Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2372-2383.doi: 10.3864/j.issn.0578-1752.2022.12.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen

CUI Shuai1(),LIU ShuoRan2,WANG Yin1(),XIA ChenZhen1,YAN Li1,FENG GuoZhong1,GAO Qiang1()   

  1. 1College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Changchun 130118
    2College of Tropical Crops, Hainan University, Haikou 570228
  • Received:2021-04-07 Accepted:2021-08-26 Online:2022-06-16 Published:2022-06-23
  • Contact: Yin WANG,Qiang GAO E-mail:13331749522@163.com;wy1986410@163.com;gyt199962@163.com

Abstract:

【Objective】 The aim of this study was to clarify the status of effective sulfur content of dryland soils in Jilin province and its distribution differences, so as to provide a basis for reasonable sulfur application to regional crops.【Method】232 surface (0-20 cm) soil samples were collected from 8 major soil types in different ecological zones of Jilin province, and the spatial distribution characteristics of effective sulfur content were analyzed by geostatistical methods to compare the differences in effective sulfur content of different types of soils and to establish the correlation between effective sulfur, organic matter and total nitrogen in soils.【Result】 The distribution of effective sulfur content in dryland soils of Jilin Province ranged from 5.8 to 40.7 mg·kg-1, with a mean value of 18.06 mg·kg-1. The proportions of sulfur deficiency and potential sulfur deficiency in all samples were 27.2% and 20.7%, respectively. The spatial distribution showed that the overall trend of effective soil sulfur content gradually decreased from east to west, and the corresponding incidence of sulfur deficiency gradually increased from east to west. The mean values of soil effective sulfur content (incidence of sulfur deficiency or potential sulfur deficiency) in the three major ecological zones of east, central and west were 22.3 mg·kg-1 (24.2%), 18.1 mg·kg-1 (40.0%) and 14.3 mg·kg-1 (75.6%), respectively. The mean values of effective sulfur content of albic soil and dark brown loam, which were mainly distributed in Eastern humid mountainous area, were 22.1 and 22.0 mg·kg-1, respectively, and 15.2% and 28.3% of the samples were sulfur deficient or potentially sulfur deficient, respectively; the mean values of effective sulfur content of black soil, alluvial soil and meadow soil in the central semi-humid plain area were 18.8, 17.1 and 16.2 mg·kg-1, respectively. The mean values of effective sulfur content of chernozem, aeolian sandy soil and saline-alkali soil in the western semi-arid plain area were 11.9, 14.0 and 13.9 mg·kg-1, respectively, with higher risk of sulfur deficiency or potential sulfur deficiency, accounting for 73.6%, 73.3% and 75.5% of the samples, respectively. The regression analysis results showed that the effective sulfur in dryland soils of Jilin province was significantly logarithmically correlated with soil total nitrogen and soil organic matter, and the effective sulfur content of soil increased with the increase of soil organic matter and soil total nitrogen content. 【Conclusion】 The effective sulfur content of dryland soils in Jilin province varied significantly among regions and soil types, and the sulfur deficiency was more common, especially in aeolian sandy soil, saline-alkali soil and chernozem in the central and western regions, where the risk of sulfur deficiency was higher, so the sulfur supplementation should be emphasized in soil fertilization and crop management.

Key words: Jilin Province, ecological zones, regional differences, soil available sulfur, soil types, soil organic matter, soil total nitrogen

Fig. 1

Map of the distribution of three eco-regions and sampling sites in Jilin Province"

Table 1

Available sulfur content of soils in the cultivated layer of different ecological zones in Jilin Province"

主要生态区
Region
土壤有效硫 Available <BOLD>S</BOLD><BOLD> (</BOLD>mg·kg-1<BOLD>)</BOLD>
样本数
Sample number
变幅
Range
平均值±标准差
Mean±SD
变异系数
CV (%)
东部湿润山区 Eastern humid mountainous area, EHMA 70 10.8-40.7 22.2 ± 7.7 a 34.7
中部半湿润平原区 Central semi-humid plain area, CSPA 80 5.8-29.7 18.1 ± 6.6 b 36.7
西部半干旱平原区 Western semi-arid plain area, WSPA 82 6.1-35.9 14.0 ± 7.2 c 49.8
全省Total 232 5.8-40.7 18.1 ± 7.8 43.2

Fig. 2

Soil available sulfur distribution in cultivated layer of different eco-zones in Jilin Province"

Fig. 3

Frequency of soil sulfur deficiency in different eco-zones in Jilin Province"

Fig. 4

Average soil available sulfur content of different soil types in Jilin Province"

Fig. 5

Radar map of sulfur deficiency frequency of different soil types in Jilin Province"

Table 2

Soil organic matter and soil total nitrogen contents in different ecological zones in Jilin Province"

主要生态区
Region
样本数
Sample number
土壤全氮 Total N (g·kg-1) 土壤有机质Organic matter (g·kg-1)
变幅
Range
平均值±标准差
Mean ± SD
变异系数
CV(%)
变幅
Range
平均值±标准差
Mean ± SD
变异系数
CV(%)
东部湿润山区EHMA 70 0.5-2.0 1.2±0.35 b 68.9 8.0-44.8 24.2±8.5 a 35.0
中部半湿润平原区CSPA 80 0.8-1.9 1.43±0.5 a 35.4 15.3-39.2 25.1±5.1 a 20.0
西部半干旱平原区WSPA 82 0.5-1.4 1.05±0.42 c 40.3 4.2-21.1 11.4±4.2 b 37.1
全省Total 232 0.5-2.0 1.24±0.32 25.5 4.2-44.8 20.0±8.8 43.9

Fig. 6

Spatial distribution of soil organic matter and soil total nitrogen in dry land of Jilin Province"

Fig. 7

Correlation of available sulfur and soil organic matter in dry land in Jilin Province"

Fig. 8

Correlation of soil total N and available sulfur in dry land in Jilin Province"

[1] 张艳松, 张艳, 于汶加, 张世洋, 刘璇, 刘艳飞. 中国硫资源供需形势分析及对策建议. 中国矿业, 2014, 23(8): 11-14.
ZHANG Y S, ZHANG Y, YU W J, ZHANG S Y, LIU X, LIU Y F. Supply and demand situation of sulfur resources in China and relevant industry development countermeasure. China Mining Magazine, 2014, 23(8): 11-14. (in Chinese)
[2] 中国统计局. 中国统计年鉴 2020. 北京: 中国统计出版社, 2020.
Bureau of Statistics of China Province. China Statistical Yearbook 2020. Beijing: China Statistics Press, 2020. (in Chinese)
[3] KOPRIVOVA A, KOPRIVA S. Sulfur metabolism and its manipulation in crops. Journal of Genetics and Genomics, 2016, 43(11): 623-629.
doi: 10.1016/j.jgg.2016.07.001
[4] KOPRIVOVA A, KOPRIVA S. The importance of having sulfur. Journal of Genetics & Genomics, 2016: S1673852716300947.
[5] FATMA M, ASGHER M, MASOOD A, KHAN N A. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environmental and Experimental Botany, 2014, 107: 55-63.
doi: 10.1016/j.envexpbot.2014.05.008
[6] NAZAR R, KHAN N A, ANJUM N A. ATP-sulfurylase activity, photosynthesis, and shoot dry mass of mustard (Brassica juncea L.) cultivars differing in sulfur accumulation capacity. Photosynthetica, 2008, 46(2): 279.
[7] CHEN Y C, HUERTA A J. Effects of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. Journal of Plant Nutrition, 1997, 20(7/8): 845-856.
doi: 10.1080/01904169709365300
[8] IQBAL N, KHAN N A, NAZAR R, SILVA J A T D. Ethylene- stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity. Environmental and Experimental Botany, 2012, 78: 84-90.
doi: 10.1016/j.envexpbot.2011.12.025
[9] TONG Y, GABRIEL-NEUMANN E, NGWENE B, KRUMBEIN A, GEORGE E, PLATZ S, ROHN S, SCHREINER M. Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chemistry, 2014, 152: 190-196.
doi: 10.1016/j.foodchem.2013.11.099
[10] LEE B R, ZAMAN R, AVICE J C, OURRY A, KIM T H. Sulfur use efficiency is a significant determinant of drought stress tolerance in relation to photosynthetic activity in Brassica napus cultivars. Frontiers in Plant Science, 2016, 7: 459. DOI: 10.3389/fpls.2016.00459.
doi: 10.3389/fpls.2016.00459
[11] GALLARDO K, COURTY P E, LE SIGNOR C, WIPF D, VERNOUD V. Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions. Frontiers in Plant Science, 2014, 5: 580.
[12] NAZAR R, IQBAL N, MASOOD A, SYEED S, KHAN N A. Understanding the significance of sulfur in improving salinity tolerance in plants. Environmental and Experimental Botany, 2011, 70(2/3): 80-87.
doi: 10.1016/j.envexpbot.2010.09.011
[13] AHMAD N, MALAGOLI M, WIRTZ M, HELL R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biology, 2016, 16(1): 247.
doi: 10.1186/s12870-016-0940-z
[14] BOURANIS D L, CHORIANOPOULOU S N, SIYIANNIS V F, PROTONOTARIOS V E, HAWKESFORD M J. Aerenchyma formation in roots of maize during sulphate starvation. Planta, 2003, 217(3): 382-391.
doi: 10.1007/s00425-003-1007-6
[15] ZHAO Y W, XIAO X, BI D M, HU F. Effects of sulfur fertilization on soybean root and leaf traits, and soil microbial activity. Journal of Plant Nutrition, 2008, 31(3): 473-483.
doi: 10.1080/01904160801895001
[16] ALI A, IQBAL Z, HASSAN S W, YASIN M, AHMAD S. Effect of nitrogen and sulphur on phenology. Growth and Yield Parameters of Maize Crop, 2013.
[17] 任军, 朱平, 邢秀琴, 孙毅, 郭金瑞, 刘翔, 袁震霖, 苏仁君. 吉林省玉米和水稻硫肥施用效果的研究. 吉林农业科学, 2002, 27(3): 37-39, 43.
REN J, ZHU P, XING X Q, SUN Y, GUO J R, LIU X, YUAN Z L, SU R J. Effects of sulfur fertilizer application on maize and rice in Jilin Province. Jilin Agricultural Sciences, 2002, 27(3): 37-39, 43. (in Chinese)
[18] SRIVASTAVA P C, SINGH U S. Effect of graded levels of nitrogen and sulfur and their interaction on yields and quality of aromatic rice. Journal of Plant Nutrition, 2007, 30(5): 811-828.
doi: 10.1080/01904160701290113
[19] GROVE H, HOLLUNG K, MOLDESTAD A, FÆRGESTAD E M, UHLEN A K. Proteome changes in wheat subjected to different nitrogen and sulfur fertilizations. Journal of Agricultural and Food Chemistry, 2009, 57(10): 4250-4258.
doi: 10.1021/jf803474m
[20] ELWAN M W M, ABD EL-HAMED K E . Influence of nitrogen form, growing season and sulfur fertilization on yield and the content of nitrate and vitamin C of broccoli. Scientia Horticulturae, 2011, 127(3): 181-187.
doi: 10.1016/j.scienta.2010.09.017
[21] BALPANDE S S, SARAP P A, GHODPAGE R M. Effect of potassium and sulphur on nutrient uptake, yieldand quality of Pigeon Pea (Cajanus cajan). Agricultural Science Digest - A Research Journal, 2016, 36(4): 323-325. DOI: 10.18805/asd.v36i4.6476.
doi: 10.18805/asd.v36i4.6476
[22] 樊明宪, D. L. Messick C. 汤建伟, 穆荣哲. 世界硫需求及硫肥状况. 磷肥与复肥, 2005, 20(6): 5-9.
FAN M X, MESSICK D L, DE BREY C, TANG J W, MU R Z. Global sulfur requirement and sulfur fertilizers. Phosphate & Compound Fertilizer, 2005, 20(6): 5-9. (in Chinese)
[23] 刘崇群. 中国南方土壤硫的状况和对硫肥的需求. 磷肥与复肥, 1995, 10(3):14.
LIU C Q. Soil sulfur status and demand for sulfur fertilizer in southern China. Phosphorus Fertilizer and Compound Fertilizer, 1995, 10(3):14. (in Chinese)
[24] 张继棒, 竺伟民, 章力干, 褚海燕, 刘诚, 李孔浩. 安徽省土壤有效硫现状研究. 土壤通报, 1996, 27(5): 222-225.
ZHANG J B, ZHU W M, ZHANG L G, CHU H Y, LIU C, LI K H. Current status of soil available sulfur in Anhui province. Chinese Journal of Soil Science, 1996, 27(5): 222-225. (in Chinese)
[25] 钱晓华, 杨平, 周学军, 胡荣根, 孙海龙, 张兆坤, 孙旭进. 安徽省土壤有效硫现状及时空分布. 植物营养与肥料学报, 2018, 24(5): 1357-1364.
QIAN X H, YANG P, ZHOU X J, HU R G, SUN H L, ZHANG Z K, SUN X J. Current situation and spatial-temporal distribution of soil available sulfur in Anhui Province. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1357-1364. (in Chinese)
[26] 迟凤琴, 魏丹, 申惠波, 吴英, 张玉龙. 黑龙江省主要耕地土壤硫素现状研究. 土壤通报, 2003, 34(3): 209-211.
CHI F Q, WEI D, SHEN H B, WU Y, ZHANG Y L. Study on the sulfur status in cultivited soils of Heilongjiang Province. Chinese Journal of Soil Science, 2003, 34(3): 209-211. (in Chinese)
[27] 王寅, 郭聃, 高强, 焉莉, 宋立新, 刘振刚. 吉林省不同生态区玉米施氮效果与氮肥利用效率差异. 土壤学报, 2016, 53(6): 1464-1475.
WANG Y, GUO D, GAO Q, YAN L, SONG L X, LIU Z G. Differences in yield response and N use efficiency of maize crops in different ecological zones of Jilin Province. Acta Pedologica Sinica, 2016, 53(6): 1464-1475. (in Chinese)
[28] DONAHUE R L, SHICKLUNA J C, ROBERTSON L S. Soils;An Introduction to Soils and Plant Growth. New Jersey: Prentice-Hall, Inc., Englewood Cliffs, 1972.
[29] THE SULPHUR INSTITUTE. Sulphur Deficiency Sources and Symptoms. https://www.sulphurinstitute.org/about-sulphur/ sulphur- the-fourth-major-plant-nutrient/sulphur-deficiency-sources-and-symptoms/, 2021-03-21.
[30] ERIKSEN J. Chapter 2 Soil Sulfur Cycling in Temperate Agricultural Systems. Advances in Agronomy, 2009, 102: 55-89.
[31] 许闯, 王松山, 李菊梅, 马义兵, 孙文涛, 罗磊, 张淑贞. 长期施肥对红壤和黑土硫形态演变的影响. 应用生态学报, 2014, 25(4): 1069-1075.
XU C, WANG S S, LI J M, MA Y B, SUN W T, LUO L, ZHANG S Z. Effects of long-term fertilization on evolution of S forms in a red soil and a black soil. Chinese Journal of Applied Ecology, 2014, 25(4): 1069-1075. (in Chinese)
[32] 陈庆瑞, 涂仕华, 冯文强, 曾晖. 四川省土壤有效硫状况及硫肥效应研究. 土壤通报, 2001, 32(3): 129-131, 145.
CHEN Q R, TU S H, FENG W Q, ZENG H. Effect of sulfur application on soil sulfur status in Sichuan Province. Chinese Journal of Soil Science, 2001, 32(3): 129-131, 145. (in Chinese)
[33] 陶其骧, 罗奇祥, 李祖章, 刘光荣. 江西省农田土壤有效硫现状研究. 土壤通报, 2001, 32(2): 90-92, 94.
TAO Q X, LUO Q X, LI Z Z, LIU G R. Current situation of available sulfur in cultivated soils in Jiangxi Province. Chinese Journal of Soil Science, 2001, 32(2): 90-92, 94. (in Chinese)
[34] 任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53(8): 1606-1616.
REN T, GUO L X, ZHANG L M, YANG X K, LIAO S P, ZHANG Y Y, LI X K, CONG R H, LU J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616. (in Chinese)
[35] SCHNUG E, JI L Z, ZHOU J M. Aspects of sulfur nutrition of plants; evaluation of China’s current, future and available resources to correct plant nutrient sulfur deficiencies - report of the first Sino-German Sulfur Workshop[C]. Landbau for Schung Vlkenrode, Special Issue, 2005, 283: 1-4.
[36] LI C, MCLINDEN C, FIOLETOV V, KROTKOV N, CARN S, JOINER J, STREETS D, HE H, REN X R, LI Z Q, DICKERSON R R. India is overtaking China as the world's largest emitter of anthropogenic sulfur dioxide. Scientific Reports, 2017, 7: 14304.
doi: 10.1038/s41598-017-14639-8
[37] 马常宝, 高祥照, M.X. Fan, D.L. Messsick. 全球土壤缺硫与硫肥应用情况. 中国农技推广, 2008, 24(8): 31-33.
MA C B, GAO X Z, FAN M X, MESSSICK D L. Soil sulphur deficiency and sulphur fertilizer application in the world. China Agricultural Technology Extension, 2008, 24(8): 31-33. (in Chinese)
[38] 蔡红光, 张秀芝, 闫孝贡, 刘剑钊, 盖嘉慧, 张洪喜, 袁静超, 周康, 任军. 吉林省春玉米土壤中、微量元素“潜缺乏”初探. 玉米科学, 2013, 21(3): 71-75.
CAI H G, ZHANG X Z, YAN X G, LIU J Z, GAI J H, ZHANG H X, YUAN J C, ZHOU K, REN J. Preliminary study on hidden deficiency of secondary and trace elements in spring maize in Jilin Province. Journal of Maize Sciences, 2013, 21(3): 71-75. (in Chinese)
[39] 李书田, 林葆. 土壤中植物有效硫的评价. 植物营养与肥料学报, 1998, 4(1): 75-83.
LI S T, LIN B. The status and evaluation of plant available sulphur in soils. Plant Natrition and Fertilizer Science, 1998, 4(1): 75-83. (in Chinese)
[40] 宋长春, 王志春, 宋新山. 灌溉条件下苏打盐渍化土壤环境变化及其生物效应. 生态学杂志, 2001, 20(5): 51-54.
SONG C C, WANG Z C, SONG X S. Environment influence and biological effects in sodic salinization soil under irrigation condition. Chinese Journal of Ecology, 2001, 20(5): 51-54. (in Chinese)
[41] ERIKSEN J. Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biology and Fertility of Soils, 1996, 22(1): 149-155.
doi: 10.1007/BF00384447
[42] LIU S R, CUI S, YING F Y, NASAR J, WANG Y, GAO Q A. Simultaneous improvement of protein concentration and amino acid balance in maize grains by coordination application of nitrogen and sulfur. Journal of Cereal Science, 2021, 99: 103189.
doi: 10.1016/j.jcs.2021.103189
[43] LIU S R, CUI S, ZHANG X E, WANG Y, MI G H, GAO Q A. Synergistic regulation of nitrogen and sulfur on redox balance of maize leaves and amino acids balance of grains. Frontiers in Plant Science, 2020, 11: 576718.
doi: 10.3389/fpls.2020.576718
[44] 高义民, 同延安, 孙本华, 赵护兵. 陕西农田土壤硫分布特征及其与土壤性质的关系. 西北农业学报, 2005, 14(3): 177-180.
GAO Y M, TONG Y N, SUN B H, ZHAO H B. The characteristics of sulphur distribution in soil and relationships with soil properties of Shaanxi. Acta Agriculturae Boreali-Occidentalis Sinica, 2005, 14(3): 177-180. (in Chinese)
[45] 焉莉, 王寅, 冯国忠, 高强. 吉林省农田土壤肥力现状及变化特征. 中国农业科学, 2015, 48(23): 4800-4810.
YAN L, WANG Y, FENG G Z, GAO Q. Status and change characteristics of farmland soil fertility in Jilin Province. Scientia Agricultura Sinica, 2015, 48(23): 4800-4810. (in Chinese)
[46] 尹思佳, 李慧, 徐志强, 裴久渤, 戴继光, 刘雨薇, 李艾蒙, 于雅茜, 刘维, 汪景宽. 东北典型黑土区旱地耕层土壤肥力指标的纬度变化特征及其关系. 中国农业科学, 2021, 54(10): 2132-2141.
YIN S J, LI H, XU Z Q, PEI J B, DAI J G, LIU Y W, LI A M, YU Y X, LIU W, WANG J K. Spatial variations and relationships of topsoil fertility indices of drylands in the typical black soil region of northeast China. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141. (in Chinese)
[1] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[2] HUANG QiuHong,LIU ZhiLei,LI PengFei,CHE JunJie,YU CaiLian,PENG XianLong. Difference in Nitrogen Responses and Nitrogen Efficiency of Different Paddy Soils in Southern and Northern China Under the Same Climatic Condition [J]. Scientia Agricultura Sinica, 2021, 54(19): 4143-4154.
[3] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[4] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
[5] JIANG SaiPing,ZHANG RenLian,ZHANG WeiLi,XU AiGuo,ZHANG HuaiZhi,XIE LiangShang,JI HongJie. Spatial and Temporal Variation of Soil Organic Matter and Cause Analysis in Hainan Island in Resent 30 Years [J]. Scientia Agricultura Sinica, 2019, 52(6): 1032-1044.
[6] LIU Lin,JI BingJie,LI RuoNan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Characteristics of Soil Phosphorus in Winter Wheat/Summer Maize Cropping in Shaanxi Guanzhong Plain [J]. Scientia Agricultura Sinica, 2019, 52(21): 3878-3889.
[7] REN KeYu,DUAN YingHua,XU MingGang,ZHANG XuBo. Effect of Manure Application on Nitrogen Use Efficiency of Crops in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2983-2996.
[8] XiaoBin WU, DeShui TAN, HaiTao LIN, GuoLiang ZHU, ZiShuang LI, AiLing HE, JianHua GUO, ZhaoHui LIU. Yield Effect and Nitrogen Fertilizer Screening of One-off Application of Controlled Release Fertilizer for Winter Wheat [J]. Scientia Agricultura Sinica, 2018, 51(20): 3863-3875.
[9] JIANG GuiYing, ZHANG YuJun, WEI Xi, ZHANG DongXu, LIU ShiLiang, LIU KaiLou, HUANG ShaoMin, SHEN FengMin. The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels [J]. Scientia Agricultura Sinica, 2018, 51(16): 3117-3129.
[10] WANG Yin, GUO Dan, GAO Qiang, LI CuiLan, YAN Li, FENG GuoZhong, LIU ZhenGang, FANG Jie. Differences in Maize Yield Responses to Phosphorous Fertilizer in Different Ecological Zones of Jilin Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1635-1645.
[11] SHANG Xuan, LI XiCan, XU YouYou, LIU ShaSha. The Role and Interaction of Soil Water and Organic Matter on Hyper-Spectral Reflectance [J]. Scientia Agricultura Sinica, 2017, 50(8): 1465-1475.
[12] JIA ShuHai, ZHANG JiaNan, ZHANG YuLing, DANG XiuLi, FAN QingFeng, WANG Zhan, YU Na, ZOU HongTao, ZHANG YuLong. Changes of the Characteristics of Soil Organic Carbon and Total Nitrogen After Conversation from Upland to Paddy Field in Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(7): 1252-1262.
[13] ZHU YaXing, YU Lei, HONG YongSheng, ZHANG Tao, ZHU Qiang, LI SiDi, GUO Li, LIU JiaSheng. Hyperspectral Features and Wavelength Variables Selection Methods of Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(22): 4325-4337.
[14] HONG YongSheng, YU Lei, ZHU YaXing, LI SiDi, GUO Li, LIU JiaSheng, NIE Yan, ZHOU Yong. Using Orthogonal Signal Correction Algorithm Removing the Effects of Soil Moisture on Hyperspectral Reflectance to Estimate Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(19): 3766-3777.
[15] YAN Li, FENG GuoZhong, LAN Chang, GAO Qiang. Nitrogen Effect and Emission Reduction Potential of Rice Planting in Jilin Province by GIS [J]. Scientia Agricultura Sinica, 2017, 50(17): 3365-3374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!