Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3666-3679.doi: 10.3864/j.issn.0578-1752.2021.17.009

• CLIMATE CHANGE AND MAIZE PRODUCTION IN CHINA • Previous Articles     Next Articles

Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil

FANG Rui1(),YU ZhenHua1,LI YanSheng1,XIE ZhiHuang1,2,LIU JunJie1,WANG GuangHua1,LIU XiaoBing1,CHEN Yuan1,LIU JuDong1,ZHANG ShaoQing1,WU JunJiang3,Stephen J HERBERT4,JIN Jian1()   

  1. 1Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences/Key Laboratory of Mollisols Agroecology, Harbin 150081, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs/Heilongjiang Key Laboratory of Soybean Cultivation, Harbin 150086, China
    4Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
  • Received:2020-07-16 Accepted:2020-11-23 Online:2021-09-01 Published:2021-09-09
  • Contact: Jian JIN E-mail:fangrui@iga.ac.cn;jinjian@iga.ac.cn

Abstract:

Elevated atmospheric CO2 concentration (eCO2) and warming may affect the crop photosynthesis, and consequently alter the translocation of photosynthetic carbon to soil. Under climate change, the change of photosynthetic carbon retained in soil may shape the structure of microbial community involved in photosynthetic carbon transformation. As a major driver of soil carbon cycle, soil microorganism plays an important role in the transformation of soil organic matter. The changes of microbial community structure and function under climate change are likely to affect the turnover of soil organic matter, resulting in an increase or decrease in the concentration of atmosphere CO2 as a feedback to climate change. Soil carbon balance depends on the input and output of carbon in the soil and its retention in the soil. However, it is unclear that how climate change may affect the stability of the soil carbon pool. Therefore, the change of the soil carbon pool corresponding with soil microbial community structure is the core mechanism of terrestrial ecosystem in response to climate change, which is important to the management of soil organic carbon and the maintenance of soil productivity on farmland in the future. This paper reviewed the responses of soil carbon pool and soil microbial community structure to global climate change (eCO2 and warming). The main conclusions were as follows: (1) Elevated CO2 and warming exhibited the tradeoff effect on soil carbon pools, but whether soil carbon pool became carbon source depended on the extent of warming; (2) Elevated CO2 increased the accumulation of photosynthetic carbon in plant parts of corn and wheat. Warming also posed an impact on the accumulation of photosynthetic carbon, but the impact varied among different parts with negative or no effect; (3) Warming and eCO2 showed a cumulative effect on soil microbial activity and community diversity, but different microbial kingdoms (bacteria, fungi and archaea) had different roles to affect carbon turnover. Finally, it was proposed that the future research directions included: (1) in-depth study on the impact of climate change on the turnover of root exudates considering the plant-soil interaction and its influence on microbial properties; (2) DNA-SIP being applied to explore the relationship between different plant-carbon sources utilized by soil microorganisms and carbon cycling under eCO2 and warming. Thus, these proposed studies might clarify substrate-utilizing strategies by microbes and the response of microbial community to climate change.

Key words: climate change, soil organic matter, microorganism, photosynthetic carbon, root exudates

Table 1

Effect of eCO2 and warming on soil carbon pools"

生态系统
Ecosystem
碳库
Carbon pool
CO2浓度升高
Elevated CO2
温度升高
Warming
CO2浓度升高+温度升高
Elevated CO2 plus warming
玉米
Maize
POC 增加[36];减少[37] Increase [36]; Decrease[37] 不变[36] Unchanged[36] 增加[36] Increase [36]
MOC 不变[36] Unchanged[36] 不变[36] Unchanged[36] 不变[36] Unchanged[36]
SOC 减少[37];增加[38] Decrease[37]; Increase [38] 减少[37,38] Decrease[37,38] 减少[37] Decrease[37]
小麦
Wheat
POC 减少[39];不变[40] Decrease[39]; Unchanged[40] 减少[39] Decrease[39] 减少[39] Decrease[39]
MOC 增加[39];不变[40] Increase [39] ; Unchanged[40] 增加[39] Increase [39] 增加[39] Increase [39]
DOC 不变[41] Unchanged[41] 增加[41] Increase [41] 不变[41] Unchanged[41]
SOC 增加[42];减少[39];不变[43]
Increase [42] ; Decrease[39] ; Unchanged[43]
增加[41];减少[39]
Increase [41] ; Decrease[39]
增加[41];减少[39]
Increase [41] ; Decrease[39]
大豆
Soybean
MBC 增加[35] Increase [35] - -
SOC 增加[38];不变[35] Increase [38] ; Unchanged[35] 减少[38] Decrease[38] -
水稻
Rice
MBC 增加[44] Increase [44] 不变[44] Unchanged[44] 增加[44] Increase [44]
DOC 减少[44] Decrease[44] 不变[44] Unchanged[44] 减少[44] Decrease[44]
TOC 减少[39];增加[45]
Decrease[39] ; Increase [45]
减少[39];增加[45]
Decrease[39] ; Increase [45]
减少[39];增加[45]
Decrease[39] ; Increase [45]
草原
Grassland
POC - 不变[46];减少[47] Unchanged[46] ; Decrease [47] -
MOC - 减少[46];增加[47] Decrease [46] ; Increase [47] -
SOC 增加[48];不变[49] Increase [48] ; Unchanged[49] 不变[46-47,49] Unchanged[46-47,49] 不变[48,49] Unchanged[48,49]
森林
Forests
MOC 增加[34] Increase [34] 增加[50];减少[51] Increase [50] ; Decrease[51] -
POC 减少[34] Decrease[34] 减少[51] Decrease[51] -
DOC - 增加[51] Increase [51] -
SOC - 减少[51] Decrease[51] -
[1] PANOZZO J F, WALKER C K, MAHARJAN P, PARTINGTON D L, KORTE C J. Elevated CO2 affects plant nitrogen and water-soluble carbohydrates but not in vitro metabolisable energy. Journal of Agronomy and Crop Science, 2019, 205(6): 647-658.
doi: 10.1111/jac.v205.6
[2] Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis report//TEAM C, PACHAURI R K, MEYER L A. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Switzerland: Geneva, 2014.
[3] FU T C, HA B, KO J. Simulation of CO2 enrichment and climate change impacts on soybean production. International Agrophysics, 2016, 30(1): 25-37.
doi: 10.1515/intag-2015-0069
[4] BORDIGNON L, FARIA A P, FRANÇA M G C, FERNANDES G W. Osmotic stress at membrane level and photosystem II activity in two C4 plants after growth in elevated CO2 and temperature. Annals of Applied Biology, 2019, 174(2): 113-122.
doi: 10.1111/aab.2019.174.issue-2
[5] MEEHL G A, STOCKER T F, COLLINS W D, FRIEDLINGSTEIN P, GAYE A, GREGORY J, KITOH A, KNUTTI R, MURPHY J, NODA A, RAPER S, WATTERSON I, WEAVER A, ZHAO Z. Global climate projections//IPPC. Climate Change 2007. The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[6] GAO X J, SHI Y, GIORGI F. A high resolution simulation of climate change over China. Science China Earth Sciences, 2011, 54(3): 462-472.
doi: 10.1007/s11430-010-4035-7
[7] 金奖铁, 李扬, 李荣俊, 刘秀林, 李林懋. 大气二氧化碳浓度升高影响植物生长发育的研究进展. 植物生理学报, 2019, 55(5): 558-568.
JIN J T, LI Y, LI R J, LIU X L, LI L M. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development. Plant Physiology Journal, 2019, 55(5): 558-568.(in Chinese)
[8] NORBY R J, DELUCIA E H, GIELEN B, CALFAPIETRA C, GIARDINA C P, KING J S, LEDFORD J, MCCARTHY H R, MOORE D J P, CEULEMANS R, DE ANGELIS P, FINZI A C, KARNOSKY D F, KUBISKE M E, LUKAC M, PREGITZER K S, SCARASCIA-MUGNOZZA G E, SCHLESINGER W H, OREN R. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(50): 18052-18056.
[9] 王艳红, 于镇华, 李彦生, 刘俊杰, 王光华, 刘晓冰, 谢志煌, Stephen J Herbert, 金剑. 植物-土壤-微生物间碳流对大气CO2浓度升高的响应. 土壤与作物, 2018, 7(1): 22-30.
WANG Y H, YU Z H, LI Y S, LIU J J, WANG G H, LIU X B, XIE Z H, HERBERT S, JIN J. Carbon flow in the plant-soil-microbe continuum in response to atmospheric elevated CO2. Soils and Crops, 2018, 7(1): 22-30.(in Chinese)
[10] KUZYAKOV Y, GAVRICHKOVA O. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 2010, 16(12): 3386-3406.
doi: 10.1111/j.1365-2486.2010.02179.x
[11] OSANAI Y, KNOX O, NACHIMUTHU G, WILSON B. Increasing soil organic carbon with maize in cotton-based cropping systems: Mechanisms and potential. Agriculture, Ecosystems & Environment, 2020, 299: 106985.
[12] NULL. Plant roots and carbon sequestration. Current Science, 2006, 91(7): 885-890.
[13] VAN GESTEL N, SHI Z, VAN GROENIGEN K J, OSENBERG C W, ANDRESEN L C, DUKES J S, HOVENDEN M J, LUO Y Q, MICHELSEN A, PENDALL E, REICH P B, SCHUUR E A G, HUNGATE B A. Predicting soil carbon loss with warming. Nature, 2018, 554(7693): E4-E5.
doi: 10.1038/nature25745
[14] HOPKINS F M, FILLEY T R, GLEIXNER G, LANGE M, TOP S M, TRUMBORE S E. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biology and Biochemistry, 2014, 76: 57-69.
doi: 10.1016/j.soilbio.2014.04.028
[15] TODD-BROWN K E O, RANDERSON J T, HOPKINS F, ARORA V, HAJIMA T, JONES C, SHEVLIAKOVA E, TJIPUTRA J, VOLODIN E, WU T, ZHANG Q, ALLISON S D. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences, 2014, 11(8): 2341-2356.
doi: 10.5194/bg-11-2341-2014
[16] PRICE D T, PENG C H, APPS M J, HALLIWELL D H. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. Journal of Biogeography, 1999, 26(6): 1237-1248.
doi: 10.1046/j.1365-2699.1999.00332.x
[17] CONANT R T, STEINWEG J M, HADDIX M L, PAUL E A, PLANTE A F, SIX J. Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology, 2008, 89(9): 2384-2391.
doi: 10.1890/08-0137.1
[18] FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 2003, 35(6): 837-843.
doi: 10.1016/S0038-0717(03)00123-8
[19] DRIGO B, PIJL A S, DUYTS H, KIELAK A M, GAMPER H A, HOUTEKAMER M J, BOSCHKER H T S, BODELIER P L E, WHITELEY A S, VEEN J A V, KOWALCHUK G A. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. PNAS, 2010, 107(24): 10938-10942.
doi: 10.1073/pnas.0912421107
[20] VAN GROENIGEN K J, QI X, OSENBERG C W, LUO Y Q, HUNGATE B A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science, 2014, 344(6183): 508-509.
doi: 10.1126/science.1249534
[21] DIJKSTRA P, THOMAS S C, HEINRICH P L, KOCH G W, SCHWARTZ E, HUNGATE B A. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biology and Biochemistry, 2011, 43(10): 2023-2031.
doi: 10.1016/j.soilbio.2011.05.018
[22] FISSORE C, GIARDINA C P, KOLKA R K, TRETTIN C C, KING G M, JURGENSEN M F, BARTON C D, MCDOWELL S D. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America. Global Change Biology, 2008, 14(1): 193-205.
doi: 10.1111/gcb.2008.14.issue-1
[23] DENNIS P G, MILLER A J, HIRSCH P R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 2010, 72(3): 313-327.
doi: 10.1111/fem.2010.72.issue-3
[24] LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627.
doi: 10.1126/science.1097396
[25] LANGLEY J A, MCKINLEY D C, WOLF A A, HUNGATE B A, DRAKE B G, MEGONIGAL J P. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biology and Biochemistry, 2009, 41(1): 54-60.
doi: 10.1016/j.soilbio.2008.09.016
[26] CHENG L, LEAVITT S W, KIMBALL B A, PINTER P J Jr, OTTMAN M J, MATTHIAS A, WALL G W, BROOKS T, WILLIAMS D G, THOMPSON T L. Dynamics of labile and recalcitrant soil carbon pools in a Sorghum free-air CO2 enrichment (FACE) agroecosystem. Soil Biology and Biochemistry, 2007, 39(9): 2250-2263.
doi: 10.1016/j.soilbio.2007.03.031
[27] GILL R A, POLLEY H W, JOHNSON H B, ANDERSON L J, MAHERALI H, JACKSON R B. Nonlinear grassland responses to past and future atmospheric CO2. Nature, 2002, 417(6886): 279-282.
doi: 10.1038/417279a
[28] ZHU B, CHENG W X. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 2011, 17(6): 2172-2183.
doi: 10.1111/gcb.2011.17.issue-6
[29] PENDALL E, DEL GROSSO S, KING J Y, LECAIN D R, MILCHUNAS D G, MORGAN J A, MOSIER A R, OJIMA D S, PARTON W A, TANS P P, WHITE J W C. Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochemical Cycles, 2003, 17(2): 1046.
[30] ANANYEVA K, WANG W, SMUCKER A J M, RIVERS M L, KRAVCHENKO A N. Can intra-aggregate pore structures affect the aggregate's effectiveness in protecting carbon? Soil Biology and Biochemistry, 2013, 57: 868-875.
doi: 10.1016/j.soilbio.2012.10.019
[31] CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56(3): 777-783.
doi: 10.2136/sssaj1992.03615995005600030017x
[32] GREGORICH E G, BEARE M H, MCKIM U F, SKJEMSTAD J O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society of America Journal, 2006, 70(3): 975-985.
doi: 10.2136/sssaj2005.0116
[33] TRIPATHI R, NAYAK A K, BHATTACHARYYA P, SHUKLA A K, SHAHID M, RAJA R, PANDA B B, MOHANTY S, KUMAR A, THILAGAM V K. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice-rice system. Geoderma, 2014, 213: 280-286.
doi: 10.1016/j.geoderma.2013.08.031
[34] CARDON Z G, HUNGATE B A, CAMBARDELLA C A, CHAPIN F S III, FIELD C B, HOLLAND E A, MOONEY H A. Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biology and Biochemistry, 2001, 33(3): 365-373.
doi: 10.1016/S0038-0717(00)00151-6
[35] XU Q, JIN J, WANG X J, ARMSTRONG R, TANG C X. Susceptibility of soil organic carbon to priming after long-term CO2 fumigation is mediated by soil texture. Science of the Total Environment, 2019, 657: 1112-1120.
doi: 10.1016/j.scitotenv.2018.11.437
[36] 房蕊. 大气CO2浓度和温度升高对玉米光合碳分配及根际细菌群落的影响[D]. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2020.
FANG R. Effects of elevated CO2 concentration and warming on maize photosynthetic carbon distribution and community of rhizosphere bacterial[D]. Beijing: University of Chinese Academy of Sciences, 2020. (in Chinese)
[37] BLACK C K, DAVIS S C, HUDIBURG T W, BERNACCHI C J, DELUCIA E H. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem. Global Change Biology, 2017, 23(1): 435-445.
doi: 10.1111/gcb.13378
[38] LIN Z B, ZHANG R D. Effects of climate change and elevated atmospheric CO2 on soil organic carbon: A response equation. Climatic Change, 2012, 113(2): 107-120.
doi: 10.1007/s10584-011-0355-7
[39] SAMAL S K, DWIVEDI S K, RAO K K, CHOUBEY A K, PRAKASH V, KUMAR S, MISHRA J S, BHATT B P, MOHARANA P C. Five years’ exposure of elevated atmospheric CO2 and temperature enriched recalcitrant carbon in soil of subtropical humid climate. Soil and Tillage Research, 2020, 203: 104707.
doi: 10.1016/j.still.2020.104707
[40] DORODNIKOV M, BLAGODATSKAYA E, BLAGODATSKY S, MARHAN S, FANGMEIER A, KUZYAKOV Y. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biology, 2009, 15(6): 1603-1614.
doi: 10.1111/gcb.2009.15.issue-6
[41] IN H J, CHEN Z, LIU Q. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 2012, 50: 77-84.
doi: 10.1016/j.soilbio.2012.03.004
[42] KEILUWEIT M, BOUGOURE J J, NICO P S, PETT-RIDGE J, WEBER P K, KLEBER M. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 2015, 5(6): 588-595.
doi: 10.1038/nclimate2580
[43] 马田, 刘肖, 李骏, 张旭东, 何红波. CO2浓度升高对土壤-植物(春小麦)系统光合碳分配和积累的影响. 核农学报, 2014, 28(12): 2238-2246.
MA T, LIU X, LI J, ZHANG X D, HE H B. Effects of elevated atmospheric CO2 on the distribution and accumulation of photosynthetic carbon in soil-plant(spring wheat) system. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2238-2246.(in Chinese)
[44] LIU Y, LI M, ZHENG J W, LI L Q, ZHANG X H, ZHENG J F, PAN G X, YU X Y, WANG J F. Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a Chinese paddy field. Soil Biology and Biochemistry, 2014, 77: 58-68.
doi: 10.1016/j.soilbio.2014.06.011
[45] XIONG L, LIU X Y, VINCI G, SPACCINI R, DROSOS M, LI L Q, PICCOLO A, PAN G X. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air. Soil Biology and Biochemistry, 2019, 137: 107544.
doi: 10.1016/j.soilbio.2019.107544
[46] CHENG X, LUO Y, XU X, SHERRY R, ZHANG Q. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences, 2011, 8(6): 1487-1498.
doi: 10.5194/bg-8-1487-2011
[47] GUAN S, AN N, ZONG N, HE Y T, SHI P L, ZHANG J J, HE N P. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2018, 116: 224-236.
doi: 10.1016/j.soilbio.2017.10.011
[48] GE Z M, ZHOU X, KELLOMÄKI S, BIASI C, WANG K Y, PELTOLA H, MARTIKAINEN P J. Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environmental and Experimental Botany, 2012, 75: 150-158.
doi: 10.1016/j.envexpbot.2011.09.008
[49] YU H, DENG Y, HE Z L, VAN NOSTRAND J D, WANG S, JIN D C, WANG A J, WU L Y, WANG D H, TAI X, ZHOU J Z. Elevated CO2 and warming altered grassland microbial communities in soil top-layers. Frontiers in Microbiology, 2018, 9: 1790.
doi: 10.3389/fmicb.2018.01790
[50] SCHNECKER J, BORKEN W, SCHINDLBACHER A, WANEK W. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming. Soil Biology and Biochemistry, 2016, 103: 300-307.
doi: 10.1016/j.soilbio.2016.09.003
[51] FANG X, ZHOU G Y, QU C, HUANG W J, ZHANG D Q, LI Y L, YI Z G, LIU J X. Translocating subtropical forest soils to a warmer region alters microbial communities and increases the decomposition of mineral-associated organic carbon. Soil Biology and Biochemistry, 2020, 142: 107707.
doi: 10.1016/j.soilbio.2020.107707
[52] WIESMEIER M, HÜBNER R, SPÖRLEIN P, GEUß U, HANGEN E, REISCHL A, SCHILLING B, VON LÜTZOW M, KÖGEL-KNABNER I. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Global Change Biology, 2014, 20(2): 653-665.
doi: 10.1111/gcb.2014.20.issue-2
[53] BENBI D K, BOPARAI A K, BRAR K. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter. Soil Biology and Biochemistry, 2014, 70: 183-192.
doi: 10.1016/j.soilbio.2013.12.032
[54] CONANT R T, RYAN M G, ÅGREN G I, BIRGE H E, DAVIDSON E A, ELIASSON P E, EVANS S E, FREY S D, GIARDINA C P, HOPKINS F M, HYVÖNEN R, KIRSCHBAUM M U F, LAVALLEE J M, LEIFELD J, PARTON W J, MEGAN STEINWEG J, WALLENSTEIN M D, MARTIN WETTERSTEDT J Å, BRADFORD M A. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biology, 2011, 17(11): 3392-3404.
doi: 10.1111/j.1365-2486.2011.02496.x
[55] LOISEAU P, SOUSSANA J F. Elevated [CO2], temperature increase and N supply effects on the accumulation of below-ground carbon in a temperate grassland ecosystem. Plant and Soil, 1999, 212(2): 123-131.
doi: 10.1023/A:1004632925520
[56] CARRILLO Y, DIJKSTRA F, LECAIN D, BLUMENTHAL D, PENDALL E. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecology Letters, 2018, 21(11): 1639-1648.
doi: 10.1111/ele.2018.21.issue-11
[57] LEHMANN J, KLEBER M. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68.
doi: 10.1038/nature16069
[58] SIX J, CARPENTIER A, VAN KESSEL C, MERCKX R, HARRIS D, HORWATH W R, LÜSCHER A. Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant and Soil, 2001, 234(1): 27-36.
doi: 10.1023/A:1010504611456
[59] BRONICK C J, LAL R. Soil structure and management: A review. Geoderma, 2005, 124(1/2): 3-22.
doi: 10.1016/j.geoderma.2004.03.005
[60] 周广胜, 王玉辉, 许振柱, 周莉, 蒋延玲. 中国东北样带碳循环研究进展. 自然科学进展, 2003, 13(9): 917-922.
ZHOU G S, WANG Y H, XU Z Z, ZHOU L, JIANG Y L. Research progress of carbon cycle in Northeast China. Progress in Natural Science, 2003, 13(9): 917-922.(in Chinese)
[61] YU Z H, LI Y S, JIN J, LIU X B, WANG G H. Carbon flow in the plant-soil-microbe continuum at different growth stages of maize grown in a Mollisol. Archives of Agronomy and Soil Science, 2017, 63(3): 362-374.
doi: 10.1080/03650340.2016.1211788
[62] 李增强, 赵炳梓, 张佳宝. 玉米品种对根际微生物利用光合碳的影响. 土壤学报, 2016, 53(5): 1286-1295.
LI Z Q, ZHAO B Z, ZHANG J B. Effects of maize variety on rhizospheric microbe utilizing photosynthetic carbon. Acta Pedologica Sinica, 2016, 53(5): 1286-1295.(in Chinese)
[63] 安婷婷. 利用13C标记方法研究光合碳在植物—土壤系统的分配及其微生物的固定[D]. 沈阳: 沈阳农业大学, 2015.
AN T T. Allocation and microbial immobilization of photosynthetically fixed carbon in plant-soil system with 13C labeling technique[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese)
[64] MATHEW I, SHIMELIS H, MUTEMA M, CHAPLOT V. What crop type for atmospheric carbon sequestration: Results from a global data analysis. Agriculture, Ecosystems & Environment, 2017, 243: 34-46.
doi: 10.1016/j.agee.2017.04.008
[65] HÜTSCH B W, AUGUSTIN J, MERBACH W. Plant rhizodeposition— An important source for carbon turnover in soils. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 397-407.
doi: 10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C
[66] 石元豹, 曹兵, 宋丽华, 汪贵斌. 用13C示踪研究CO2浓度倍增对枸杞光合产物积累的影响. 农业工程学报, 2016, 32(10): 201-206.
SHI Y B, CAO B, SONG L H, WANG G B. Effect of doubled CO2 concentration on accumulation of photosynthate in Lycium barbarum by13C isotope tracer technique. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 201-206.(in Chinese)
[67] XU Z Z, ZHOU G S. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiologia Plantarum, 2005, 123(3): 272-280.
doi: 10.1111/ppl.2005.123.issue-3
[68] CHENG W G, SAKAI H, YAGI K, HASEGAWA T. Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2010, 150(9): 1174-1181.
doi: 10.1016/j.agrformet.2010.05.001
[69] JENKINSON D S, ADAMS D E, WILD A. Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991, 351(6324): 304-306.
doi: 10.1038/351304a0
[70] ZHANG W D, WANG X F, WANG S L. Addition of external organic carbon and native soil organic carbon decomposition: A meta-analysis. PLoS ONE, 2013, 8(2): e54779.
doi: 10.1371/journal.pone.0054779
[71] NORBY R J, ZAK D R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(1): 181-203.
doi: 10.1146/annurev-ecolsys-102209-144647
[72] YUE K, FORNARA D A, YANG W Q, PENG Y, PENG C H, LIU Z L, WU F Z. Influence of multiple global change drivers on terrestrial carbon storage: Additive effects are common. Ecology Letters, 2017, 20(5): 663-672.
doi: 10.1111/ele.12767
[73] LUO Y Q, HUI D F, ZHANG D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology, 2006, 87(1): 53-63.
doi: 10.1890/04-1724
[74] SAYER E J, HEARD M S, GRANT H K, MARTHEWS T R, TANNER E V J. Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change, 2011, 1(6): 304-307.
doi: 10.1038/nclimate1190
[75] KUZYAKOV Y, HORWATH W R, DORODNIKOV M, BLAGODATSKAYA E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry, 2019, 128: 66-78.
doi: 10.1016/j.soilbio.2018.10.005
[76] 潘根兴. 气候变化对中国农业生产的影响分析与评估. 北京: 中国农业出版社, 2010.
PAN G X. Impact of Climate Change on Chinese Agricultural Production: A Analysis and Evaluation. Beijing: Chinese Agriculture Press, 2010.(in Chinese)
[77] LU M, ZHOU X H, YANG Q, LI H, LUO Y Q, FANG C M, CHEN J K, YANG X, LI B. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology, 2013, 94(3): 726-738.
doi: 10.1890/12-0279.1
[78] YANNI S F, HELGASON B L, JANZEN H H, ELLERT B H, GREGORICH E G. Warming effects on carbon dynamics and microbial communities in soils of diverse texture. Soil Biology and Biochemistry, 2020, 140: 107631.
doi: 10.1016/j.soilbio.2019.107631
[79] LONG S P, AINSWORTH E A, ROGERS A, ORT D R. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology, 2004, 55: 591-628.
doi: 10.1146/annurev.arplant.55.031903.141610
[80] QADERI M M, KUREPIN L V, REID D M. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiologia Plantarum, 2006, 128(4): 710-721.
doi: 10.1111/ppl.2006.128.issue-4
[81] PARTON W J, MORGAN J A, WANG G M, DEL GROSSO S. Projected ecosystem impact of the Prairie Heating and CO2 Enrichment experiment. New Phytologist, 2007, 174(4): 823-834.
doi: 10.1111/nph.2007.174.issue-4
[82] MUELLER K E, BLUMENTHAL D M, PENDALL E, CARRILLOY, DIJKSTRA F A, WILLIAMS D G, FOLLETT R F, MORGAN J A. Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecology Letters, 2016, 19(8): 956-966.
doi: 10.1111/ele.2016.19.issue-8
[83] LIN Z B, ZHANG R D. Dynamics of soil organic carbon under uncertain climate change and elevated atmospheric CO2. Pedosphere, 2012, 22(4): 489-496.
doi: 10.1016/S1002-0160(12)60033-2
[84] HOLTKAMP R, KARDOL P, VAN DER WAL A, DEKKER S C, VAN DER PUTTEN W H, DE RUITER P C. Soil food web structure during ecosystem development after land abandonment. Applied Soil Ecology, 2008, 39(1): 23-34.
doi: 10.1016/j.apsoil.2007.11.002
[85] TISDALL J M. Possible role of soil microorganisms in aggregation in soils. Plant and Soil, 1994, 159(1): 115-121.
doi: 10.1007/BF00000100
[86] 张乃莉, 郭继勋, 王晓宇, 马克平. 土壤微生物对气候变暖和大气N沉降的响应. 植物生态学报, 2007, 31(2): 252-261.
doi: 10.17521/cjpe.2007.0029
ZHANG N L, GUO J X, WANG X Y, MA K P. Soil microbial feedbacks to climate warming and atmospheric N deposition. Journal of Plant Ecology, 2007, 31(2): 252-261.(in Chinese)
doi: 10.17521/cjpe.2007.0029
[87] HAYDEN H L, MELE P M, BOUGOURE D S, ALLAN C Y, NORNG S, PICENO Y M, BRODIE E L, DESANTIS T Z, ANDERSEN G L, WILLIAMS A L, HOVENDEN M J. Changes in the microbial community structure of bacteria, Archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environmental Microbiology, 2012, 14(12): 3081-3096.
doi: 10.1111/emi.2012.14.issue-12
[88] BRUCE K D, JONES T H, BEZEMER T M, THOMPSON L J, RITCHIE D A. The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Global Change Biology, 2000, 6(4): 427-434.
doi: 10.1046/j.1365-2486.2000.00320.x
[89] VESTERGÅRD M, REINSCH S, BENGTSON P, AMBUS P, CHRISTENSEN S. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2. Soil Biology and Biochemistry, 2016, 100: 140-148.
doi: 10.1016/j.soilbio.2016.06.010
[90] AUSTIN E E, CASTRO H F, SIDES K E, SCHADT C W, CLASSEN A T. Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biology and Biochemistry, 2009, 41(3): 514-520.
doi: 10.1016/j.soilbio.2008.12.010
[91] YU Z H, LI Y S, WANG G H, LIU J J, LIU J D, LIU X B, HERBERT S J, JIN J. Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes. Agriculture, Ecosystems & Environment, 2016, 231: 229-232.
doi: 10.1016/j.agee.2016.06.043
[92] 王艳红. 大气CO2浓度升高条件下作物光合碳在黑土中转化过程及微生物群落结构特征[D]. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2018.
WANG Y H. The effect of elevated CO2 concentration on the turnover of photosynthetically fixed carbon and relevant bacterial community characteristics in Mollisols[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
[93] JANUS L R, ANGELONI N L, MCCORMACK J, RIER S T, TUCHMAN N C, KELLY J J. Elevated atmospheric CO2 alters soil microbial communities associated with trembling aspen (Populus tremuloides) roots. Microbial Ecology, 2005, 50(1): 102-109.
doi: 10.1007/s00248-004-0120-9
[94] KLAMER M, ROBERTS M S, LEVINE L H, DRAKE B G, GARLAND J L. Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 2002, 68(9): 4370-4376.
doi: 10.1128/AEM.68.9.4370-4376.2002
[95] LIPSON D A, WILSON R F, OECHEL W C. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem. Applied and Environmental Microbiology, 2005, 71(12): 8573-8580.
doi: 10.1128/AEM.71.12.8573-8580.2005
[96] LI X F, HAN S J, GUO Z L, SHAO D K, XIN L H. Changes in soil microbial biomass carbon and enzyme activities under elevated CO2 affect fine root decomposition processes in a Mongolian oak ecosystem. Soil Biology and Biochemistry, 2010, 42(7): 1101-1107.
doi: 10.1016/j.soilbio.2010.03.007
[97] XIONG J B, HE Z L, SHI S J, KENT A, DENG Y, WU L Y, VAN NOSTRAND J D, ZHOU J Z. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Scientific Reports, 2015, 5: 9316.
doi: 10.1038/srep09316
[98] YU H, HE Z L, WANG A J, XIE J P, WU L Y, VAN NOSTRAND J D, JIN D C, SHAO Z M, SCHADT C W, ZHOU J Z, DENG Y. Divergent responses of forest soil microbial communities under elevated CO2 in different depths of upper soil layers. Applied and Environmental Microbiology, 2018, 84(1): e01694-17. DOI: 10.1128/aem.01694-17.
doi: 10.1128/aem.01694-17
[99] YANG S H, ZHENG Q S, YUAN M T, SHI Z, CHIARIELLO N R, DOCHERTY K M, DONG S K, FIELD C B, GU Y F, GUTKNECHT J, HUNGATE B A, LE ROUX X, MA X Y, NIBOYET A, YUAN T, ZHOU J Z, YANG Y F. Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials. Science of the Total Environment, 2019, 652: 1474-1481.
doi: 10.1016/j.scitotenv.2018.10.353
[100] TU Q C, HE Z L, WU L Y, XUE K, XIE G, CHAIN P, REICH P B, HOBBIE S E, ZHOU J Z. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. Soil Biology and Biochemistry, 2017, 106: 99-108.
doi: 10.1016/j.soilbio.2016.12.017
[101] TERRER C, VICCA S, STOCKER B D, HUNGATE B A, PHILLIPS R P, REICH P B, FINZI A C, PRENTICE I C. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist, 2018, 217(2): 507-522.
doi: 10.1111/nph.2018.217.issue-2
[102] JIN J, WOOD J, FRANKS A, ARMSTRONG R, TANG C X. Long-term CO2 enrichment alters the diversity and function of the microbial community in soils with high organic carbon. Soil Biology and Biochemistry, 2020, 144: 107780.
doi: 10.1016/j.soilbio.2020.107780
[103] SINGH B K, BARDGETT R D, SMITH P, REAY D S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 2010, 8(11): 779-790.
doi: 10.1038/nrmicro2439
[104] BRADFORD M A, DAVIES C A, FREY S D, MADDOX T R, MELILLO J M, MOHAN J E, REYNOLDS J F, TRESEDER K K, WALLENSTEIN M D. Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 2008, 11(12): 1316-1327.
doi: 10.1111/ele.2008.11.issue-12
[105] XIONG J B, SUN H B, PENG F, ZHANG H Y, XUE X A, GIBBONS S M, GILBERT J A, CHU H Y. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiology Ecology, 2014, 89(2): 281-292.
doi: 10.1111/fem.2014.89.issue-2
[106] LI Q, BAI H H, LIANG W J, XIA J Y, WAN S Q, VAN DER PUTTEN W H. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe. PLoS ONE, 2013, 8(3): e60441.
[107] ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 2010, 3(5): 336-340.
doi: 10.1038/ngeo846
[108] THAKUR M P, DEL REAL I M, CESARZ S, STEINAUER K, REICH P B, HOBBIE S, CIOBANU M, RICH R, WORM K, EISENHAUER N. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 2019, 135: 184-193.
doi: 10.1016/j.soilbio.2019.04.020
[109] TEDERSOO L. Correspondence: Analytical flaws in a continental- scale forest soil microbial diversity study. Nature Communications, 2017, 8: 15572.
doi: 10.1038/ncomms15572
[110] FREY S D, LEE J, MELILLO J M, SIX J. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, 2013, 3(4): 395-398.
doi: 10.1038/nclimate1796
[111] FREY S D, DRIJBER R, SMITH H, MELILLO J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 2008, 40(11): 2904-2907.
doi: 10.1016/j.soilbio.2008.07.020
[112] ALI R S, POLL C, KANDELER E. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil Biology and Biochemistry, 2018, 127: 60-70.
doi: 10.1016/j.soilbio.2018.09.010
[113] ALLISON S D, TRESEDER K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 2008, 14(12): 2898-2909.
doi: 10.1111/j.1365-2486.2008.01716.x
[114] SCHIMEL J, BALSER T C, WALLENSTEIN M. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 2007, 88(6): 1386-1394.
doi: 10.1890/06-0219
[115] FIERER N, SCHIMEL J P, HOLDEN P A. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 2003, 35(1): 167-176.
doi: 10.1016/S0038-0717(02)00251-1
[116] MELILLO J M, FREY S D, DEANGELIS K M, WERNER W J, BERNARD M J, BOWLES F P, POLD G, KNORR M A, GRANDY A S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 2017, 358(6359): 101-105.
doi: 10.1126/science.aan2874
[117] ANDRESEN L C, DUNGAIT J A J, BOL R, SELSTED M B, AMBUS P, MICHELSEN A. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-Glycine and FACE CO2. PLoS ONE, 2014, 9(1): e85070.
doi: 10.1371/journal.pone.0085070
[118] HAEI M, ROUSK J, ILSTEDT U, ÖQUIST M, BÅÅTH E, LAUDON H. Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community. Soil Biology and Biochemistry, 2011, 43(10): 2069-2077.
doi: 10.1016/j.soilbio.2011.06.005
[119] CHEN J, LUO Y Q, XIA J Y, JIANG L F, ZHOU X H, LU M, LIANG J Y, SHI Z, SHELTON S, CAO J J. Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 2015, 5: 18032.
doi: 10.1038/srep18032
[120] GOODFELLOW M, WILLIAMS S T. Ecology of actinomycetes. Annual Review of Microbiology, 1983, 37(1): 189-216.
doi: 10.1146/annurev.mi.37.100183.001201
[121] ADAIR K L, LINDGREEN S, POOLE A M, YOUNG L M, BERNARD-VERDIER M, WARDLE D A, TYLIANAKIS J M. Above and belowground community strategies respond to different global change drivers. Scientific Reports, 2019, 9: 2540.
doi: 10.1038/s41598-019-39033-4
[122] FENG J J, WANG C, LEI J S, YANG Y F, YAN Q Y, ZHOU X S, TAO X Y, NING D L, YUAN M M, QIN Y J, SHI Z J, GUO X E, HE Z L, VAN NOSTRAND J D, WU L Y, BRACHO-GARILLO R G, PENTON C R, COLE J R, KONSTANTINIDIS K T, LUO Y Q, SCHUUR E A G, TIEDJE J M, ZHOU J Z. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome, 2020, 8(1): 3.
doi: 10.1186/s40168-019-0778-3
[123] FENNER N, FREEMAN C, LOCK M A, HARMENS H, REYNOLDS B, SPARKS T. Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science & Technology, 2007, 41(9): 3146-3152.
doi: 10.1021/es061765v
[124] HU H W, MACDONALD C A, TRIVEDI P, ANDERSON I C, ZHENG Y, HOLMES B, BODROSSY L, WANG J T, HE J Z, SINGH B K. Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biology and Biochemistry, 2016, 92: 1-15.
doi: 10.1016/j.soilbio.2015.09.008
[125] OSANAI Y, JANES J K, NEWTON P C D, HOVENDEN M J. Warming and elevated CO2 combine to increase microbial mineralisation of soil organic matter. Soil Biology and Biochemistry, 2015, 85: 110-118.
doi: 10.1016/j.soilbio.2015.02.032
[126] HAICHAR F E Z, SANTAELLA C, HEULIN T, ACHOUAK W. Root exudates mediated interactions belowground. Soil Biology and Biochemistry, 2014, 77: 69-80.
doi: 10.1016/j.soilbio.2014.06.017
[127] BAI W M, WAN S Q, NIU S L, LIU W X, CHEN Q S, WANG Q B, ZHANG W H, HAN X G, LI L H. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 2010, 16(4): 1306-1316.
doi: 10.1111/gcb.2010.16.issue-4
[128] DIJKSTRA F A, CARRILLO Y, PENDALL E, MORGAN J A. Rhizosphere priming: A nutrient perspective. Frontiers in Microbiology, 2013, 4: 216.
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[4] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[5] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[6] ZHANG JinYuan,LI YanSheng,YU ZhenHua,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,WU JunJiang,Stephen J HERBERT,JIN Jian. Nitrogen Cycling in the Crop-Soil Continuum in Response to Elevated Atmospheric CO2 Concentration and Temperature -A Review [J]. Scientia Agricultura Sinica, 2021, 54(8): 1684-1701.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[9] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[10] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
[11] Shan ZHUANG,Wei LIN,JunJun DING,Qian ZHENG,XinYue KOU,QiaoZhen LI,YuZhong LI. Effects of Different Root Exudates on Soil N2O Emissions and Isotopic Signature [J]. Scientia Agricultura Sinica, 2020, 53(9): 1860-1873.
[12] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[13] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[14] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[15] JIANG SaiPing,ZHANG RenLian,ZHANG WeiLi,XU AiGuo,ZHANG HuaiZhi,XIE LiangShang,JI HongJie. Spatial and Temporal Variation of Soil Organic Matter and Cause Analysis in Hainan Island in Resent 30 Years [J]. Scientia Agricultura Sinica, 2019, 52(6): 1032-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!