Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (16): 3117-3129.doi: 10.3864/j.issn.0578-1752.2018.16.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels

JIANG GuiYing1, ZHANG YuJun1, WEI Xi1, ZHANG DongXu1, LIU ShiLiang1, LIU KaiLou3 HUANG ShaoMin2, SHEN FengMin1   

  1. 1College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002; 2 Institute of Plant  Nutrition and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002; 3Jiangxi Institute of Red Soil, Jinxian 331717, Jiangxi
  • Received:2017-10-30 Online:2018-08-16 Published:2018-08-16

Abstract: 【Objective】 The objective of this study is to explore the infrared spectra characteristics of soil organic carbon (SOC) with different SOC saturation levels under different long-term fertilization. 【Method】 Based on two long-term experiments at Jinxian (Red soil with double rice cropping) and Yuanyang (Fluvo-aquic soil with winter wheat-summer maize cropping) sites, the typical fertilizer treatments were selected. The saturation deficit (SD) under different treatments was calculated and analyzed. The different functional groups were measured by Fourier transform infrared spectroscopy (FTIR), and then the characteristics among different treatments were analyzed. 【Result】 It was linear relationship between SOC annual change rate and C input at Yuanyang, while the asymptotic line at Jinxian. The SD value at Jinxian (0.118-0.413) was obviously smaller than that at Yuanyang (0.462-0.616). The similar functional groups such as aromatic (1 636 cm-1, 695 cm-1), aliphatic (3 000-2 850 cm-1,1 455 cm-1), carbohydrate /polysaccharides (1 080 cm-1,1 033cm-1/1 034 cm-1) and organosilicone (1 100-1 008 cm-1, 526 cm-1, 795 cm-1, 778 cm-1, 470 cm-1) were both at Jinxian and Yuanyang sites. The absorption intensity of aromatic, aliphatic and organosilicone series was clearly stronger at Jinxian than that at Yuanyang, while the absorption intensity of carboxyl, alkane and carbohydrate was stronger at Yuanyang than that at Jinxian. The SOC content was negatively correlated with light transmittance. Compared with Yuanyang, the carbon input, clay content and iron-aluminum oxides were higher in Jinxian. Furthermore, the water regime with double rice at Jinxian was more benefit for SOC accumulation. 【Conclusion】 The results of the relationship between SOC change rate and C input and the SD value indicated that the higher saturation level appeared at Jinxian site. There were more recalcitrant components like aromatics, aliphatic and organosilicone at Jinxian, while the labile component like carboxyl, alkanes and carbohydrate appeared at Yuanyang. The infrared transmittance could quantify the function group to some extent.

Key words: carbon saturation, soil organic matter, spectral characteristics, functional groups, fluvo-aquic soil, red soil

[1]    Kong A Y Y, Six J, Bryant D C, Denison R F, Kessel C V. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal, 2005, 69(4): 1078-1085.
[2]    Kundu S, Bhattacharyya R, Prakash V, Ghosh B N, Gupta H S. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean-wheat rotation in a sandy loam soil of the Indian Himalayas. Soil and Tillage Research, 2007, 92(1): 87-95.
[3]    Six J, Conant R T, Paul E A, Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002, 241: 155-176.
[4]    吴景贵, 席时权, 姜岩. 红外光谱在土壤有机质研究中的应用. 光谱学与光谱分析, 1998, 18(1): 53-58.
Wu J G, Xi S Q, JIANG Y. Infrared spectroscopy application in soil organic matter. Spectroscopy and Spectral Analysis, 1998, 18(1): 53-58. (in Chinese)
[5]    张福韬, 乔云发. 红外光谱与核磁共振在土壤有机质结构研究中的应用. 安徽农业科学, 2015, 43(7): 81-84.
Zhang F T, Qiao Y F. Application of infrared spectroscopy and nuclear magnetic resonance in soil organic matter structure research. Journal of Anhui Agricultural Sciences, 2015, 43(7): 81-84. (in Chinese)
[6]    张雅洁, 陈晨, 陈曦, 常江, 章力干, 郜红建. 小麦-水稻秸秆还田对土壤有机质组成及不同形态氮含量的影响. 农业环境科学学报, 2015, 34(11): 2155-2161.
Zhang Y J, Chen C, Chen X, Chang J, Zhang L G, Gao H J. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil. Journal of Agro-Environment Science, 2015, 34(11): 2155-2161. (in Chinese)
[7]    朱姝, 窦森, 陈丽珍. 秸秆深还对土壤团聚体中胡敏酸结构特征的影响. 土壤学报, 2015, 52(4): 747-758.
Zhu S, Dou S, Chen L Z. Effect of deep application of straw on composition of humic acid in soil aggregates. Acta Pedologica Sinica, 2015, 52(4): 747-758. (in Chinese)
[8]    董珊珊, 窦森, 邵满娇, 靳亚双, 李立波, 谭岑, 林琛茗. 秸秆深还不同年限对黑土腐殖质组成和胡敏酸结构特征的影响. 土壤学报, 2017, 54(1): 150-159.
Dong S S, Dou S, Shao M J, Jin Y S, Li LB, Tan C, Lin C M. Effect of corn stover deep incorporation with different years on composition of soil humus and structural characteristics of humic acid in Black soil. Acta Pedologica Sinica, 2017, 54(1): 150-159. (in Chinese)
[9]    孙建英, 李民赞, 唐宁, 郑立华. 东北黑土的光谱特性及其与土壤参数的相关性分析. 光谱学与光谱分析, 2007, 27(8): 1502-1505.
Sun J Y, Li M Z, Tang N, Zheng L H. Spectral characteristics and their correlation with soil parameters of Black Soil in Northeast China. Spectroscopy and Spectral Analysis, 2007, 27(8): 1502-1505. (in Chinese)
[10]   罗璐, 周萍, 童成立, 石辉, 吴金水, 黄铁平. 长期施肥措施下稻田土壤有机质稳定性研究. 环境科学, 2013, 34(2): 692-697.
Luo L, Zhou P, Tong C L, Shi H, Wu J S, Huang T P. Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations. Environmental Science, 2013, 34(2): 692-697. (in Chinese)
[11]   刘鑫, 窦森, 李长龙, 王培宇. 开垦年限对稻田土壤腐殖质组成和胡敏酸结构特征的影响. 土壤学报, 2016, 53(1): 137-145.
Liu X, Dou S, Li C L, Wang P Y. Composition of humus and structure of humic acid as a function of age of paddy field. Acta Pedologica Sinica, 2016, 53(1): 137-145. (in Chinese)
[12]   郭素春, 郁红艳, 朱雪竹, 高彦征, 丁维新. 长期施肥对潮土团聚体有机碳分子结构的影响. 土壤学报, 2013, 50(5): 922-930.
Guo S C, Yu H Y, Zhu X Z, Gao Y Z, Ding W X. Effect of long-term fertilization on molecular structure of organic carbon in soil aggregates in Fluvo-aquic soil. Acta Pedologica Sinica, 2013, 50(5): 922-930. (in Chinese)
[13]   李民赞, 郑立华, 安晓飞, 孙红. 土壤成分与特性参数光谱快速检测方法及传感技术. 农业机械学报, 2013, 44(3): 73-87.
Li M Z, Zheng L H, An X F, Sun H. Fast measurement and advanced sensors of soil parameters with NIR spectroscopy. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 73-87. (in Chinese)
[14]   姜桂英. 中国农田长期不同施肥的固碳潜力及预测[D]. 北京: 中国农业科学院, 2013.
Jiang G Y. Prediction of carbon sequestration potential of Chinese arable land under long-term fertilizations[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[15]   Stewart C E, Plante A F, Paustian K, Six J. Soil carbon saturation: linking concept and measurable carbon pools. Soil Science Society of America Journal, 2008, 72(2): 379-392.
[16]   Feng W, Plante A F, Six J. Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry, 2011, 112(1): 81-93.
[17]   吴焕焕, 吕家珑, 段英华, 张文菊, 徐明岗. 激光衍射法测定中国典型土壤颗粒分布的模型建立与验证. 中国农业科学, 2013, 46(20): 4293-4300.
Wu H H, Lv J L, Duan Y H, Zhang W J, Xu M G. Establishment and validation of model of soil particle size distribution of main soils in China by laser diffraction method. Scientia Agricultura Sinica, 2013, 46(20): 4293-4300. (in Chinese)
[18]   福韬, 乔云发, 苗淑杰, 韩晓增, 李娜, 李雪峰. 轮作对黑土团聚体有机质光谱特征的影响. 水土保持学报, 2015, 29(6): 208-214.
Zhang F T, Qiao Y F, Miao S J, Han X Z, Li N, Li X F. Effects of crop rotation on spectrum characteristics of organic matter in Mollisol aggregates. Journal of Soil and Water Conservation, 2015, 29(6): 208-214. (in Chinese)
[19]   Zhang W J, Wang X J,Xu M G, Huang S M, Liu H, Peng C. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences, 2010, 7: 409-425.
[20]   Zhang W J, Xu M G, Wang X J, Huang Q H, Nie J, Li Z Z, LiS L, Hwang S W, Lee, K B. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils Sediments, 2012, 12: 457-470.
[21]   Stewart C E, Paustian K, Conant R T, Plante A F., Six J. Soil carbon saturation Implications for measurable carbon pool dynamics in long term incubations. Soil Biology and Biochemistry, 2009, 47: 357-366.
[22]   香茹, 蔡岸冬, 徐明岗, 汪景宽, 张文菊. 长期施肥下水稻土有机碳固持形态与特征. 农业环境科学学报, 2015, 34(4): 753-760.
Xu X R, Cai A D, Xu M G, Wang J K, Zhang W J. Characteristics of organic carbon stabilization in paddy soil under long-term different fertilization. Journal of Agro-Environment Science, 2015, 34(4): 753-760. (in Chinese)
[23]   Castellano M J, Mueller K E, Olk D C, Sawyer J E, Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 2015, 21: 3200-3209.
[24]   Hoyle F C, Baldock J A, Murphy D V. Soil Organic Carbon – Role in Rainfed Farming Systems. Rainfed Farming Systems. Netherlands: Springer, 2011: 339-361.
[25]   周萍, 宋国菡, 潘根兴, 李峦卿, 张旭辉, Wu Laosheng. 南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ.团聚体物理保护作用. 土壤学报, 2008, 45(6): 1063-1071.
Zhou P, Song G H, Pan G X, Li L Q, Zhang X H, Wu L. SOC accumulation in three major types of paddy soils under long-term agro-ecosystem experiments from south China Ⅰ Physical protection in soil micro-aggregates SOC. Acta Pedologica Sinica, 2008, 45(6): 1063-1071. (in Chinese)
[26]   Osuna-canizalez F J, Dedetta S K, Bonman J M. Nitrogen form and silicon nutrition effects on resistance to blast disease of rice. Plant and Soil, 1991, 135(2): 223-231.
[27]   刘鸣达, 张玉龙. 水稻土硅素肥力的研究现状与展望. 土壤通报, 2001, 32(4): 187-192.
Liu M D, Zhang Y L. Advance in the study of silicon fertility in paddy fields. Chinese Journal of Soil Science, 2001, 32(4): 187-192. (in Chinese)
[28]   黄海龙. 饼粕型烟草有机肥生产及其应用效果研究[D]. 长沙: 湖南农业大学, 2009.
Huang H L. Studies on bean of cake organic fertilizer of tobacco and its application. Changsha: Hunan Agricultural University, 2009. (in Chinese)
[29]   宋迪思, 盛浩, 周清, 周萍, 王翠红, 张杨珠. 不同母质发育土壤的中红外吸收光谱特征. 土壤通报, 2016, 47(1): 7-13.
Song D S, Sheng H, Zhou Q, Zhou P, Wang C H, Zhang Y Z. Characteristics of middle-infrared absorption spectrum of soils derived from different parent materials. Chinese Journal of Soil Science, 2016, 47(1): 7-13. (in Chinese)
[30]   冯蕾, 童成立, 石辉, 吴金水, 李勇, 黄铁平, 夏海鳌. 水稻碳氮吸收、分配与积累对施肥的响应. 环境科学, 2011, 32(2): 574-580.
Feng L, Tong C L, Shi H, Wu J S, Li Y, Huang T P, Xia H A. Effect of fertilization on the absorption, partition and accumulation of carbon and nitrogen of rice under the equal N conditions. Environmental Science, 2011, 32(2): 574-580. (in Chinese)
[31]   Baumann K, Schöning I, Schrumpf M, Ellerbrockc Ruth H, Leinwebera P. Rapid assessment of soil organic matter: soil color analysis and fourier transform infrared spectroscopy. Geoderma, 2016, 278: 49-57.
[32]   徐基胜, 赵炳梓, 张佳宝. 长期施有机肥和化肥对潮土胡敏酸结构特征的影响. 土壤学报, 2017, 54(3): 648-657.
Xu J S, Zhao B Z, Zhang J B. Effects of long-term application of organic manure and chemical fertilizer on structure of humic acid in Fluvo-aquic soil. Acta Pedologica Sinica, 2017, 54(3): 648-657. (in Chinese)
[33]   王玉, 张一平, 陈思根. 中国6种地带性土壤红外光谱特征研究. 西北农林科技大学学报(自然科学版), 2003, 31(1): 57-61.
Wang Y, Zhang Y P, Chen S G. The characteristics of infrared spectrum of 6 typical zonal soils in China. Journal of Northwest Sci-Tech University of Agriculture and Forest (Natural Science Edition), 2003, 31(1): 57-61. (in Chinese)
[34]   彭杰, 周清, 张杨珠, 向红英. 有机质对土壤光谱特性的影响研究. 土壤学报, 2013, 50(3): 517-524.
Peng J, Zhou Q, Zhang Y Z, Xiang H Y. Effect of soil organic matter on spectral characteristics of soil. Acta Pedologica Sinica, 2013, 50(3): 517-524. (in Chinese)
[1] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[2] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[3] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[4] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[5] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[6] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[7] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
[8] WEN YanChen,LI HaiYan,YUAN Liang,XU JiuKai,MA RongHui,LIN ZhiAn,ZHAO BingQiang. Effect of Long-Term Fertilization on Nutrient Distribution of Fluvo-Aquic Soil Profile [J]. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469.
[9] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[10] ZHOU JiXiang,ZHANG He,YANG Jing,LI GuiHua,ZHANG JianFeng. Effects of Continuous Application of Soil Amendments on Fluvo- Aquic Soil Fertility and Active Organic Carbon Components [J]. Scientia Agricultura Sinica, 2020, 53(16): 3307-3318.
[11] YAN RuiRui,ZHANG Yu,XIN XiaoPing,WEI ZhiJun,Wuren qiqige,GUO MeiLan. Effects of Mowing Disturbance on Grassland Plant Functional Groups and Diversity in Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2573-2583.
[12] WANG HongYi, CHANG JiFang, WANG ZhengWen. Responses of Community Species Diversity and Productivity to Nitrogen and Phosphorus Addition During Restoration of Degraded Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2604-2613.
[13] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[14] JIANG SaiPing,ZHANG RenLian,ZHANG WeiLi,XU AiGuo,ZHANG HuaiZhi,XIE LiangShang,JI HongJie. Spatial and Temporal Variation of Soil Organic Matter and Cause Analysis in Hainan Island in Resent 30 Years [J]. Scientia Agricultura Sinica, 2019, 52(6): 1032-1044.
[15] WANG BoHan,HUANG ShaoMin,GUO DouDou,ZHANG ShuiQing,SONG Xiao,YUE Ke,ZHANG KeKe. Phosphorus Profit and Loss and Its Effect on Inorganic Phosphorus in Fluvo-Aquic Soil Under Long-Term Located Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3842-3851.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!