Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3355-3364.doi: 10.3864/j.issn.0578-1752.2022.17.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil

ZHANG YingQiang(),ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2021-08-07 Accepted:2021-12-21 Online:2022-09-01 Published:2022-09-07
  • Contact: Liang YUAN E-mail:zhangyqysu123@163.com;yuanliang@caas.cn

Abstract:

【Objective】 The conversion characteristics of different carboxyl-containing organic acids modified urea combined with carboxyl groups and other active functional groups in calcareous fluvo-aquic soil were investigated, so as to provide a theoretical basis for the development of high-efficiency nitrogen fertilizers.【Method】 The citric acid (carboxyl group + hydroxyl group), humic acid (carboxyl group + phenolic hydroxyl group/carbonyl group/aldehyde group, etc.), polyglutamic acid (carboxyl group + amino group) and polyacrylic acid (carboxyl group) were added into the molten urea at 0.5% addition amount, to prepare the test fertilizers, exactly, citric acid urea (CAU), humic acid urea (HAU), polyglutamic acid urea (PGAU) and polyacrylic acid urea (PAAU). The treatments of without urea (CK), common urea (U), CAU, HAU, PGAU and PAAU were set up to study the effects of different carboxyl-containing organic acids modified urea on the soil amide nitrogen, NH4+-N, NO3--N and soil urease activity by using soil incubation method. The influence mechanism of different carboxy-containing organic acids modified urea in soil conversion was revealed with the results from Fourier transform infrared spectroscopy (FTIR) of U and different carboxy-containing organic acids modified urea.【Result】 (1) Compared with U, the four kinds of carboxyl-containing organic acids modified urea delayed the urea hydrolysis in the soil from 6 h to 2 d. HAU and PGAU had a better performance than other treatments, and their residual amount of soil urea nitrogen increased by 22.3% and 23.7% than that with U, respectively. (2) Compared with the appearing time of NH4+-N content peak treat with U (2 d), HAU application delayed to the appearing time of NH4+-N content peak to the third day. In 6 h-2 d, the average value of NH4+-N content with HAU treatment decreased by 16.9% than that with U, while increased by 3.2% in 3-14 d. (3) Compared with U, four kinds of carboxyl-containing organic acids modified urea significantly increased soil NO3--N content in the later period of incubation, and the HAU treatment showed the highest value with an average increase of 17.4 mg·kg-1 than the U treatment. (4) Compared with U, four kinds of carboxyl-containing organic acids modified urea inhibited soil urease activity in 1-2 d, among which HAU had the strongest inhibitory effect, and the urease activity was reduced by 30.9% compared with U. However, HAU enhanced the soil urease activity in 2-14 d.【Conclusion】 Carboxyl-containing organic acids modified urea could delay the hydrolysis and transformation of urea in the soil by inhibiting urease activity in the early stage of incubation delaying the transformation of NH4+-N to NO3--N in the middle stage of incubation, and increase the NO3--N content of cultivated soil in the late stage of incubation to reduce nitrogen loss. The above results were mainly attributed to the reaction of carboxyl groups and other active functional groups with urea. The reaction degree with urea was the deepest when the carboxyl group and a variety of active functional groups (phenolic hydroxyl group/aldehyde group/carbonyl group) existed at the same time, which attributed the slow release of urea to the best.

Key words: carboxyl-containing organic acids modified urea, urea conversion, urease activity, different active functional groups, soil incubation, calcareous fluvo-aquic soil

Table 1

Total nitrogen content and code of nitrogen fertilizer"

处理
Treatment
有机材料添加量
Addition of organic materials (%)
全氮含量
Total N content (%)
尿素 U 0 45.96
含柠檬酸尿素 CAU 0.5 45.62
含腐殖酸尿素 HAU 0.5 45.58
含聚谷氨酸尿素 PGAU 0.5 45.84
含聚丙烯酸尿素 PAAU 0.5 45.64

Fig. 1

Dynamics of soil amidated nitrogen content with different modified urea"

Fig. 2

Dynamics of soil NH4+-N content with different modified ureas"

Fig. 3

Dynamics of soil NO3--N content with different modified ureas"

Fig. 4

Effects of different modified ureas on soil urease activity"

Fig. 5

FTIR spectra of different carboxyl-containing organic acids modified urea"

[1] WEIL R R, BRADY N C. The Nature and Properties of Soils. 15th ed. New York: Pearson Education Limited, 2017: 602.
[2] 杜君, 孙克刚, 张运红, 和爱玲, 孙克振. 控释尿素对水稻生理特性、氮肥利用率及土壤硝态氮含量的影响. 农业资源与环境学报, 2016, 33(2): 134-141. doi: 10.13254/j.jare.2015.0233.
doi: 10.13254/j.jare.2015.0233
DU J, SUN K G, ZHANG Y H, HE A L, SUN K Z. Effects of controlled release urea on physiological characteristics and nitrogen use efficiency of rice and NO3--N contents in soil. Journal of Agricultural Resources and Environment, 2016, 33(2): 134-141. doi: 10.13254/j.jare.2015.0233. (in Chinese)
doi: 10.13254/j.jare.2015.0233
[3] 丁和平, 王帅, 王楠, 任志成, 陈广瑞. 氮肥增效技术研究现状及发展趋势. 现代农业科学, 2009, 16(2): 24-26, 29.
DING H P, WANG S, WANG N, REN Z C, CHEN G R. Nitrogen fertilizer efficiency technology research and development trends. Modern Agricultural Sciences, 2009, 16(2): 24-26, 29. (in Chinese)
[4] SEBILO M, MAYER B, NICOLARDOT B, PINAY G, MARIOTTI A. Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185-18189. doi: 10.1073/pnas.1305372110.
doi: 10.1073/pnas.1305372110
[5] 尹娟, 勉韶平. 稻田中氮肥损失途径研究进展. 农业科学研究, 2005, 26(2): 76-80, 98. doi: 10.3969/j.issn.1673-0747.2005.02.021.
doi: 10.3969/j.issn.1673-0747.2005.02.021
YIN J, MIAN S P. Review of losses pathways of fertilizer N from paddy field and the measurements for its reduction. Journal of Agricultural Sciences, 2005, 26(2): 76-80, 98. doi: 10.3969/j.issn.1673-0747.2005.02.021. (in Chinese)
doi: 10.3969/j.issn.1673-0747.2005.02.021
[6] 赵秉强. 增值肥料概论. 北京: 中国农业科学技术出版社, 2020.
ZHAO B Q. Overview of Value-added Fertilizer. Beijing: China Agricultural Science and Technology Press, 2020. (in Chinese)
[7] 王志勇, 陈振伟, 房山, 徐庆磊. 含谷氨酸改性增效尿素的研究与开发. 化肥工业, 2018, 45(4): 66-67, 76. doi: 10.3969/j.issn.1006-7779.2018.04.018.
doi: 10.3969/j.issn.1006-7779.2018.04.018
WANG Z Y, CHEN Z W, FANG S, XU Q L. Research and development of modified synergistic urea containing glutamic acid. Chemical Fertilizer Industry, 2018, 45(4): 66-67, 76. doi: 10.3969/j.issn.1006-7779.2018.04.018. (in Chinese)
doi: 10.3969/j.issn.1006-7779.2018.04.018
[8] 葛明慧. 氨基酸增效剂对尿素在不同土壤中转化及对水稻苗期生长的影响[D]. 合肥: 安徽农业大学, 2019.
GE M H. Effect of amino acid synergist on transformation of urea in different soils and growth of rice seedling[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese)
[9] 张水勤, 袁亮, 李伟, 林治安, 李燕婷, 胡树文, 赵秉强, 李军. 腐植酸尿素对玉米产量及肥料氮去向的影响. 植物营养与肥料学报, 2017, 23(5): 1207-1214. doi: 10.11674/zwyf.17046.
doi: 10.11674/zwyf.17046
ZHANG S Q, YUAN L, LI W, LIN Z A, LI Y T, HU S W, ZHAO B Q, LI J. Effects of humic acid urea on maize yield and the fate of fertilizer nitrogen. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1207-1214. doi: 10.11674/zwyf.17046. (in Chinese)
doi: 10.11674/zwyf.17046
[10] 袁亮, 赵秉强, 林治安, 温延臣, 李燕婷. 增值尿素对小麦产量、氮肥利用率及肥料氮在土壤剖面中分布的影响. 植物营养与肥料学报, 2014, 20(3): 620-628. doi: 10.11674/zwyf.2014.0313.
doi: 10.11674/zwyf.2014.0313
YUAN L, ZHAO B Q, LIN Z A, WEN Y C, LI Y T. Effects of value-added urea on wheat yield and N use efficiency and the distribution of residual N in soil profiles. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 620-628. doi: 10.11674/zwyf.2014.0313. (in Chinese)
doi: 10.11674/zwyf.2014.0313
[11] 梁宗存, 成绍鑫. 腐植酸与尿素作用机理研究进展. 腐植酸, 1997(2): 1-4, 7. doi: 10.19451/j.cnki.issn1671-9212.1997.02.001.
doi: 10.19451/j.cnki.issn1671-9212.1997.02.001
LIANG Z C, CHENG S X. Research progress on the mechanism of interaction between humic acid and urea. Humic Acid, 1997(2): 1-4, 7. doi: 10.19451/j.cnki.issn1671-9212.1997.02.001. (in Chinese)
doi: 10.19451/j.cnki.issn1671-9212.1997.02.001
[12] 武丽萍, 成绍鑫. 包裹型长效腐植酸尿素的化学组成结构研究. 燃料化学学报, 2001, 29(5): 454-457. doi: 10.3969/j.issn.0253-2409.2001.05.017.
doi: 10.3969/j.issn.0253-2409.2001.05.017
WU L P, CHENG S X. Study on composition and structure of long lasting urea coated by humic acid. Journal of Fuel Chemistry and Technology, 2001, 29(5): 454-457. doi: 10.3969/j.issn.0253-2409.2001.05.017. (in Chinese)
doi: 10.3969/j.issn.0253-2409.2001.05.017
[13] 刘增兵, 束爱萍, 赵秉强, 林治安, 刘光荣, 李祖章. 风化煤腐植酸增效尿素红外光谱分析. 农业资源与环境学报, 2014, 31(5): 393-400. doi: 10.13254/j.jare.2014.0119.
doi: 10.13254/j.jare.2014.0119
LIU Z B, SHU A P, ZHAO B Q, LIN Z A, LIU G R, LI Z Z. The infrared spectrum analysis on compound urea with humic acid extracted from weathered coal. Journal of Agricultural Resources and Environment, 2014, 31(5): 393-400. doi: 10.13254/j.jare.2014.0119. (in Chinese)
doi: 10.13254/j.jare.2014.0119
[14] 王峰, 陈玉真, 吴志丹, 江福英, 翁伯琦, 尤志明. 酸性茶园土壤氨挥发及其影响因素研究. 农业环境科学学报, 2016, 35(4): 808-816. doi: 10.11654/jaes.2016.04.027.
doi: 10.11654/jaes.2016.04.027
WANG F, CHEN Y Z, WU Z D, JIANG F Y, WENG B Q, YOU Z M. Ammonia volatilization and its influencing factors in tea garden soils. Journal of Agro-Environment Science, 2016, 35(4): 808-816. doi: 10.11654/jaes.2016.04.027. (in Chinese)
doi: 10.11654/jaes.2016.04.027
[15] TAKAYA C A, FLETCHER L A, SINGH S, ANYIKUDE K U, ROSS A B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 2016, 145: 518-527. doi: 10.1016/j.chemosphere.2015.11.052.
doi: 10.1016/j.chemosphere.2015.11.052
[16] KUMAR S, LOGANATHAN V A, GUPTA R B, BARNETT M O. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environmental Management, 2011, 92(10): 2504-2512. doi: 10.1016/j.jenvman.2011.05.013.
doi: 10.1016/j.jenvman.2011.05.013
[17] JING J Y, ZHANG S Q, YUAN L, LI Y T, LIN Z A, XIONG Q Z, ZHAO B Q. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Scientific Reports, 2020, 10: 17502. doi: 10.1038/s41598-020-74349-6.
doi: 10.1038/s41598-020-74349-6
[18] 张英强, 张水勤, 王立艳, 袁亮, 李燕婷, 熊启中, 林治安, 赵秉强. 小分子有机酸改性尿素的多谱学分子结构表征. 光谱学与光谱分析, 2021, 41(10): 3129-3136. doi: 10.3964/j.issn.1000-0593(2021)10-3129-08.
doi: 10.3964/j.issn.1000-0593(2021)10-3129-08
ZHANG Y Q, ZHANG S Q, WANG L Y, YUAN L, LI Y T, XIONG Q Z, LIN Z A, ZHAO B Q. Multispectral structural characterization of low-molecular-weight organic acids modified urea. Spectroscopy and Spectral Analysis, 2021, 41(10): 3129-3136. doi: 10.3964/j.issn.1000-0593(2021)10-3129-08. (in Chinese)
doi: 10.3964/j.issn.1000-0593(2021)10-3129-08
[19] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Analytical Methods of Soil and Agro-chemistry. Beijing: China Agriculture Scientech Press, 2000. (in Chinese)
[20] 周佳, 孙勇, 唐传球, 饶贞学, 甘露. 对二甲氨基苯甲醛比色法测定溶液中的尿素. 化学与生物工程, 2014, 31(2): 75-78. doi: 10.3969/j.issn.1672-5425.2014.02.021.
doi: 10.3969/j.issn.1672-5425.2014.02.021
ZHOU J, SUN Y, TANG C Q, RAO Z X, GAN L. Determination of urea in solution by colorimetry method of Para-dimethyl-amino- benzaldehyde. Chemistry & Bioengineering, 2014, 31(2): 75-78. doi: 10.3969/j.issn.1672-5425.2014.02.021. (in Chinese)
doi: 10.3969/j.issn.1672-5425.2014.02.021
[21] 王如海, 钱薇, 朱小芳, 蒋倩, 王曦, 倪俊, 韩勇, 俞元春. 流动注射法同时测定水中的氮磷指标. 分析试验室, 2013, 32(12): 32-36. doi: 10.13595/j.cnki.issn1000-0720.2013.0321.
doi: 10.13595/j.cnki.issn1000-0720.2013.0321
WANG R H, QIAN W, ZHU X F, JIANG Q, WANG X, NI J, HAN Y, YU Y C. Flow injection analysis for simultaneous determination of nitrogen and phosphorus in water samples. Chinese Journal of Analysis Laboratory, 2013, 32(12): 32-36. doi: 10.13595/j.cnki.issn1000-0720.2013.0321. (in Chinese)
doi: 10.13595/j.cnki.issn1000-0720.2013.0321
[22] 王玉功, 刘婧晶, 刘贻熙, 马亮. 苯酚-次氯酸钠比色法测定土壤脲酶活性影响因素的研究. 土壤通报, 2019, 50(5): 1166-1170. doi: 10.19336/j.cnki.trtb.2019.05.22.
doi: 10.19336/j.cnki.trtb.2019.05.22
WANG Y G, LIU J J, LIU Y X, MA L. Effective factors of urease activities in soil by using the phenol-sodium hypochlorite colorimetric method. Chinese Journal of Soil Science, 2019, 50(5): 1166-1170. doi: 10.19336/j.cnki.trtb.2019.05.22. (in Chinese)
doi: 10.19336/j.cnki.trtb.2019.05.22
[23] 朱兆良. 农田中氮肥的损失与对策. 土壤与环境, 2000, 9(1): 1-6. doi: 10.16258/j.cnki.1674-5906.2000.01.001.
doi: 10.16258/j.cnki.1674-5906.2000.01.001
ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil and Environmental Sciences, 2000, 9(1): 1-6. doi: 10.16258/j.cnki.1674-5906.2000.01.001. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2000.01.001
[24] 谷洁, 高华. 提高化肥利用率技术创新展望. 农业工程学报, 2000, 16(2): 17-20. doi: 10.3321/j.issn:1002-6819.2000.02.005
doi: 10.3321/j.issn:1002-6819.2000.02.005
GU J, GAO H. Prospects of the technical innovation to increase fertilizer use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(2): 17-20. doi: 10.3321/j.issn:1002-6819.2000.02.005. (in Chinese)
doi: 10.3321/j.issn:1002-6819.2000.02.005
[25] 刘遵奇, 孟军, 陈温福. 玉米秸秆生物炭对尿素分解的影响. 农业环境科学学报, 2015, 34(6): 1142-1148. doi: 10.11654/jaes.2015.06.018.
doi: 10.11654/jaes.2015.06.018
LIU Z Q, MENG J, CHEN W F. Effect of corn stalk biochar on urea hydrolysis. Journal of Agro-Environment Science, 2015, 34(6): 1142-1148. doi: 10.11654/jaes.2015.06.018. (in Chinese)
doi: 10.11654/jaes.2015.06.018
[26] 王彬, 袁亮, 张水勤, 林治安, 赵秉强, 李燕婷. 尿素融合葡萄糖对潮土中尿素的水解及相关酶活性的影响. 植物营养与肥料学报, 2020, 26(10): 1827-1837. doi: 10.11674/zwyf.19513.
doi: 10.11674/zwyf.19513
WANG B, YUAN L, ZHANG S Q, LIN Z A, ZHAO B Q, LI Y T. Fusion of glucose into urea affects the urea hydrolyzation and enzyme activities in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1827-1837. doi: 10.11674/zwyf.19513. (in Chinese)
doi: 10.11674/zwyf.19513
[27] 边秀举, 巨晓棠, 刘学军, 张福锁, 李晓林. 尿素在草甸褐土中分解转化特征及影响因素的研究. 河北农业大学学报, 1999(4): 23-26.
BIAN X J, JU X T, LIU X J, ZHANG F S, LI X L. The studies on transformation characteristics of urea applied to meadow cinnamon soil and the influencing factors. Journal of Agricultural University of Hebei, 1999(4): 23-26. (in Chinese)
[28] 张水勤. 不同腐植酸级分的结构特征及其对尿素的调控[D]. 北京: 中国农业大学, 2018.
ZHANG S Q. Structural characteristics of different humic acid fractions and their regulation on urea[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[29] 赵丽芳, 袁亮, 张水勤, 赵秉强, 林治安, 李燕婷. 锌与尿素结合对锌有效性及尿素转化的影响. 中国农业科学, 2021, 54(16): 3461-3472. doi: 10.3864/j.issn.0578-1752.2021.16.009.
doi: 10.3864/j.issn.0578-1752.2021.16.009
ZHAO L F, YUAN L, ZHANG S Q, ZHAO B Q, LIN Z A, LI Y T. Effects of zinc combined with urea on zinc availability and urea conversion. Scientia Agricultura Sinica, 2021, 54(16): 3461-3472. doi: 10.3864/j.issn.0578-1752.2021.16.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.16.009
[30] DONG L H, CÓRDOVA-KREYLOS A L, YANG J S, YUAN H L, SCOW K M. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biology and Biochemistry, 2009, 41(8): 1612-1621. doi: 10.1016/j.soilbio.2009.04.023.
doi: 10.1016/j.soilbio.2009.04.023
[31] SAHA B K, ROSE M T, WONG V N L, CAVAGNARO T R, PATTI A F. A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. Science of the Total Environment, 2019, 649: 793-800. doi: 10.1016/j.scitotenv.2018.08.145.
doi: 10.1016/j.scitotenv.2018.08.145
[32] 梁宗存, 成绍鑫, 武丽萍. 煤中腐植酸与尿素相互作用机理的研究. 燃料化学学报, 1999, 27(2): 176-181.
LIANG Z C, CHENG S X, WU L P. Study on mechanism of interactionbetween coal humic acid and urea. Journal of Fuel Chemistry and Technology, 1999, 27(2): 176-181. (in Chinese)
[33] 揣峻峰, 杜迎辉, 庄钟娟. γ-聚谷氨酸增效尿素在小油菜上的应用效果. 中国园艺文摘, 2015, 31(1): 49, 80.
CHUAI J F, DU Y H, ZHUANG Z J. Application effect of γ-polyglutamic acid synergistic urea on small rapeseed. Chinese Horticulture Abstracts, 2015, 31(1): 49, 80. (in Chinese)
[34] 翁诗甫. 傅里叶变换红外光谱分析. 2版. 北京: 化学工业出版社, 2010.
WENG S F. Fourier Transform Infrared Spectroscopy. 2nd ed. Beijing: Chemical Industry Press, 2010. (in Chinese)
[35] 黄建林, 王德汉, 刘承昊, 陈广银, 林云琴. 载体尿素的研制及其释放机理研究初探. 植物营养与肥料学报, 2006, 12(3): 451-453, 458. doi: 10.3321/j.issn:1008-505X.2006.03.027.
doi: 10.3321/j.issn:1008-505X.2006.03.027
HUANG J L, WANG D H, LIU C H, CHEN G Y, LIN Y Q. Study on the development of slow release carrier urea and its release mechanism. Plant Nutrition and Fertilizer Science, 2006, 12(3): 451-453, 458. doi: 10.3321/j.issn:1008-505X.2006.03.027. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2006.03.027
[36] 吴平霄, 廖宗文, 冯新. 改性尿素的结构变化及其肥效的盆栽试验研究. 岩石矿物学杂志, 2003, 22(4): 442-444. doi: 10.3969/j.issn.1000-6524.2003.04.028.
doi: 10.3969/j.issn.1000-6524.2003.04.028
WU P X, LIAO Z W, FENG X. Potting experimental researches on structural changes and fertilizer efficiency of modified urea. Acta Petrologica et Mineralogica, 2003, 22(4): 442-444. doi: 10.3969/j.issn.1000-6524.2003.04.028. (in Chinese)
doi: 10.3969/j.issn.1000-6524.2003.04.028
[37] SAHA B K, ROSE M T, WONG V, CAVAGNARO T R, PATTI A F. Hybrid brown coal-urea fertiliser reduces nitrogen loss compared to urea alone. Science of the Total Environment, 2017, 601/602: 1496-1504. doi: 10.1016/j.scitotenv.2017.05.270.
doi: 10.1016/j.scitotenv.2017.05.270
[38] SAHA B K, ROSE M T, WONG V N L, CAVAGNARO T R, PATTI A F. Nitrogen dynamics in soil fertilized with slow release brown coal-urea fertilizers. Scientific Reports, 2018, 8: 14577. doi: 10.1038/s41598-018-32787-3.
doi: 10.1038/s41598-018-32787-3
[1] ZHAO LiFang, YUAN Liang, ZHANG ShuiQin, ZHAO BingQiang, LIN ZhiAn, LI YanTing. Effects of Zinc Combined with Urea on Zinc Availability and Urea Conversion [J]. Scientia Agricultura Sinica, 2021, 54(16): 3461-3472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!