) of maize production in six provinces (Xinjiang, Shaanxi, Shanxi, Ningxia, Inner Mongolia, Gansu) of Northwest China during the past 15 years (2004-2018) were evaluated, and the inputs, ecological environmental risks and spatiotemporal variations of maize production per unit area (per hectare) in those resources were quantitatively evaluated. 【Result】 Inputs and ecological environment risks of maize production were high in Northwest China. The average fertilizer input in past 15 years was 233.1 kg N·hm-2, 106.3 kg P2O5·hm-2, 23.3 kg K2O·hm-2, while the pesticide, diesel, mulch, seed and labor inputs were 6.5 kg·hm-2, 93.2 L·hm-2, 13.7 kg·hm-2, 38.8 kg·hm-2 and 120.1 h·hm-2, respectively. The average maize yield was 7.9 t·hm-2. The averaged greenhouse gas emissions was 4 188 kg CO2-eq·hm-2, the soil acidification potential was 155.3 kg SO2-eq·hm-2, the water eutrophication 52.6 kg PO4-eq·hm-2, and the human toxicity was 2.9 kg 1, 4-DCB-eq·hm-2. Compared with the data in 2004, the overall input for maize production of Northwest China in 2018 was increased, showing an overall increased trend. The rates of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer per unit area increased by 9.2%, 52.7% and 203.7%, respectively; the rate of pesticide, diesel oil and mulch per unit area increased by 303%, 143% and 108%, respectively. The rates of seed and labor per unit area decreased by 38.6% and 50.8%, respectively, while the planting area and maize yield increased by 79% and 26.9%, respectively. On the whole, the multiple ecological environment risks showed a first increased and then decreased trend, in which the greenhouse gas emissions, soil acidification potential, water eutrophication potential and human toxicity per unit area increased by 13.6%, 15.8%, 2.6% and 302.5%, respectively. Among the 15 years of maize production in Northwest China, the highest nitrogen fertilizer input and greenhouse gas emissions per unit area were observed in 2016, and the lowest were observed in 2007. The inputs and ecological environment risks of maize production in different provinces of Northwest China were significantly different. In terms of unit area, the rate of nitrogen fertilizer, mulch and labor input was the highest in Gansu, and the lowest in Shanxi, Shaanxi and Inner Mongolia, respectively. The rate of phosphorus fertilizer and diesel was the highest in Xinjiang, and the lowest was Shaanxi. The rate of potassium fertilizer was the highest in Shanxi and the lowest in Xinjiang. The rate of pesticides and seeds was the highest in Ningxia and Xinjiang, and the lowest in Shanxi. The planting area and maize grain yield were the highest in Inner Mongolia and Xinjiang, and the lowest in Ningxia and Shaanxi, respectively. Simultaneously, the greenhouse gas emission and soil acidification potential were the highest in Gansu, the water eutrophication potential was the highest in Shaanxi, and the human toxicity was the highest in Ningxia and the lowest in Shanxi. The comprehensive value of inputs and ecological environment risks for maize production in Northwest China was the highest in Ningxia. Shanxi achieved the lowest comprehensive value of ecological environment risks for maize production in Northwest China. 【Conclusion】The maize production in Northwest China was characterized by “high input, high yield and high risk”, while the inputs and ecological environment risk were quite different in different spatiotemporal scale. From 2004 to 2018, the planting area, grain yield, and inputs were totally increased slightly, while the ecological environment risk showed a first increased and then decreased trend. The maize production could be considered to incline to high-yield and low-environmental risk areas, and achieve high yields and low ecological environment risks in the future.

Key words: Northwest China, life cycle assessment, maize, input, ecological environment risk

Fig. 1

System boundary of LCA analysis"

Table 1

The coefficients of greenhouse gas emissions, soil acidification and water eutrophication in the production stage of agricultural materials"

投入
Input
单位
Unit
温室气体排放量
Greenhouse gas emission rate
(kg CO2-eq)
酸化潜值
Soil acidification potential value
(kg SO2-eq)
水体富营养化潜值
Water eutrophication potential value
(kg PO4-eq)
参考文献
Reference
氮肥生产和运输
Nitrogen fertilizer production and transportation
kg N 8.3 2.52E-02 3.03E-03 [26-28]
磷肥生产和运输
Phosphate fertilizer production and transportation
kg P2O5 0.79 6.00E-04 7.67E-05 [26-28]
钾肥生产和运输
Potash production and transportation
kg K2O 0.55 4.80E-04 6.13E-05 [26-28]
农药生产和运输
Pesticide production and transportation
kg 19.1 1.05E-02 1.94E-03 [27-29]
地膜生产和运输
Mulch production and transportation
kg 2.8 [30]
柴油
Diesel
L 3.75 6.58E-02 1.19E-02 [27-28,31-32]

Table 2

Inputs of maize production in the different years of Northwest China"

年份
Year
N input
(kg·hm-2)
P2O5 input
(kg·hm-2)
K2O input
(kg·hm-2)
农药
Pesticide
(kg·hm-2)
柴油
Diesel
(L·hm-2)
地膜用量
Mulch
(kg·hm-2)
种子
Seed
(kg·hm-2)
人工
Labor
(h·hm-2)
2004 222 90.5 13.6 2.35 54.0 9.47 50.3 167
2005 222 78.3 12.9 2.78 57.6 8.45 43.5 154
2006 228 86.7 15.4 2.61 69.5 9.71 43.3 142
2007 215 90.1 18.9 3.59 72.3 9.64 43.8 138
2008 224 85.2 16.7 3.87 55.1 9.36 42.3 135
2009 230 91.4 15.8 4.25 72.1 11.2 42.2 129
2010 242 103 16.7 5.70 68.1 13.7 39.4 126
2011 236 105 20.4 9.92 78.9 6.19 38.9 123
2012 232 108 24.7 7.79 83.3 16.1 37.5 117
2013 231 118 25.0 8.73 97.0 18.8 36.7 108
2014 239 123 28.7 8.78 108 18.7 35.5 103
2015 234 122 33.7 9.37 148 18.6 32.9 98.3
2016 250 126 31.0 8.71 164 18.2 32.2 92.9
2017 247 130 35.0 10.2 137 17.6 32.6 85.5
2018 243 138 41.3 9.44 131 19.7 30.9 82.2
平均 Mean 233 106 23.3 6.54 93.2 13.7 38.8 120

Fig. 2

Variation of average sown area, total production and yield of maize production regions in different years of Northwest China"

Fig. 3

Average greenhouse gas emissions (a), soil acidification potential (b), water eutrophication potential (c), human toxicity (d) of maize production regions in the different years of Northwest China"

Fig. 4

Total maize production area (a), total production (b), percentage of planting area (c), percentage of production (d) for maize production in different provinces of Northwest China"

Table 3

Inputs of maize production in different provinces of Northwest China"

省份
Province
N
N input
(kg·hm-2)
P2O5
P2O5 input
(kg·hm-2)
K2O
K2O input
(kg·hm-2)
农药
Pesticide
(kg·hm-2)
柴油
Diesel
(L·hm-2)
地膜用量
Mulch
(kg·hm-2)
种子
Seed
(kg·hm-2)
人工
Labor
(h·hm-2)
单产
Yield
(t·hm-2)
新疆 Xinjiang 276 150 2.77 7.13 119 24.4 50.0 81.4 10.0
陕西 Shaanxi 267 72.8 11.3 6.75 73.5 0.24 41.3 148 6.33
山西 Shanxi 185 100 51.2 5.26 89.4 5.33 30.3 125 8.25
宁夏 Ningxia 282 130 17.8 12.2 90.4 2.69 37.1 129 8.21
内蒙古 Inner Mongolia 217 108 25.2 7.82 105 10.8 36.1 71.5 7.59
甘肃 Gansu 291 142 15.5 6.40 115 59.4 41.3 229 9.01

Fig. 5

Average greenhouse gas emissions (a), soil acidification potential (b), water eutrophication potential (c), human toxicity (d) for maize production in the different provinces of Northwest China in 2004-2018"

Fig. 6

Comprehensive analysis of inputs per unit area and ecological environment risks for maize production in the different provinces of Northwest China"

[1] FAO. FAOSTAT Database-Resources. Food and Agriculture Organization of the United Nations. 2018.
[2] 国家统计局. http://www.stats.gov.cn . 北京: 中国统计出版社, 2019.
National Bureau of Statistics. http://www.stats.gov.cn . Beijing: China Statistics Press, 2019. (in Chinese)
[3] 李亮. 气候变化条件下中国西北地区主要作物需水量时空演变及干旱指标研究[D]. 杨凌: 西北农林科技大学, 2019.
LI L. Impact of climate change on crop water requirement and drought indices in northwest China[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[4] 姜明红, 刘欣超, 唐华俊, 辛晓平, 陈吉泉, 董刚, 吴汝群, 邵长亮. 生命周期评价在畜牧生产中的应用研究现状及展望. 中国农业科学, 2019, 52(9):1635-1645. doi: 10.3864/j.issn.0578-1752.2019.09.014.
doi: 10.3864/j.issn.0578-1752.2019.09.014
JIANG M H, LIU X C, TANG H J, XIN X P, CHEN J Q, DONG G, WU R Q, SHAO C L. Research progress and prospect of life cycle assessment in animal husbandry. Scientia Agricultura Sinica, 2019, 52(9):1635-1645. doi: 10.3864/j.issn.0578-1752.2019.09.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.09.014
[5] NOTARNICOLA B, SALA S, ANTON A, MCLAREN S J, SAOUTER E, SONESSON U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. Journal of Cleaner Production, 2017, 140:399-409. doi: 10.1016/j.jclepro.2016.06.071.
doi: 10.1016/j.jclepro.2016.06.071
[6] MCCLELLAND S C, ARNDT C, GORDON D R, THOMA G. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review. Livestock Science, 2018, 209:39-45. doi: 10.1016/j.livsci.2018.01.008.
doi: 10.1016/j.livsci.2018.01.008
[7] 刘松, 王效琴, 胡继平, 李强, 崔利利, 段雪琴, 郭亮. 施肥与灌溉对甘肃省苜蓿碳足迹的影响. 中国农业科学, 2018, 51(3):556-565. doi: 10.3864/j.issn.0578-1752.2018.03.013.
doi: 10.3864/j.issn.0578-1752.2018.03.013
LIU S, WANG X Q, HU J P, LI Q, CUI L L, DUAN X Q, GUO L. Effects of fertilization and irrigation on the carbon footprint of alfalfa in Gansu Province. Scientia Agricultura Sinica, 2018, 51(3):556-565. doi: 10.3864/j.issn.0578-1752.2018.03.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.03.013
[8] 刘松, 王效琴, 崔利利, 段雪琴, 赵加磊. 关中平原饲料作物生产的碳足迹及影响因素研究. 环境科学学报, 2017, 37(3):1201-1208. doi: 10.13671/j.hjkxxb.2016.0274.
doi: 10.13671/j.hjkxxb.2016.0274
LIU S, WANG X Q, CUI L L, DUAN X Q, ZHAO J L. Carbon footprint and its impact factors of feed crops in Guanzhong Plain. Acta Scientiae Circumstantiae, 2017, 37(3):1201-1208. doi: 10.13671/j.hjkxxb.2016.0274. (in Chinese)
doi: 10.13671/j.hjkxxb.2016.0274
[9] 王占彪, 王猛, 陈阜. 华北平原作物生产碳足迹分析. 中国农业科学, 2015, 48(1):83-92. doi: 10.3864/j.issn.0578-1752.2015.01.09.
doi: 10.3864/j.issn.0578-1752.2015.01.09
WANG Z B, WANG M, CHEN F. Carbon footprint analysis of crop production in North China plain. Scientia Agricultura Sinica, 2015, 48(1):83-92. doi: 10.3864/j.issn.0578-1752.2015.01.09. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.01.09
[10] WANG W, GUO L P, LI Y C, SU M, LIN Y B, DE PERTHUIS C, JU X T, LIN E D, MORAN D. Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Climatic Change, 2015, 128(1):57-70. doi: 10.1007/s10584-014-1289-7.
doi: 10.1007/s10584-014-1289-7
[11] TAN Y C, XU C, LIU D X, WU W L, LAL R, MENG F Q. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crops Research, 2017, 205:135-146. doi: 10.1016/j.fcr.2017.01.003.
doi: 10.1016/j.fcr.2017.01.003
[12] KRÓL-BADZIAK A, PISHGAR-KOMLEH S H, ROZAKIS S, KSIĘŻAK J. Environmental and socio-economic performance of different tillage systems in maize grain production: Application of life cycle assessment and multi-criteria decision making. Journal of Cleaner Production, 2021, 278:123792. doi: 10.1016/j.jclepro.2020.123792.
doi: 10.1016/j.jclepro.2020.123792
[13] ZHAO R R, HE P, XIE J G, JOHNSTON A M, XU X P, QIU S J, ZHAO S C. Ecological intensification management of maize in northeast China: Agronomic and environmental response. Agriculture, Ecosystems & Environment, 2016, 224:123-130. doi: 10.1016/j.agee.2016.03.038.
doi: 10.1016/j.agee.2016.03.038
[14] 齐晔, 李惠民, 王晓. 农业与中国的低碳发展战略. 中国农业科学, 2012, 45(1):1-6. doi: 10.3864/j.issn.0578-1752.2012.01.001
doi: 10.3864/j.issn.0578-1752.2012.01.001
QI Y, LI H M, WANG X. Agriculture and low-carbon development strategy in China. Scientia Agricultura Sinica, 2012, 45(1):1-6. doi: 10.3864/j.issn.0578-1752.2012.01.001. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.01.001
[15] ZHANG W S, HE X M, ZHANG Z D, GONG S, ZHANG Q, ZHANG W, LIU D Y, ZOU C Q, CHEN X P. Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering, 2018, 167:75-86. doi: 10.1016/j.biosystemseng.2017.12.008.
doi: 10.1016/j.biosystemseng.2017.12.008
[16] YAN M, CHENG K, LUO T, YAN Y, PAN G X, REES R M. Carbon footprint of grain crop production in China-based on farm survey data. Journal of Cleaner Production, 2015, 104:130-138. doi: 10.1016/j.jclepro.2015.05.058.
doi: 10.1016/j.jclepro.2015.05.058
[17] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523):486-489. doi: 10.1038/nature13609.
doi: 10.1038/nature13609
[18] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968):1008-1010. doi: 10.1126/science.1182570.
doi: 10.1126/science.1182570
[19] IPCC. Guildelines for National Greenhouse Gas Inventories, vol. 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programmer. Japan, 2006.
[20] HELLWEG S, CANALS L M I. Emerging approaches, challenges and opportunities in life cycle assessment. Science, 2014, 344(6188):1109-1113. doi: 10.1126/science.1248361.
doi: 10.1126/science.1248361
[21] 米慧玲. 不同管理模式下冬小麦夏玉米产量及环境效应的研究[D]. 保定: 河北农业大学, 2015.
MI H L. Effects of different management models on yield and environment cost in the rotation systems of winter wheat and summer maize[D]. Baoding: Hebei Agricultural University, 2015. (in Chinese)
[22] 张务帅. 我国玉米生产温室气体排放和活性氮损失评价及其减排潜力与调控途径[D]. 北京: 中国农业大学, 2019.
ZHANG W S. Greenhouse gas emissions and reactive nitrogen losses assessment, mitigation potentials and management approaches of maize production in China[D]. Beijing: China Agricultural University, 2019. (in Chinese)
[23] 国家发展和改革委员会价格司. 农产品成本收益汇编. 北京: 中国统计出版社, 2019.
Price Department of National Development and Reform Commission. Compilation of Cost and Benefit of Agricultural Products. Beijing: China Statistics Press, 2019. (in Chinese)
[24] 中华人民共和国国家发展改革委员会. https://www.ndrc.gov.cn . 北京: 国家信息中心, 2020.
National Development and Reform Commission of the People’s Republic of China. https://www.ndrc.gov.cn . Beijing: State Information Center, 2020. (in Chinese)
[25] SOLOMON S. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007.
[26] ZHANG W F, DOU Z X, HE P, JU X T, POWLSON D, CHADWICK D, NORSE D, LU Y L, ZHANG Y, WU L, CHEN X P, CASSMAN K G, ZHANG F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China// Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21):8375-8380. doi: 10.1073/pnas.1210447110.
doi: 10.1073/pnas.1210447110
[27] CUI Z L, YUE S C, WANG G L, ZHANG F S, CHEN X P. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology, 2013, 47(11):6015-6022. doi: 10.1021/ es4003026.
doi: 10.1021/ es4003026
[28] 岳善超. 小麦玉米高产体系的氮肥优化管理[D]. 北京: 中国农业大学, 2013.
YUE S C. Optimal nitrogen management for high-yielding wheat and maize cropping system[D]. Beijing: China Agricultural University, 2013. (in Chinese)
[29] CLARK S, KHOSHNEVISAN B, SEFEEDPARI P. Energy efficiency and greenhouse gas emissions during transition to organic and reduced-input practices: Student farm case study. Ecological Engineering, 2016, 88:186-194. doi: 10.1016/j.ecoleng.2015.12.036.
doi: 10.1016/j.ecoleng.2015.12.036
[30] Reform Commission of China(NDRCC). Deputy director of the committee answered the questions about energy conservation and climate change. 2010. http://xwzx.ndrc.gov.cn/wszb/t20100310334122.htm . 2010-3-10.(in Chinese)
[31] LIU Y X, LANGER V, HØGH-JENSEN H, EGELYNG H. Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. Journal of Cleaner Production, 2010, 18(14):1423-1430. doi: 10.1016/j.jclepro.2010.05.025.
doi: 10.1016/j.jclepro.2010.05.025
[32] PISHGAR-KOMLEH S H, OMID M, HEIDARI M D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd Province. Energy, 2013, 59:63-71. doi: 10.1016/j.energy.2013.07.037.
doi: 10.1016/j.energy.2013.07.037
[33] Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change. New York: Cambridge University Press, 2014.
[34] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Kyoto, Japan: Cambridge University Press, 2019.
[35] HUIJBREGTS M A J, THISSEN U, GUINÉE J B, JAGER T, KALF D, DE MEENT D V, RAGAS A M J, SLEESWIJK A W, REIJNDERS L. Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere, 2000, 41(4):541-573. doi: 10.1016/S0045-6535(00) 00030-8.
doi: 10.1016/S0045-6535(00) 00030-8
[36] DENG N S, WANG X B. Life Cycle Assessment. Beijing: Chemical Industry Press, 2003: 134-149.
[37] SLEESWIJK A W, VAN OERS L F C M, GUINÉE J B, STRUIJS J, HUIJBREGTS M A J. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment, 2008, 390(1):227-240. doi: 10.1016/j.scitotenv.2007.09.040.
doi: 10.1016/j.scitotenv.2007.09.040
[38] HAUSCHILD M, OLSEN S I, HANSEN E, SCHMIDT A. Gone…but not away—addressing the problem of long-term impacts from landfills in LCA. The International Journal of Life Cycle Assessment, 2008, 13(7):547. doi: 10.1007/s11367-008-0039-3.
doi: 10.1007/s11367-008-0039-3
[39] 王明新, 包永红, 吴文良, 刘文娜. 华北平原冬小麦生命周期环境影响评价. 农业环境科学学报, 2006, 25(5):1127-1132. doi: 10.3321/j.issn:1672-2043.2006.05.007.
doi: 10.3321/j.issn:1672-2043.2006.05.007
WANG M X, BAO Y H, WU W L, LIU W N. Life cycle environmental impact assessment of winter wheat in North China plain. Journal of Agro-Environment Science, 2006, 25(5):1127-1132. doi: 10.3321/j.issn:1672-2043.2006.05.007. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2006.05.007
[40] XU X M, LAN Y. Spatial and temporal patterns of carbon footprints of grain crops in China. Journal of Cleaner Production, 2017, 146:218-227. doi: 10.1016/j.jclepro.2016.11.181.
doi: 10.1016/j.jclepro.2016.11.181
[41] WANG M X, WU W L, LIU W N, BAO Y H. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. International Journal of Sustainable Development & World Ecology, 2007, 14(4):400-407. doi: 10.1080/13504500709469740.
doi: 10.1080/13504500709469740
[42] LIANG L, WANG Y C, RIDOUTT B G, LAL R, WANG D P, WU W L, WANG L Y, ZHAO G S. Agricultural subsidies assessment of cropping system from environmental and economic perspectives in North China based on LCA. Ecological Indicators, 2019, 96:351-360. doi: 10.1016/j.ecolind.2018.09.017.
doi: 10.1016/j.ecolind.2018.09.017
[43] HILLIER J, HAWES C, SQUIRE G, HILTON A, WALE S, SMITH P. The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 2009, 7(2):107-118. doi: 10.3763/ijas.2009.0419.
doi: 10.3763/ijas.2009.0419
[44] CHENG K, PAN G X, SMITH P, LUO T, LI L Q, ZHENG J W, ZHANG X H, HAN X J, YAN M. Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993-2007. Agriculture, Ecosystems & Environment, 2011, 142(3/4):231-237. doi: 10.1016/j.agee.2011.05.012.
doi: 10.1016/j.agee.2011.05.012
[45] LIU W W, ZHANG G, WANG X K, LU F, OUYANG Z Y. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution. Science of the Total Environment, 2018, 645:1296-1308. doi: 10.1016/j.scitotenv.2018.07.104.
doi: 10.1016/j.scitotenv.2018.07.104
[46] 赵建华, 孙建好, 陈亮之, 马明生, 张绪成, 孙宁科. 河西走廊灌溉玉米施肥现状评价与减肥对策. 玉米科学, 2021. 29(4):169-174.
ZHAO J H, SUN J H, CHEN L Z, MA M S, ZHANG X C, SUN N K. Evaluation of fertilizer application and fertilizer reduction for maize production in Hexi Corridor. Journal of Maize Sciences, 2021. 29(4):169-174. (in Chinese)
[47] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: VI.未来气候变化对中国种植制度北界的可能影响. 中国农业科学, 2011, 44(8):1562-1570.
YANG X G, LIU Z J, CHEN F. The possible effects of global warming on cropping systems in China VI.Possible effects of future climate change on northern limits of cropping system in China. Scientia Agricultura Sinica, 2011, 44(8):1562-1570. (in Chinese)
[48] 白氏杰, 于胜男, 明博, 陈亮, 王志刚, 谢瑞芝. 内蒙古不同生态区玉米品种产量差异分析. 中国种业, 2020(8):56-59. doi: 10.19462/j.cnki.1671-895x.2020.08.018.
doi: 10.19462/j.cnki.1671-895x.2020.08.018
BAI S J, YU S N, MING B, CHEN L, WANG Z G, XIE R Z. Analysis on the yield difference of maize varieties in different ecological regions of Inner Mongolia. China Seed Industry, 2020(8):56-59. doi: 10.19462/j.cnki.1671-895x.2020.08.018. (in Chinese)
doi: 10.19462/j.cnki.1671-895x.2020.08.018
[49] ZHANG G, WANG X K, SUN B F, ZHAO H, LU F, ZHANG L. Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland. Agricultural Systems, 2016, 146:1-10. doi: 10.1016/j.agsy.2016.03.012.
doi: 10.1016/j.agsy.2016.03.012
[50] HE X Q, QIAO Y H, LIU Y X, DENDLER L, YIN C, MARTIN F. Environmental impact assessment of organic and conventional tomato production in urban greenhouses of Beijing city, China. Journal of Cleaner Production, 2016, 134:251-258. doi: 10.1016/j.jclepro.2015.12.004.
doi: 10.1016/j.jclepro.2015.12.004
[51] ZHANG J B, MÜLLER C, CAI Z C. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology and Biochemistry, 2015, 84:199-209. doi: 10.1016/j.soilbio.2015.02.028.
doi: 10.1016/j.soilbio.2015.02.028
[52] ZHANG W S, LIANG Z Y, HE X M, WANG X Z, SHI X J, ZOU C Q, CHEN X P. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environmental Pollution, 2019, 246:559-565. doi: 10.1016/j.envpol.2018.12.059.
doi: 10.1016/j.envpol.2018.12.059
[53] 丁相鹏, 李广浩, 张吉旺, 刘鹏, 任佰朝, 赵斌. 控释尿素基施深度对夏玉米产量和氮素利用的影响. 中国农业科学, 2020, 53(21):4342-4354. doi: 10.3864/j.issn.0578-1752.2020.21.004.
doi: 10.3864/j.issn.0578-1752.2020.21.004
DING X P, LI G H, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of base application depths of controlled release urea on yield and nitrogen utilization of summer maize. Scientia Agricultura Sinica, 2020, 53(21):4342-4354. doi: 10.3864/j.issn.0578-1752.2020.21.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.21.004
[54] AKIYAMA H, YAN X Y, YAGI K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 2010, 16(6):1837-1846. doi: 10.1111/j.1365-2486.2009. 02031.x.
doi: 10.1111/j.1365-2486.2009. 02031.x
[55] GRANT C. Policy aspects related to the use of enhanced-effificiency fertilizers: viewpoint of the scientific community. In: IFA International Workshop on Enhanced-Efficiency Fertilizers. Frankfurt: International Fertilizer Association, 2005: 1-11.
[56] BOLAN N S, SAGGAR S, LUO J F, BHANDRAL R, SINGH J. Gaseous emissions of nitrogen from grazed pastures: processes, measurements and modelling, environmental implications, and mitigation//Advances in Agronomy. Amsterdam: Elsevier, 2004: 37-120. doi: 10.1016/s0065-2113(04)84002-1.
doi: 10.1016/s0065-2113(04)84002-1
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!