Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2273-2286.doi: 10.3864/j.issn.0578-1752.2021.11.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet

ZHANG LinLin(),ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing(),DIAO XianMin()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-11-09 Accepted:2020-12-07 Online:2021-06-01 Published:2021-06-09
  • Contact: GuanQing JIA,XianMin DIAO E-mail:657044121@qq.com;jiaguanqing@caas.cn;diaoxianmin@caas.cn

Abstract:

【Objective】 Identification of allelic variations of heading date adaptation related genes and laying foundation for breeding of wide-adapted varieties in foxtail millet. 【Method】In this trial, a vital regulator of heading time in foxtail millet, SiTOC1, was identified using genome-wide association analysis. Spatio-temporal transcription (multi-omics database for Setaria italica,MDSi), sub-cellular localization and 24 hours rhythm expression pattern of SiTOC1 was analyzed. Sequence variations of both promoter and encoding regions in SiTOC1 and relationships between haplotypic variations and heading date were characterized in 99 foxtail millet accessions. 【Result】A significant GWAS signal (Position: 31 456 761 bp) was detected on Chromosome 1 and only one TOC1 homologue was identified (SiTOC1). SiTOC1 highly expressed in root, stem and leaf, and located into cell nucleus. An elevated expression of SiTOC1 was identified at dusk across whole day transcription survey under short-day environment. Many haplotypic variations of SiTOC1 were identified but REC and CCT domains of SiTOC1 were conserved in foxtail millet accessions, and two main haplotypes including H-2 and H-6 in protein encoding regions combined with two co-segregated haplotypes including Hp-591C and Hp-591A were identified. Nearly 2.5 times higher expression of Hp-591C haplotype combined with 9,11 and 12 days delay of heading time through Hainan, Changzhi and Urumuqi were observed. 【Conclusion】The major haplotype Hp-591A identified at 591 bp in the promoter region of SiTOC1 matures earlier than Hp-591C and could be selected as a main effective locus for molecular breeding of foxtail millet.

Key words: Setaria italica, heading time, genome-wide association study, haplotype, genetic variation, rhythmic expression

Table 1

PCR amplification and sequencing primers for SiTOC1 subcellular localization vector’s construction"

载体
Vector
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
产物长度
Product length (bp)
GFP-N
端载体
GFP-N terminal
vector
GFPG5-F1 GCTGTACAAGACTAGTATGGTGGGCGGCGGCG 1517
GFPG5-R1 GGGGAAATTCGAGCTCCTACTCTGGAGAAGAAATAATC
PUCGFPN-TestF TACAACTACAACAGCCACAA 2163
PUCGFPN-TestR CCTCTTCGCTATTACGC
GFPG5-F1.1 CCATCATCATGATGTCC
GFPG5-R1.1 TTCAGAGCGACTGCATG
GFP-C端载体
GFP-C terminal
vector
G5GFP-F1 TAGTGGATCCATCGATATGGTGGGCGGCGGCG 1514
G5GFP-R1 TCCCGGGAGCGGTACCCTCTGGAGAAGAAATAATCTC
PUCGFPC-TestF ACCTCCTCGGATTCCAT 2354
PUCGFPC-TestR TGCCGTTCTTCTGCTTG
G5GFP-F1.1 CAAGATGCTCAAGTACA
G5GFP-R1.1 CGATTTACATACCTCACT
RFP-N端载体
RFP-N terminal
vector
MYBRFP-F GCTGTACAAGACTAGTATGGACATGGCGCACGAGAG 1022
MYBRFP-R GGGGAAATTCGAGCTCTCACACGGCGGCCTGGGT
PUCRFPN-TestF CTCAAGCTCAAGGACGG 1584
PUCRFPN-TestR CCTCTTCGCTATTACGC

Table 2

Primers for amplication and sequencing of SiTOC1"

产物Product 引物名称 Primer name 引物序列 Primer sequence (5′-3′) 产物长度 Product length (bp)
编码区
Coding region
G5-F1 GATCCAGCGACAGTCCA 1450
G5-R1 AGACAGGTCGGACTGAAATA
G5-F2 GATGAGTTGCCACAAAGATG 1272
G5-R2 TGTATTGCCTTTCCCAGTAG
启动子区
Promoter region
G5P-F1 GGCCAAACGAAACCATG 2069
G5P-R1 CCTAATCCGGGAAACCAG
G5P-F1.1 ATTGCGTGCACGAATCT
G5P-R1.1 CAGCAGCAGCCTGCCTCG
SiTOC1互补DNA
SiTOC1 cDNA
G5Q-F1 GCCGATCAAGCATCATATGTTAAGT 250
G5Q-R1 TTTGGCCTTCATTGCTTCGC
Cullin互补DNA
Cullin cDNA
Cullin-F TATGGGTCATCAACAGCTTGTC 112
Cullin-R GTAGTCCCTCGTGATGAGATCC

Fig. 1

GWAS analysis of SiTOC1 A: Results of SiTOC1 GWAS; B: Candidate gene in the associated locus range"

Table 3

Annotation of candidate gene"

位点名称 LocusName 拟南芥对应基因 Arabi-symbol 拟南芥基因功能注释 Arabi-defline
Seita.1G235800 N/A 无功能注释N/A
Seita.1G235900 MKM21.12 线粒体核糖体蛋白L27 Mitochondrial ribosomal protein L27
Seita.1G236000 N/A 谷氧还蛋白家族 Glutaredoxin family protein
Seita.1G236100 TOC1 含CCT基序的应答调节蛋白 CCT motif-containing response regulator protein
Seita.1G236200 PAP10 紫色酸性磷酸酶10 Purple acid phosphatase 10
Seita.1G236300 NOP10 核仁RNA结合Nop10p家族蛋白 Nucleolar RNA-binding Nop10p family protein
Seita.1G236400 AtMYB79 含MYB结构域蛋白79 MYB domain protein 79

Fig. 2

Gene structure and homologous protein phylogenetic tree of SiTOC1 A: Gene structure of SiTOC1; B: Homologous protein's phylogenetic tree and gene structure of SiTOC1. GRMZM2G020081_T01: Zea mays; Sobic.004G216700.1: Sorghum bicolor; Sevir.1G241000.1: Setaria viridis; Seita.1G236100.1 (SiTOC1): Setaria italica (L); LOC_Os02g40510.1: Oryza sativa; Traes_6AL_A0A31AA9F.1: Triticum aestivum; AT5G61380.1: Arabidopsis thaliana; Gorial.003G098300.2: Gossypium raimondii; Glyma.06G196200.1: Glycine max; Medtr4g108880.2: Medicago truncatula"

Fig. 3

The expression pattern and subcellular location of SiTOC1 A: Tissue-specific analysis of SiTOC1: a: Plant during one-tip-two-leaf; b: Neck panicle internodes during filling stage; c: Flag leaf during filling stage; d: Flag leaf sheath during filling stage; e: Stem of top second during Filling stage; f: Leaf of top-fourth during filling stage; g: Leaf sneath of top fourth during filling stage; h: Root during filling stage; i: Immature spikelet during early development stage; j: Immature spikelet during late development stage; k: Leaf veins; l: Mesophyll. B: Subcellular localization of SiTOC1, the RFP field shows RFP signals of 35S∷RFP∶OsMYB2, bar=10 μm"

Fig. 4

Rhythm expression pattern of SiTOC1 in short day The white part of top bar frame represents the time of light (7:00-17:00), the black part of top bar frame represents the time of dark(17:00-7:00)"

Fig. 5

Variations detected in SiTOC1 coding region Top of the figure is SiTOC1 gene coding region structure, the boxes represent exons, and the connecting lines between the boxes represent introns, the lower part corresponds to the different haplotype combination information table, the solid line connected to the gene structure diagram of the SiTOC1 coding region above indicates the mutation site, the red connecting line indicates the non-synonymous mutation, the different colored cells in the table represent different bases, the green, yellow, blue and red cells represent G, A, C, T bases, respectively, -: Stands for deletion, +: Stands for insertion, the number after the symbol stands for the number of bases deleted or inserted, the Indel position from left to right is: 330(+6)/+gtgctg, 336(+5)/+ atgct, 353(+1)/+t, 398(+1) /+t, 524(+1)/+t, 661(+1)/+g, 807(+11)/+gtgggttgctt, 1099(+ 1)/+c, 1359(+1)/+t, 1381(+5)/+taatc, 1437(+1)/+t"

Fig. 6

Relationships between SiTOC1 haplotypes detected in coding region SiTOC1 haplotype network diagram of coding region, different solid circles represent different haplotypes, the area of the circle is proportional to the number of species contained in the corresponding haplotype, the black connecting lines represent the mutation steps of different haplotypes, and the red circles on the connecting lines dots represent mutation steps more than once"

Fig. 7

SiTOC1 promoters’s haplotype derivation diagram and transcription analysis A: SiTOC1 haplotype network diagram of promoter; B-C: Relative expression analysis of SiTOC1 promoter haplotypes, P=0.014. *: Reach a significant difference at P<0.05. The same as below"

Fig. 8

Analysis on the significant differences of haplotypes’s heading time of SiTOC1’s coding region and promoter **: Reach a highly significant difference at P<0.01. A: Analysis on the significant differences of haplotype’s heading time of SiTOC1’s coding region, 2010 Sanya P=0.0180, 2016 Changzhi P=0.0290, 2016 Urumuqi P=0.0089; B: Analysis on the significant differences of haplotype’s heading time of SiTOC1’s promoters, 2010 Sanya P=0.0262, 2016 Changzhi P=0.0106, 2016 Urumuqi P=0.0257"

[1] TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):20260-20264.
[2] BARTON L, NEWSOME S D, CHEN F H, WANG H, GUILDERSON T P, BETTINGER R L. Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(14):5523-5528.
[3] JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B G, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013,45(8):957-961.
doi: 10.1038/ng.2673
[4] BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JENKINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X W, WU X M, MITROS T, TRIPLETT J, YANG X H, YE C Y, MAURO-HERRERA M, WANG L, LI P H, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30(6):555-561.
doi: 10.1038/nbt.2196
[5] ZHANG G Y, LIU X, QUAN Z W, CHENG S F, XU X, PAN S K, XIE M, ZENG P, YUE Z, WANG W L, TAO Y, BIAN C, HAN C L, XIA Q J, PENG X H, CAO R, YANG X H, ZHAN D L, HU J C, ZHANG Y X, LI H N, LI H, LI N, WANG J Y, WANG C C, WANG R Y, GUO T, CAI Y J, LIU C Z, XIANG H T, SHI Q X, HUANG P, CHEN Q C, LI Y R, WANG J, ZHAO Z H, WANG J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012,30(6):549-554.
doi: 10.1038/nbt.2195
[6] YANG Z R, ZHANG H S, LI X K, SHEN H M, GAO J H, HOU S Y, ZHANG B, MAYES S, BENNETT M, MA J X, WU C Y, SUI Y, HAN Y H, WANG X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants, 2020,6(9):1167-1178.
doi: 10.1038/s41477-020-0747-7
[7] COLASANTI J, CONEVA V. Mechanisms of floral induction in grasses: Something borrowed, something new. Plant Physiology, 2009,149(1):56-62.
doi: 10.1104/pp.108.130500
[8] ANDRÉS F, COUPLAND G. The genetic basis of flowering responses to seasonal cues. Nature Review Genetics, 2012,13(9):627-639.
doi: 10.1038/nrg3291
[9] RIESEBERG L H, WILLIS J H. Plant speciation. Science, 2007,317(5840):910-914.
doi: 10.1126/science.1137729
[10] STRAYER C, OYAMA T, SCHULTZ T F, RAMAN R, SOMERS D E, MÁS P, PANDA S, KREPS J A, KAY S A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 2000,289(5480):768-771.
doi: 10.1126/science.289.5480.768
[11] COCKRAM J, THIEL T, STEUERNAGEL B, STEIN N, TAUDIEN S, BAILEY P C, O'SULLIVAN D M. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLoS ONE, 2012,7(9):e45307.
doi: 10.1371/journal.pone.0045307
[12] WENKEL S, TURCK F, SINGER K, GISSOT L, LE GOURRIEREC J L, SAMACH A, COUPLAND G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. The Plant Cell, 2006,18(11):2971-2984.
doi: 10.1105/tpc.106.043299
[13] GENDRON J M, PRUNEDA-PAZ J L, DOHERTY C J, GROSS A M, KANG S E, KAY S A. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(8):3167-3172.
[14] MAKINO S, MATSUSHIKA A, KOJIMA M, YAMASHINO T, MIZUNO T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1- overexpressing plants. Plant Cell Physiology, 2002,43(1):58-69.
doi: 10.1093/pcp/pcf005
[15] SHIM J S, KUBOTA A, IMAIZUMI T. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology, 2017,173(1):5-15.
doi: 10.1104/pp.16.01327
[16] KOO B H, YOO S C, PARK J W, KWON C T, LEE B D, AN G, ZHANG Z, LI J, LI Z, PAEK N C. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Molecular Plant, 2013,6(6):1877-1888.
doi: 10.1093/mp/sst088
[17] SALOMÉP A, MCCLUNG C R. The Arabidopsis thaliana clock. Journal of Biological Rhythms, 2004,19(5):425-435.
doi: 10.1177/0748730404268112
[18] MÁS P. Circadian clock signaling in Arabidopsis thaliana: From gene expression to physiology and development. The International Journal of Developmental Biology, 2005,49(5/6):491-500.
doi: 10.1387/ijdb.041968pm
[19] GARDNER M J, HUBBARD K E, HOTTA C T, DODD A N, WEBB A A. How plants tell the time. Biochemical Journal, 2006,397(1):15-24.
doi: 10.1042/BJ20060484
[20] ALABADÍ D, OYAMA T, YANOVSKY M J, HARMON F G, MÁS P, KAY S A. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 2001,293(5531):880-883.
doi: 10.1126/science.1061320
[21] PRUNEDA-PAZ J L, BRETON G, PARA A, KAY S A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science, 2009,323(5920):1481-1485.
doi: 10.1126/science.1167206
[22] 陆平. 谷子种质资源描述规范和数据标准2-9. 北京: 中国农业出版社, 2006.
LU P. Description Specification and Data Standard of Foxtail Millet Germplasm Resources 2-9. Beijing: China Agriculture Press, 2006. (in Chinese)
[23] TURNER S D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv, 2014, https://doi.org/10.1101/005165.
[24] YANG A, DAI X Y, ZHANG W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012,63(7):2541-2556.
doi: 10.1093/jxb/err431
[25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[26] DOYLE J. DNA protocols for plants-CTAB total DNA isolation. Molecular Techniques in Taxonomy, 1991: 283-293.
[27] LIBRADO P, ROZAS J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009,25(11):1451-1452.
doi: 10.1093/bioinformatics/btp187
[28] 刁现民, 程汝宏. 十五年区试数据分析展示谷子糜子育种现状. 中国农业科学, 2017,50(23):4469-4474.
DIAO X M, CHENG R H. Fifteen-year regional trial data analysis shows the current situation of millet and millet breeding. Scientia Agricultura Sinica, 2017,50(23):4469-4474. (in Chinese)
[29] YANO M, KATAYOSE Y, ASHIKARI M, YAMANOUCHI U, MONNA L, FUSE T, BABA T, YAMAMOTO K, UMEHARA Y, NAGAMURA Y, SASAKI T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000,12(12):2473-2484.
doi: 10.1105/tpc.12.12.2473
[30] HAYAMA R, YOKOI S, TAMAKI S, YANO M, SHIMAMOTO K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003,422(6933):719-722.
doi: 10.1038/nature01549
[31] XUE W Y, XING Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008,40(6):761-767.
doi: 10.1038/ng.143
[32] NEMOTO Y, NONOUE Y, YANO M, IZAWA T. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. The Plant Journal, 2016,86(3):221-233.
doi: 10.1111/tpj.2016.86.issue-3
[33] DU A, TIAN W, WEI M H, YAN W, HE H, ZHOU D, HUANG X, LI S G, OUYANG X H. The DTH8-Hd1 module mediates day-length- dependent regulation of rice flowering. Molecular Plant, 2017,10(7):948-961.
doi: 10.1016/j.molp.2017.05.006
[34] FUJINO K, YAMANOUCHI U, NONOUE Y, OBARA M, YANO M. Switching genetic effects of the flowering time gene Hd1 in LD conditions by Ghd7 and OsPRR37 in rice. Breeding Science, 2019,69(1):127-132.
doi: 10.1270/jsbbs.18060
[35] ZHANG Z Y, ZHANG B, QI F X, WU H, LI Z X, XING Y Z. Hd1 function conversion in regulating heading is dependent on gene combinations of Ghd7, Ghd8, and Ghd7.1 under long-day conditions in rice. Molecular Breeding, 2019,39(92):1-12.
doi: 10.1007/s11032-018-0907-x
[1] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[2] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[3] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[4] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[5] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[6] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[7] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[8] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[9] YaFei ZHANG,Jie PENG,YanSong ZHU,ShengNan YANG,Xu WANG,WanTong ZHAO,Dong JIANG. Genome Wide Identification of CCD Gene Family in Citrus and Effect of CcCCD4a on the Color of Citrus Flesh [J]. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889.
[10] GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526.
[11] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[12] CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
[13] XU Yunbi,YANG QuanNü,ZHENG HongJian,XU YanFen,SANG ZhiQin,GUO ZiFeng,PENG Hai,ZHANG Cong,LAN HaoFa,WANG YunBo,WU KunSheng,TAO JiaJun,ZHANG JiaNan. Genotyping by Target Sequencing (GBTS) and Its Applications [J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004.
[14] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[15] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!