Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 249-263.doi: 10.3864/j.issn.0578-1752.2023.02.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice

ZHANG XiaoLi1(),TAO Wei2,GAO GuoQing1,CHEN Lei1,GUO Hui1,ZHANG Hua1,TANG MaoYan1(),LIANG TianFeng1()   

  1. 1Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007
    2Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2022-03-31 Accepted:2022-07-28 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】The objective of this study was to investigate the effects of direct seeding cultivation on the growth period, lodging resistance, yield and economic benefits of different rice varieties, in order to provide a theoretical basis for the application and promotion of mechanized direct seeding rice. 【Method】 For the early rice in 2020 and 2021, the conventional rice varieties with a large area in Guangxi production, including Guiyu 9, Guiyu 11, Guiyefeng, Guangliangxiang 2, and hybrid rice Y Liangyou 1, were used as test materials. In the field, using the traditional manual transplanting as a control, the field was accurately direct seeding. A split plot design was used in this experiment with planting method as the main plot, with rice varieties as the split plot, and set up three replications. The length of the growth period was observed, the morphology of main stem and the characteristics of the basal stem, as well as the lodging indicators such as breaking resistance, bending moment and lodging index, were calculated, the yield and yield components were measured at the maturity stage, and the cost and economic benefits were calculated too. 【Result】(1) The growth period of direct seeding was shortened by about 2-6 days, which was mainly reflected in the period from sowing to the beginning of young spike. (2) The lodging resistance of direct seeding rice was relatively poor, and its plant height, center of gravity height and panicle dry weight were lower than that of transplanted rice; The stem thickness, wall thickness, fresh weight and dry weight of its N2 stem were also lower than that of transplanted rice, and the length of the stem of direct seeding rice was higher than that of transplanted rice, which might be the main reason for the weak lodging resistance of the direct rice. (3) Among the varieties tested, the actual yields of the remaining four rice varieties were lower than those of transplanted under direct-seeded cultivation, except for Yliangyou1. For varieties with relatively short growth period in the test materials, the yield under direct seeding conditions is significantly lower than that of transplanting, while for varieties with relatively long growth period, the yield difference between planting methods is not significant, among the yield components, the increase in the number of grains per panicle and the seed setting rate were the main factors for increasing the yield of direct seeding rice. (4) From the analysis of economic benefits, among the varieties tested, Guiyu 11, which had a shorter growth period, had a significantly lower yield and economic benefit in direct seeding method, and the economic benefits of direct seeding rice of the remaining four varieties were higher than those of transplanted rice; The main reason for this was that direct seeding rice saved labor costs in seedling and transplanting link. 【Conclusion】At present, it was an urgent to develop a light and simple production model of rice with the main goal of preserving area and increasing efficiency. Compared with transplanted rice, direct seeding rice had obvious advantages, such as shortening the growth period and reducing production costs. There was a certain risk of lodging, for the yield was easily affected by variety characteristics and environmental factors. Therefore, the lodging-resistant varieties with medium maturity, reasonable stem length at the base, thick stems and thick stem walls could be selected in the direct seeding cultivation of early rice. In cultivation management, the proportion of ear fertilizer should be appropriately increased to compensate for insufficient number of grains per panicle and seed setting rate could improve the yield of direct seeding rice.

Key words: rice, direct seeding, artificial transplanting, lodging resistance, yield

Fig. 1

Daily mean temperature, sunshine duration, precipitation and soil temperature in Longan county during rice planting period from 2020 to 2021"

Table 1

Performance of the growth period in different varieties under direct seeding methods"

年份
Year
品种
Variety
栽培方式
Planting method
播种期
SS
(M-D)
移栽期
Transplant
stage
(M-D)
幼穗
分化期
PI
(M-D)
始穗期
IH
(M-D)
成熟期
MA
(M-D)
播种期-幼
穗分化期
SS-PI
(d)
幼穗分化
期-始穗期
PI-IH
(d)
始穗期-
成熟期
IH-MA
(d)
全生育期
Growth period
(d)
相差天数
Days difference
(d)
2020
桂育9号
Guiyu9
移栽AT 03-07 04-03 05-11 06-10 07-08 65 30 28 123
直播DS 03-07 05-10 06-09 07-06 63 30 28 121 2
桂育11号
Guiyu11
移栽AT 03-07 04-03 05-08 06-07 07-05 63 30 28 119
直播DS 03-07 05-04 06-03 06-30 59 30 27 115 4
广粮香2号
Guang liangxiang2
移栽AT 03-07 04-03 05-13 06-11 07-10 66 29 29 124
直播DS 03-07 05-11 06-08 07-07 64 29 29 122 2
Y两优1号
Yliangyou1
移栽AT 03-07 04-03 05-14 06-13 07-18 68 30 35 133
直播DS 03-07 05-12 06-11 07-16 66 30 35 131 2
桂野丰
Gui yefeng
移栽AT 03-07 04-03 05-12 06-09 07-05 66 28 26 120
直播DS 03-07 05-07 06-04 06-29 61 28 25 113 6
2021 桂育9号
Guiyu9
移栽AT 03-02 03-29 05-06 06-05 07-03 65 30 28 123
直播DS 03-02 05-04 06-03 03-30 63 30 28 121 2
桂育11号
Guiyu11
移栽AT 03-02 03-29 05-02 05-31 06-28 64 29 27 120
直播DS 03-02 04-29 05-28 06-25 61 29 27 117 3
广粮香2号
Guang liangxiang2
移栽AT 03-02 03-29 05-07 06-04 07-04 65 29 30 124
直播DS 03-02 05-05 06-02 07-01 63 29 30 122 2
Y两优1号
Yliangyou1
移栽AT 03-02 03-29 05-09 06-08 07-15 68 30 36 135
直播DS 03-02 05-07 06-06 07-11 66 30 36 132 3
桂野丰
Gui yefeng
移栽AT 03-02 03-29 05-06 06-01 06-30 65 26 29 120
直播DS 03-02 05-01 05-27 06-25 60 26 29 115 5

Table 2

The breaking resistance, bending moment and lodging index of basal internode in rice under direct seeding"

年份
Year
品种
Variety
栽培方式
Planting method
抗折力
Breaking resistance (N)
弯曲力矩
Bending moment (cm·g-1)
倒伏指数
Lodging index (cm·g·N-1)
2020 桂育9号
Guiyu9
直播DS 11.8A 2171.1b 204.7a
移栽AT 17.0B 2657.2a 164.0b
桂育11号
Guiyu11
直播DS 9.5a 1710.4a 201.8a
移栽AT 13.5b 1928.5a 152.7b
广粮香2号
Guangliangxiang2
直播DS 8.1a 1513.6a 204.3a
移栽AT 12.1b 1794.0a 156.7b
桂野丰
Guiyefeng
直播DS 8.3a 1734.2a 206.9a
移栽AT 11.8b 1897.3a 189.7a
Y两优1号
Yliangyou1
直播DS 14.8a 2402.3a 168.4a
移栽AT 17.8b 2691.5a 154.6a
2021 桂育9号
Guiyu9
直播DS 12.1a 2784.2a 244.3a
移栽AT 12.8a 2663.8a 224.8a
桂育11号
Guiyu11
直播DS 13.6B 1862.4a 147.0a
移栽AT 17.9A 2099.4a 130.7a
广粮香2号
Guangliangxiang2
直播DS 9.7a 2072.3a 222.2a
移栽AT 10.9a 1970.8a 188.3a
桂野丰
Guiyefeng
直播DS 7.9a 1991.6a 269.1a
移栽AT 9.7a 1854.2a 202.7b
Y两优1号
Yliangyou1
直播DS 11.3B 2521.9a 244.6a
移栽AT 17.8A 2738.8a 165.8b
年份Year (Y) 0.053 15.686** 12.27**
品种Variety (V) 28.743** 44.891** 9.568**
栽培方式Treatment (T) 66.25** 8.677** 32.508**
Y×V 7.353** 1.179 5.698**
Y×T 1.437 6.667* 0.475
V×T 1.085 0.742 0.198
Y×V×T 2.585 1.153 2.194

Table 3

Effect of direct seeding on main stem morphology"

年份
Year
品种
Variety
栽培方式
Planting
method
株高
Plant height
(cm)
重心高度
Gravity center height (cm)
相对重心高度
Ratio of gravity center height to plant height (%)
穗长
Panicle length
(cm)
穗干重
Spike dry weight (g)
2020 桂育9号
Guiyu9
直播DS 128.65a 54.91A 42.71A 24.52a 2.59a
移栽AT 134.29b 58.01B 43.27B 25.64a 3.63a
桂育11号
Guiyu11
直播DS 118.38A 53.47a 42.88a 24.60a 2.96a
移栽AT 124.93B 53.91a 45.61a 25.85a 3.23a
广粮香2号
Guangliangxiang2
直播DS 117.82a 54.02a 45.86a 26.37a 2.77a
移栽AT 123.40b 54.62a 44.26a 27.15a 3.15a
桂野丰
Guiyefeng
直播DS 119.18A 56.52a 47.47a 25.28a 2.81a
移栽AT 125.49B 57.24a 45.65a 24.22a 3.50a
Y两优1号
Yliangyou1
直播DS 127.33A 54.84a 43.10a 26.95a 2.64a
移栽AT 134.22B 55.93a 41.74a 26.20a 3.88a
2021 桂育9号
Guiyu9
直播DS 123.02a 51.28a 41.83a 24.43a 4.18a
移栽AT 127.85a 52.72a 41.09a 24.72a 4.23a
桂育11号
Guiyu11
直播DS 113.68a 43.30a 37.91a 25.94a 3.60a
移栽AT 114.34a 45.91a 40.43a 25.73a 3.67a
广粮香2号
Guangliangxiang2
直播DS 118.40a 44.23B 37.37B 27.36a 3.38a
移栽AT 119.93a 49.59A 41.39A 26.63a 3.48a
桂野丰
Guiyefeng
直播DS 114.18a 44.59b 38.33B 24.54B 3.36a
移栽AT 116.39a 48.39a 42.45A 26.63A 3.61a
Y两优1号
Yliangyou1
直播DS 121.25a 53.86a 44.42a 25.39A 4.01a
移栽AT 124.98a 54.15a 43.34a 27.11B 4.81b
年份Year (Y) 66.97** 281.01** 114.99** 0.915 29.17**
品种Variety (V) 36.64** 29.31** 4.27** 18.23** 11.37**
栽培方式 Plant Method (P) 27.47** 22.62** 0.357 0.44 9.78**
Y×V 2.569 17.35** 21.32** 2.066 0.481
Y×P 10.61** 4.65* 24.84** 0.12 0.375
V×P 0.771 1.167 2.044 3.343* 0.799
Y×V×P 0.914 2.512 5.758** 6.60** 0.548

Table 4

Effects of direct seeding on basal internode stem characteristics"

年份
Year
品种
Variety
栽培方式
Planting
method
第二节间N2 internodes
长度
Length
(cm)
粗度
diameter
(cm)
茎壁厚度
Culm wall thickness (mm)
茎秆鲜重
Wet weight of culm (g/stem)
茎秆干重
Dry weight of culm (g/stem)
2020 桂育9号
Guiyu9
直播DS 7.69a 5.54a 1.26a 1.01A 0.16a
移栽AT 7.47a 5.93a 1.29a 1.29B 0.23a
桂育11号
Guiyu11
直播DS 6.58a 5.02a 1.08b 0.72a 0.11a
移栽AT 6.50a 5.34a 1.33a 0.86a 0.14a
广粮香2号
Guangliangxiang2
直播DS 6.97a 4.53a 1.31a 0.58a 0.09a
移栽AT 6.41a 4.81a 1.35a 0.73a 0.14a
桂野丰
Guiyefeng
直播DS 6.78a 4.65a 1.11b 0.58b 0.12a
移栽AT 6.74a 5.01a 1.38a 0.76a 0.22a
Y两优1号
Yliangyou1
直播DS 6.28a 5.13a 1.22b 0.99a 0.14a
移栽AT 5.94a 5.65a 1.44a 1.06a 0.15a
2021 桂育9号
Guiyu9
直播DS 8.24a 6.34a 1.11B 1.27a 0.20a
移栽AT 6.57a 6.61a 1.30A 1.15a 0.24a
桂育11号
Guiyu11
直播DS 7.54a 5.81a 1.09a 1.05a 0.15a
移栽AT 3.18a 6.17a 1.12a 0.96a 0.16a
广粮香2号
Guangliangxiang2
直播DS 5.85a 5.74a 1.11a 0.66a 0.14a
移栽AT 5.33a 5.96a 1.18a 0.82a 0.19a
桂野丰
Guiyefeng
直播DS 12.33a 5.57B 0.99a 1.14a 0.17B
移栽AT 5.52a 6.75A 0.94a 1.37a 0.27A
Y两优1号
Yliangyou1
直播DS 7.26a 4.07a 1.24a 1.16a 0.17a
移栽AT 5.10b 6.50a 1.23a 1.23a 0.20a
年份Year (Y) 4.133* 97.11** 23.96** 39.74** 7.036*
品种Variety (V) 4.672** 8.41** 4.39** 22.58** 4.216**
栽培方式 (P) 9.27** 18.16** 12.00** 9.372** 11.29**
Y×V 0.693 1.233 1.735 6.917** 0.072
Y×P 9.386** 0.314 3.573 2.356 0.049
V×P 2.638* 0.817 0.223 0.789 1.253
Y×V×P 1.984 0.798 2.146 1.503 0.094

Table 5

Correlation analysis between main stem morphology and stem characteristics with break force and lodging index"

指标
Index
株高
Plant height
重心
高度
GCH
相对重
心高度
RGCH
穗长
Panicle length
穗干重
Spike dry weigh
N2节
间长度
Length
N2节
间粗度
Diameter
N2茎壁厚度
Culm wall thickness
N2节间鲜重g
Wet weight
of culm
N2节间干重
Dry weight of culm
弯曲
力矩
BM
倒伏
指数
LI
重心高度
Gravity center height
0.755**
相对重心高度
Ratio of gravity center height to plant height
0.298 0.734**
穗长 Panicle length -0.094- -0.159 -0.086
穗干重
Spike dry weight
0.125 -0.206 -0.290 -0.043
N2节间长度 Length 0.099 0.125 0.071 -0.714** -0.126
N2节间粗度
Diameter
0.011 -0.424 -0.633** 0.115 0.618** -0.266
茎壁厚度
Culm wall thickness
0.709** 0.660** 0.465* 0.039 0.038 -0.056 -0.312
鲜重
Wet weight of culm
0.240 -0.090 -0.264 -0.140 0.679** 0.211 0.621** -0.136
干重
Dry weight of culm
0.260 -0.054 -0.235 -0.246 0.695** 0.095 0.670** -0.023 0.785**
弯曲力矩BM 0.568** 0.087 -0.299 -0.092 0.653** 0.071 0.492** 0.188 0.677** 0.532**
倒伏指数LI -0.102 -0.150 -0.018 -0.399 -0.020 0.400 -0.122 0.307 0.084 0.153 0.089
抗折力BR 0.483** 0.203 -0.136 0.189 0.480** -0.213 0.401 0.394 0.402 0.253 0.609** -0.696**

Table 6

Effect of direct seeding cultivation on yield and its components in different rice varieties"

年份
Year
品种
<BOLD>V</BOLD>ariety
栽培方式
Plant method
有效穗
Effective panicles (×104·hm-2)
每穗粒数
Grains per
panicle
千粒重
1000-grain
weight (g)
结实率
Seed setting
rate (%)
理论产量
Theoretical
yield (kg·hm-2)
实际产量
Actual production (kg·hm-2)
2020 桂育9号
Guiyu9
直播DS 292.1a 173a 24.06a 72.72a 9812.96a 7656.30A
移栽AT 329.5a 192a 23.46a 78.95a 10556.84a 9347.85B
桂育11号
Guiyu11
直播DS 363.5a 179a 22.67a 59.52a 8779.95a 7611.75A
移栽AT 343.9a 195b 21.51b 76.16b 10986.17b 9792.90B
广粮香2号
Guangliangxiang2
直播DS 333.0a 173a 19.68a 76.13a 8631.39a 7077.60a
移栽AT 332.3a 174a 20.03a 82.55a 9559.89a 8546.55b
Y两优1号
Yliangyou1
直播DS 316.7a 164a 27.30a 75.94a 11424.10a 9347.85a
移栽AT 339.2a 174b 27.42a 81.28a 12397.04a 9436.80a
桂野丰
Guiyefeng
直播DS 389.5a 178a 20.27a 59.72a 8392.31a 7923.30a
移栽AT 368.7a 183a 19.22a 73.43a 9521.25a 8991.75a
2021 桂育9号
Guiyu9
直播DS 291.2a 173a 23.12a 80.45a 9368.78a 8098.05a
移栽AT 276.0a 188a 22.32a 89.97b 10421.51a 8568.45a
桂育11号
Guiyu11
直播DS 401.7A 147a 21.29a 80.08a 10555.05a 8919.75a
移栽AT 343.5B 177b 21.57a 83.95a 10502.77a 9269.55a
广粮香2号
Guangliangxiang2
直播DS 303.9a 148a 20.91a 84.20a 7919.41A 7156.35a
移栽AT 335.9a 165a 21.21a 88.92a 10453.72B 7747.50a
Y两优1号
Yliangyou1
直播DS 340.2a 138a 28.38a 89.13a 11875.11A 10569.45a
移栽AT 336.5a 169b 27.10b 89.90a 13855.34B 10580.55a
桂野丰
Guiyefeng
直播DS 337.1a 187a 19.19a 81.71a 9885.16a 8714.40a
移栽AT 343.2a 192a 18.77a 82.05a 10149.18a 9201.15a

Table 7

Cost analysis and economic benefits under different cultivation methods"

品种
Variety
栽培方式
Plant method
年份
Year
产量
Yield
(kg·hm-2)
产值
Production value (yuan/hm2)
育秧环节
Seedling
(yuan/hm2)
插秧环节transplanting (yuan/hm2) 除草环节
Weed controling
(yuan/hm2)
共性成本 Common
costs
(yuan/hm2)
经济效益Economic benefit (yuan/hm2) 两者效益差异
Benefit difference
(yuan/hm2)
桂育9号
Guiyu9
直播
DS
2020 7656.30 20672.01 0 450 1500 14250 4472.01 241.37
2021 8098.05 21864.74 5664.74
移栽
AT
2020 9347.85 25239.20 550 4500 60 5879.20
2021 8568.45 23134.82 3774.82
桂育11号
Guiyu11
直播
DS
2020 7611.75 20551.73 0 450 1500 14250 4351.73 -256.78
2021 8919.75 24083.33 7883.33
移栽
AT
2020 9792.90 26440.83 550 4500 60 7080.83
2021 9269.55 25027.79 5667.79
广粮香2号
Guangliangxiang2
直播
DS
2020 7077.60 19109.52 0 450 1500 14250 2909.52 378.87
2021 7156.35 19322.15 3122.15
移栽
AT
2020 8546.55 23075.69 550 4500 60 3715.69
2021 7747.50 20918.25 1558.25
Y两优1号
Yliangyou1
直播
DS
2020 9347.85 25239.20 0 450 1500 14250 9039.20 3054.90
2021 10580.55 28567.49 12367.49
移栽
AT
2020 9436.80 25479.36 550 4500 60 6119.36
2021 10569.45 28537.52 9177.52
桂野丰
Guiyefeng
直播
DS
2020 7923.30 21392.91 0 450 1500 14250 5192.91 1060.48
2021 8714.40 23528.88 7328.88
移栽
AT
2020 8991.75 24277.73 550 4500 60 4917.73
2021 9201.15 24843.11 5483.11
[1] 李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. 作物学报, 2011, 37(2): 309-320.
doi: 10.3724/SP.J.1006.2011.00309
LI J, ZHANG H C, GONG J L, CHANG Y, WU G C, GUO Z H, DAI Q G, HUO Z Y, XU K, WEI H Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. Acta Agronomica Sinica, 2011, 37(2): 309-320. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00309
[2] 唐湘如, 罗锡文, 黎国喜, 王在满, 郑天翔, 陈伟通, 舒时富. 精量穴直播早稻的产量形成特性. 农业工程学报, 2009, 25(7): 84-87.
TANG X R, LUO X W, LI G X, WANG Z M, ZHENG T X, CHEN W T, SHU S F. Yield formation characteristics of precision hill-drop drilling early rice. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 84-87. (in Chinese)
[3] 罗锡文, 谢方平, 欧颖刚, 李佰祥, 郑丁科. 水稻生产不同栽植方式的比较试验. 农业工程学报, 2004, 20(1): 136-139.
LUO X W, XIE F P, OU Y G, LI B X, ZHENG D K. Experimental investigation of different transplanting methods in paddy production. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 136-139. (in Chinese)
[4] MAHMOOD N, CHATHA Z A, BULAND A, MUHAMMAD S. Response of rice to different sowing methods. Asian Journal of Plant Sciences, 2002, 1(2): 144-145.
doi: 10.3923/ajps.2002.144.145
[5] 池忠志, 姜心禄, 郑家国. 不同种植方式对水稻产量的影响及其经济效益比较. 作物杂志, 2008(2): 73-75.
CHI Z Z, JIANG X L, ZHENG J G. Comparison of yield and economic effect of rice under different planting patterns. Crops, 2008(2): 73-75. (in Chinese)
[6] 程建平, 罗锡文, 樊启洲, 张集文, 吴建平, 王在满, 臧英. 不同种植方式对水稻生育特性和产量的影响. 华中农业大学学报, 2010, 29(1): 1-5.
CHENG J P, LUO X W, FAN Q Z, ZHANG J W, WU J P, WANG Z M, ZANG Y. Influence of different planting methods on growth and development characteristics and yield of rice. Journal of Huazhong Agricultural University, 2010, 29(1): 1-5. (in Chinese)
[7] 王在满, 郑乐, 张明华, 王宝龙, 莫钊文, 罗锡文. 不同播种方式对直播水稻倒伏指数和根系生长的影响. 江苏农业学报, 2016, 32(4): 725-728.
WANG Z M, ZHENG L, ZHANG M H, WANG B L, MO Z W, LUO X W. Effects of seeding manners on lodging index and root growth of direct seeded rice. Jiangsu Journal of Agricultural Sciences, 2016, 32(4): 725-728. (in Chinese)
[8] 许轲, 唐磊, 郭保卫, 张洪程, 霍中洋, 戴其根, 魏海燕. 不同水直播方式水稻植株抗倒特性研究. 华北农学报, 2014, 29(6): 226-232.
doi: 10.7668/hbnxb.2014.06.038
XU K, TANG L, GUO B W, ZHANG H C, HUO Z Y, DAI Q G, WEI H Y. Lodging resistance of rice under the different pattern of water direct-seeding cultivation method. Acta Agriculturae Boreali-Sinica, 2014, 29(6): 226-232. (in Chinese)
doi: 10.7668/hbnxb.2014.06.038
[9] 陈丽, 贺奇, 王兴盛, 孙建昌. 不同直播栽培方式对水稻产量及其构成的影响. 东北农业科学, 2021, 46(3): 10-14.
CHEN L, HE Q, WANG X S, SUN J C. Effects of different direct seeding cultivation methods on rice yield and its composition. Journal of Northeast Agricultural Sciences, 2021, 46(3): 10-14. (in Chinese)
[10] 周正权, 赵刚, 赵丽丽, 徐子强, 许小芳. 不同轻简栽培方式对水稻生长发育、产量及效益的影响. 中国稻米, 2015, 21(3): 53-56.
doi: 10.3969/j.issn.1006-8082.2015.03.014
ZHOU Z Q, ZHAO G, ZHAO L L, XU Z Q, XU X F. Effects of different simplified cultivation methods on growth, yield and benefit of rice. China Rice, 2015, 21(3): 53-56. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2015.03.014
[11] 韦银兰, 罗友谊, 唐启源, 王慰亲, 郑华斌. 机械种植方式对双季稻生育期、产量及经济效益的影响. 杂交水稻, 2022, 37(1): 122-128.
WEI Y L, LUO Y Y, TANG Q Y, WANG W Q, ZHENG H B. Effects of mechanical planting methods on growth period, yield and economic benefits of double-cropping rice. Hybrid Rice, 2022, 37(1): 122-128. (in Chinese)
[12] 刘立军, 王康君, 葛立立, 范苗苗, 张自常, 王志琴, 杨建昌. 旱种水稻基部节间性状与倒伏的关系及其生理机制. 作物学报, 2012, 38(5): 848-856.
doi: 10.3724/SP.J.1006.2012.00848
LIU L J, WANG K J, GE L L, FAN M M, ZHANG Z C, WANG Z Q, YANG J C. Relationship between characteristics of basal internodes and lodging and its physiological mechanism in dry-cultivated rice. Acta Agronomica Sinica, 2012, 38(5): 848-856. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00848
[13] 杨艳华, 朱镇, 张亚东, 陈涛, 赵庆勇, 周丽慧, 姚姝, 张颖慧, 董少玲, 王才林. 不同水稻品种(系)抗倒伏能力与茎秆形态性状的关系. 江苏农业学报, 2011, 27(2): 231-235.
YANG Y H, ZHU Z, ZHANG Y D, CHEN T, ZHAO Q Y, ZHOU L H, YAO S, ZHANG Y H, DONG S L, WANG C L. Relationship between lodging resistance and stem morphological traits in different rice varieties. Jiangsu Journal of Agricultural Sciences, 2011, 27(2): 231-235. (in Chinese)
[14] 李杰, 张洪程, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同种植方式对超级稻植株抗倒伏能力的影响. 中国农业科学, 2011, 44(11): 2234-2243.
LI J, ZHANG H C, GONG J L, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y. Effects of different planting methods on the culm lodging resistance of super rice. Scientia Agricultura Sinica, 2011, 44(11): 2234-2243. (in Chinese)
[15] 罗友谊, 王蔚亲, 郑华斌, 刘功义, 巢英, 徐彩, 郑志刚, 李雪倩, 韦银兰, 唐启源. 不同机械化有序种植方式对水稻生长特性及产量的影响. 中国农业科技导报, 2021, 23(7): 162-171.
doi: 10.13304/j.nykjdb.2020.0918
LUO Y Y, WANG W Q, ZHENG H B, LIU G Y, CHAO Y, XU C, ZHENG Z G, LI X Q, WEI Y L, TANG Q Y. Influences of different mechanical and orderly planting methods on growth characteristics and yield of rice. Journal of Agricultural Science and Technology, 2021, 23(7): 162-171. (in Chinese)
doi: 10.13304/j.nykjdb.2020.0918
[16] 刘红江, 郑建初, 陈留根, 周炜. 不同播栽方式对水稻生长发育特性的影响. 生态学杂志, 2013, 32(9): 2326-2331.
LIU H J, ZHENG J C, CHEN L G, ZHOU W. Effects of different planting modes on the growth and development characteristics of rice. Chinese Journal of Ecology, 2013, 32(9): 2326-2331. (in Chinese)
[17] 赵建明, 姜兴强, 胡宁. 水稻抗倒伏的材料学特性. 北方水稻, 2007(3): 69-73.
ZHAO J M, JIANG X Q, HU N. Materials science characteristics of lodging resistance in rice. North Rice, 2007(3): 69-73. (in Chinese)
[18] 马均, 马文波, 田彦华, 杨建昌, 周开达, 朱庆森. 重穗型水稻植株抗倒伏能力的研究. 作物学报, 2004, 30(2): 143-148.
doi: 10.3724/SP.J.1095.2013.20105
MA J, MA W B, TIAN Y H, YANG J C, ZHOU K D, ZHU Q S. The culm lodging resistance of heavy panicle type of rice. Acta Agronomica Sinica, 2004, 30(2): 143-148. (in Chinese)
doi: 10.3724/SP.J.1095.2013.20105
[19] 蒋明金, 大川泰一郎, 马均. 播栽方式对2个籼稻品种抗倒伏能力的影响. 四川农业大学学报, 2020, 38(4): 391-398.
JIANG M J, OOKAWA T, MA J. Effects of planting methods on lodging resistance of two indica rice varieties. Journal of Sichuan Agricultural University, 2020, 38(4): 391-398. (in Chinese)
[20] WANG X Y, XU L, LI X X, YANG G D, WANG F, PENG S B. Grain yield and lodging-related traits of ultrashort-duration varieties for direct-seeded and double-season rice in Central China. Journal of Integrative Agriculture, 2022, 21(10): 2888-2899.
doi: 10.1016/j.jia.2022.07.035
[21] 雷小龙, 刘利, 刘波, 黄光忠, 马荣朝, 任万军. 杂交籼稻F优498机械化种植的茎秆理化性状与抗倒伏性. 中国水稻科学, 2014, 28(6): 612-620.
LEI X L, LIU L, LIU B, HUANG G Z, MA R C, REN W J. Physical and chemical characteristics and lodging resistance of culm of indica hybrid rice F you 498 under mechanical planting. Chinese Journal of Rice Science, 2014, 28(6): 612-620. (in Chinese)
[22] 陈桂华, 邓化冰, 张桂莲, 唐文帮, 黄璜. 水稻茎秆性状与抗倒性的关系及配合力分析. 中国农业科学, 2016, 49(3): 407-417.
CHEN G H, DENG H B, ZHANG G L, TANG W B, HUANG H. The correlation of stem characters and lodging resistance and combining ability analysis in rice. Scientia Agricultura Sinica, 2016, 49(3): 407-417. (in Chinese)
[23] 袁新捷, 刘潇, 陈国兴. 水稻核心种质资源茎秆抗倒伏性研究. 华中农业大学学报, 2021, 40(1): 147-153.
YUAN X J, LIU X, CHEN G X. Stem lodging resistance of rice core germplasm. Journal of Huazhong Agricultural University, 2021, 40(1): 147-153. (in Chinese)
[24] 许俊伟, 孟天瑶, 荆培培, 张洪程, 李超, 戴其根, 魏海燕, 郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响. 作物学报, 2015, 41(11): 1767-1776.
doi: 10.3724/SP.J.1006.2015.01767
XU J W, MENG T Y, JING P P, ZHANG H C, LI C, DAI Q G, WEI H Y, GUO B W. Effect of mechanical-transplanting density on lodging resistance and yield in different types of rice. Acta Agronomica Sinica, 2015, 41(11): 1767-1776. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01767
[25] 张佑宏, 王治虎, 张舒, 张瑞洋, 杨小林. 栽培方式对水稻生育进程、主要病害严重度及产量的影响. 华中农业大学学报, 2019, 38(3): 1-6.
ZHANG Y H, WANG Z H, ZHANG S, ZHANG R Y, YANG X L. Effects of cultivation modes on growth process, severity of main diseases and yield of rice. Journal of Huazhong Agricultural University, 2019, 38(3): 1-6. (in Chinese)
[26] 马雅美, 张少红, 赵均良. 水稻直播相关性状遗传分析及分子机制研究进展. 广东农业科学, 2021, 48(10): 13-22.
MA Y M, ZHANG S H, ZHAO J L. Research progress in genetic analysis and molecular mechanisms of rice direct-seeding related traits. Guangdong Agricultural Sciences, 2021, 48(10): 13-22. (in Chinese)
[27] 蒋明金, 李敏, 周维佳, 罗德强, 江学海, 姬广梅, 李立江. 适宜机插密度提高优质杂交籼稻插秧质量及产量. 杂交水稻, 2021, 36(1): 41-47.
JIANG M J, LI M, ZHOU W J, LUO D Q, JIANG X H, JI G M, LI L J. Suitable mechanical transplanting density improves the transplanting quality and grain yield of high-quality indica hybrid rice. Hybrid Rice, 2021, 36(1): 41-47. (in Chinese)
[28] 邓接楼, 欧阳佰玲, 张高阳, 周木华, 桂在智, 朱元元, 王鹏飞. 不同栽培条件对杂交晚稻茎秆抗倒伏性状的影响. 浙江农业学报, 2016, 28(12): 1970-1978.
doi: 10.3969/j.issn.1004-1524.2016.12.02
DENG J L, OUYANG B L, ZHANG G Y, ZHOU M H, GUI Z Z, ZHU Y Y, WANG P F. Influence of different cultivation conditions on stalk lodging resistances of hybrid late rice (Oryza sativa L.). Acta Agriculturae Zhejiangensis, 2016, 28(12): 1970-1978. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2016.12.02
[29] 萧长亮, 解保胜, 王安东, 王士强, 李春光, 那永光. 氮和稀效唑调控对寒地水稻倒伏和产量的影响. 作物杂志, 2017(6): 96-103.
XIAO C L, JIE B S, WANG A D, WANG S Q, LI C G, NA Y G. Effects of nitrogen and uniconazole regulation on lodging resistance and yield of rice in cold region. Crops, 2017(6): 96-103. (in Chinese)
[30] 王文霞, 周燕芝, 曾勇军, 吴自明, 谭雪明, 潘晓华, 石庆华, 曾研华. 不同机直播方式对南方优质晚籼稻产量及抗倒伏特性的影响. 中国水稻科学, 2020, 34(1): 46-56.
doi: 10.16819/j.1001-7216.2020.9075
WANG W X, ZHOU Y Z, ZENG Y J, WU Z M, TAN X M, PAN X H, SHI Q H, ZENG Y H. Effects of different mechanical direct seeding patterns on yield and lodging resistance of high-quality late indica rice in South China. Chinese Journal of Rice Science, 2020, 34(1): 46-56. (in Chinese)
doi: 10.16819/j.1001-7216.2020.9075
[31] 何巧林, 张绍文, 李应洪, 谯晶, 孙永健, 马均. 硅钾配施对水稻茎秆性状和抗倒伏能力的影响. 杂交水稻, 2017, 32(1): 66-73.
HE Q L, ZHANG S W, LI Y H, QIAO J, SUN Y J, MA J. Effects of silicon and potassium fertilizer combination on stem traits and lodging resistance of rice. Hybrid Rice, 2017, 32(1): 66-73. (in Chinese)
[32] 文廷刚, 王伟中, 杨文飞, 杜小凤, 王泽港, 贾艳艳, 钱新民, 孙爱侠, 施洪泉, 顾大路. 水稻茎秆形态特征与抗倒伏能力对外源植物生长调节剂的响应差异. 南方农业学报, 2020, 51(1): 48-55.
WEN T G, WANG W Z, YANG W F, DU X F, WANG Z G, JIA Y Y, QIAN X M, SUN A X, SHI H Q, GU D L. Morphological characteristics and lodging resistance of rice stems and its response to exogenous plant growth regulators. Journal of Southern Agriculture, 2020, 51(1): 48-55. (in Chinese)
[33] 许炜, 孙志贵, 田贺培, 张运波, 卢碧林. 播种和施肥方式对直播稻分蘖特性和产量的影响. 华中农业大学学报, 2018, 37(3): 1-9.
XU W, SUN Z G, TIAN H P, ZHANG Y B, LU B L. Effects of sowing and fertilization on tiller characteristics and yield of direct-seeded rice. Journal of Huazhong Agricultural University, 2018, 37(3): 1-9. (in Chinese)
[34] 陈良林, 沈利祥, 周元霖, 薛锋. 机械水直播稻生育特性与高产栽培技术研究. 安徽农业科学, 2004, 32(3): 425-426.
CHEN L L, SHEN L X, ZHOU Y L, XUE F. Research on fertility characteristics and high-yield cultivation technology of rice in mechanical water. Journal of Anhui Agricultural Sciences, 2004, 32(3): 425-426. (in Chinese)
[35] 丁涛, 秦玉金. 水稻不同栽培方式对产量效益及生育特性的影响. 安徽农业科学, 2006, 34(14) : 3337-3338.
DING T, QIN Y J. Effects of different cultivation methods of rice on yield efficiency and fertility characteristics. Journal of Anhui Agricultural Sciences, 2006, 34(14): 3337-3338. (in Chinese)
[36] 朱宏宇, 高波, 张苏萍, 李红娇. 不同移栽方式对水稻产量及效益的影响. 安徽农业科学, 2007, 35(29): 9188-9190.
ZHU H Y, GAO B, ZHANG S P, LI H J. Influences of different transplanting patterns on rice yield and benefit. Journal of Anhui Agricultural Sciences, 2007, 35(29): 9188-9190. (in Chinese)
[37] 张岳平, 张玉烛, 曾翔, 瞿华香, 张兴怀, 谢建红, 屠乃美. 一季晚稻直播栽培与育秧移栽的农艺性状比较. 湖南农业大学学报(自然科学版), 2006, 32(6): 581-584.
ZHANG Y P, ZHANG Y Z, ZENG X, QU H X, ZHANG X H, XIE J H, TU N M. Different characters of single-cropping late rice under direct-seeding and transplantation cultivation. Journal of Hunan Agricultural University (Natural Sciences), 2006, 32 (6): 581-584. (in Chinese)
[38] 郭长春, 孙知白, 孙永健, 殷尧翥, 武云霞, 唐源, 杨志远, 向开宏, 马均. 优质丰产杂交籼稻品种机直播产量构成及其群体质量研究. 中国水稻科学, 2018, 32(5): 462-474.
doi: 10.16819/j.1001-7216.2018.8016
GUO C C, SUN Z B, SUN Y J, YIN Y Z, WU Y X, TANG Y, YANG Z Y, XIANG K H, MA J. Study on yield formation and population quality of indica hybrid rice with good qualityand high yield under mechanical direct seeding. Chinese Journal of Rice Science, 2018, 32(5): 462-474. (in Chinese)
doi: 10.16819/j.1001-7216.2018.8016
[39] 李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同生态区栽培方式对水稻产量、生育期及温光利用的影响. 中国农业科学, 2011, 44(13): 2661-2672.
LI J, ZHANG H C, DONG Y Y, NI X C, YANG B, GONG J L, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Scientia Agricultura Sinica, 2011, 44(13): 2661-2672. (in Chinese)
[40] 杨波, 徐大勇, 张洪程. 直播、机插与手栽水稻生长发育、产量及稻米品质比较研究. 扬州大学学报(农业与生命科学版), 2012, 33(2): 39-43.
YANG B, XU D Y, ZHANG H C. Research on growth, yield, quality of rice under direct seeding, mechanical transplanting, and artificial transplanting. Journal of Yangzhou University(Agricultural and Life Science Edition), 2012, 33(2): 39-43. (in Chinese)
[41] 曾文涛. 水稻直播、移栽、机插的效益对比. 江西农业, 2019(14): 8-10.
ZENG W T. Comparison of the benefits of rice direct seeding, transplanting and machine cutting. Jiangxi Agriculture, 2019(14): 8-10. (in Chinese)
[42] 张丽颖, 王辉, 唐志强. 辽宁省直播稻生产效益分析及发展策略. 农业经济, 2020(8): 24-25.
ZHANG L Y, WANG H, TANG Z Q. Analysis of production efficiency and development strategy of direct-seeded rice in Liaoning province. Agricultural Economy, 2020(8): 24-25. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[13] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[14] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[15] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!