Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1830-1844.doi: 10.3864/j.issn.0578-1752.2020.09.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK

Lei QIAO1,WuPing ZHANG2(),MingJing HUANG3,GuoFang WANG1,Jian REN1   

  1. 1 College of Resources and Environment, Shanxi Agricultural University, Taigu 030800, Shanxi;
    2 College of Software, Shanxi Agricultural University, Taigu 030800, Shanxi;
    3 Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
  • Received:2019-11-14 Accepted:2020-02-13 Online:2020-05-01 Published:2020-05-13
  • Contact: WuPing ZHANG E-mail:zwping@126.com

Abstract:

【Objective】Spatial prediction is an important approach to obtain location-specific values of soil organic matter (SOM), which is an important figure of soil fertility and farmland management properly. This study was performed to compare different digital soil spatial mapping methods of SOM to get better prediction accuracy and to reveal the spatial non-stationarity characteristics of environmental covariates and the spatial scale of different environmental covariates at the same time. 【Method】In this study, the digital soil spatial mapping method was used, which was a combination of Multiscale Geographically Weighted Regression Model with simple Kriging of the residuals (MGWGK) for mapping SOM in seven towns from Jinzhong Basin. The performance of MGWRK with those of Ordinary Kriging (OK), Regression Kriging (RK), and Geographically Weighted Regression Kriging (GWRK) were compared to explore the relationship between influence factors and SOM on the influence degree and space scale. 【Result】Based on the stepwise regression method, 13 indexes were selected as environmental covariables in the modeling, including aspect, slope, height, annual average precipitation, annual average temperature, gross primary productivity (GPP), evapotranspiration (ET), topographic wetness index (TWI), plan curvature, stream power index (SPI), terrain position index (TPI), terrain ruggedness index (TRI), and the annual NDVI. In the multiple linear regression (MLR), the formula had statistical significance. In the Radius index, the performance of each model was in order from good to bad: RK, OK, GWRK, MGWRK. In the mapping performance, MGWRK was close to GWRK, and both of which were better than OK method and RK method. The SOM in the study area, showed a spatial pattern of higher in middle than east and west side, among which the SOM was high in the east of the Fenhe river and the Changyuan river. The influence of aspect, annual average precipitation, annual average temperature, height, TPI and the annual NDVI on SOM in the eastern of the study area was stronger than that in the western. Whiles slope, GPP, ET, plan curvature, SPI and TRI showed opposite influence in spatial. The influence of TWI on SOM was stronger in the northern than the southern. 【Conclusion】The spatial prediction accuracy of MGWRK was 69% of RK, 71.74% of OK, and 71.17% of GWRK. MGWRK performed well in the spatial non-stationary features and the spatial visualization, which provided a reference for prediction of SOM and description spatial non-stationarity characteristics.

Key words: soil organic matter (SOM), soil mapping, multiscale geographically weighted regression kriging (MGWRK), geographically weighted regression kriging (GWRK), regression kriging (RK), non-stationarity

Fig. 1

Study area and soil sample sites"

Table 1

List of environmental covariate data"

数据类型
Data type
指标
Index
地形因子数据
Terrain data
坡向Aspect
坡度 Slope
海拔 Height
地形湿度指数 Topographic wetness index, TWI
平面曲率 Plan curvature, PC
汇流动力指数 Stream power index, SPI
地形指数 Terrain position index, TPI
地形粗糙指数 Terrain ruggedness index, TRI
气象数据
Meteorological data
年平均降水Annual mean precipitation, PRE
年平均温度 Annual mean temperature, TEM
遥感数据
Remote sensing data
年植被总生产量GPP (From MOD17A2)
年蒸散量 ET (From MOD16A2)
年平均NDVI (来自MOD13A1,使用最大合成法求得)
Annual mean NDVI (Data from MOD13A1, obtained by Maximum Value Composites method)

Fig. 2

Back-fitting algorithm for multiscale geographically weighted regression model (MGWR)"

Fig. 3

Spatial distribution of environmental covariates"

Table 2

Model multicollinearity test"

指标Index 容差 Tolerance VIF
坡向Aspects (°) 0.993 1.007
坡度Slope (°) 0.548 1.824
年均降水量Annual mean precipitation (mm) 0.514 1.944
年平均温度Annual mean temperature (℃) 0.417 2.400
海拔Height (m) 0.670 1.493
植被年总初级生产力Gross primary productivity (kgC·m-2) 0.216 4.636
年蒸散量Evapotranspiration (mm) 0.194 5.168
地形湿度指数 Topographic wetness index 0.652 1.534
平面曲率Plan curvature 0.928 1.078
汇流动力指数 Stream power index 0.980 1.021
地形指数 Terrain position index 0.730 1.369
地形粗糙指数 Terrain ruggedness index 0.548 1.824
年平均归一化植被指数 The annual NDVI 0.893 1.120

Table 3

Descriptive statistics of soil organic matter and environmental covariates"

指标
Index
最小值
Minimum
最大值
Maximum
平均值
Mean
标准差
Standard deviation
方差
Variance
变异系数
Coefficient of variation (%)
有机质Soil organic matter (g·kg-1) 2.10 33.00 13.91 5.01 25.09 36.00
坡向Aspects (°) -1.00 359.12 180.32 106.64 11373.13 59.14
坡度Slope (°) 0.00 33.37 6.84 4.60 21.20 67.36
年均降水量
Annual mean precipitation (mm)
499.01 511.01 503.72 2.00 3.98 0.40
年平均温度
Annual mean temperature (℃)
12.25 15.20 13.37 0.73 0.53 5.45
海拔Height (m) 690.00 927.00 744.04 22.77 518.46 3.06
植被年总初级生产力
Gross primary productivity (kgC·m-2)
270.28 817.96 557.30 68.57 4702.51 12.30
年蒸散量Evapotranspiration (mm) 248.43 461.20 358.95 37.47 1403.98 10.44
地形湿度指数
Topographic wetness index
0.00 19.39 9.61 3.14 9.86 32.67
平面曲率 Plan curvature -0.01 0.01 0.00 0.00 0.00 1281.06
汇流动力指数 Stream power index -167350.00 11730.90 -3405.69 18999.56 360983218.24 -557.88
地形指数 Terrain position index -21.49 21.78 -0.47 4.88 23.78 -1040.39
地形粗糙指数
Terrain ruggedness index
0.00 18.72 3.81 2.25 5.05 58.96
年平均归一化植被指数
The annual NDVI
0.00 2.80 0.71 0.19 0.04 26.44

Fig. 4

Semivariogram"

Fig. 5

Map of different Model residuals (MLR residuals, GWR residuals, MGWR residuals)"

Table 4

Semi-variogram of the results of each model"

拟合模型
Fitting model
块金值
Nugget
基台值
Sill
变程
Range (m)
块金系数
Nugget/Sill (%)
MLR残差 MLR residuals E 10.59 21.20 2265 49.95
GWR残差 GWR residuals E 0.38 3.72 636 10.22
MGWR残差MGWR residuals E 0.81 2.29 657 35.37

Table 5

Evaluation index of each model"

模型 Model RMSE MAE ME R2 Radius
OK 2.8553 2.1009 0.0009 0.6984 107.4383
RK 2.7613 2.0396 -0.0001 0.7207 98.1195
MGWRK 3.5430 2.6292 0.0036 0.5010 172.8181
GWRK 3.0622 2.2402 0.0978 0.6492 133.6925

Fig. 6

Soil mapping results of each model"

Fig. 7

Standardized regression coefficient distribution of soil organic matter influencing factors"

Fig. 8

Bandwidth comparison of MGMR and GWR a: Aspect of MGWR; b: Slope of MGWR; c: Annual mean precipitation of MGWR; d: Annual mean temperature of MGWR; e: Height of MGWR; f: Gross primary productivity of MGWR; g: Evapotranspiration of MGWR; h: TPI of MGWR; i: Plan curvature of MGWR; j: SPI of MGWR; k: TPI of MGWR; l: TRI of MGWR; m: NDVI; n: Intercept of MGWR; o: Geographically Weighted Regression (GWR)"

Table 6

Evaluation index of others model"

模型 Model RMSE MAE ME R2 Radius
MLR 4.5402 3.4510 0.0000 0.1782 727.4052
GWR 3.9863 2.9921 0.0375 0.3731 352.6252
MGWR 3.5959 2.6806 -0.0005 0.4916 210.8228

Fig. 9

Radius indices shown in an arc diagram for different models"

[1] 黄昌勇, 徐建明 . 土壤学. 北京: 中国农业出版社, 2010.
HUANG C Y, XU J M . Soil Science. Beijing: China Agriculture Press, 2010. (in Chinese)
[2] 银敏华, 李援农, 李昊, Yang Yang, 徐袁博, 张天乐 . 垄覆黑膜沟覆秸秆促进夏玉米生长及养分吸收. 农业工程学报, 2015,31(22):122-130.
YIN M H, LI Y N, LI H, YANG Y, XU Y B, ZHANG T L . Ridge-furrow planting with black film mulching over ridge and corn straw mulching over furrow enhancing summer maize’s growth and nutrient absorption. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(22):122-130. (in Chinese)
[3] 周伟, 王文杰, 何兴元, 张波, 肖路, 王琼, 吕海亮, 魏晨辉 . 哈尔滨城市绿地土壤肥力及其空间特征. 林业科学, 2018,54(9):9-17.
ZHOU W, WANG W, HE X Y, ZHANG B, XIAO L, WANG Q, LV H L, WEI C H . Soil fertility and spatial variability of urban green land in Harbin. Scientia Silvae Sinicae, 2018,54(9):9-17. DOI: 10.11707/ j.1001-7488.20180902. (in Chinese)
[4] 庞蕊, 刘敏, 李美玲, 徐兴良 . 土壤碳排放组分区分的研究进展. 生态学杂志, 2017,36(8):2327-2335.
PANG R, LIU M, LI M L, XU X L . Advances in research on the separation of soil carbon emissions. Chinese Journal of Ecology, 2017,36(8):2327-2335. DOI: 10.13292/j.1000-4890.201708.007. (in Chinese)
[5] 吴春生, 刘高焕, 刘庆生, 黄翀, 张韵婕, 管续栋 . 蒙古高原中北部土壤有机质空间分布研究. 资源科学, 2016,38(5):994-1002.
doi: 10.18402/resci.2016.05.18
WU C S, LIU G H, LIU Q S, HUANG C, ZHANG Y J, GUAN X D . The spatial distribution of soil organic matter on the north-central Mongolian Plateau. Resources Science, 2016,38(5):994-1002. DOI: 10.18402/resci.2016.05.18. (in Chinese)
doi: 10.18402/resci.2016.05.18
[6] 陈琳, 任春颖, 王宗明, 张柏 . 基于克里金插值的耕地表层土壤有机质空间预测. 干旱区研究, 2017,34(4):798-805.
CHEN L, REN C Y, WANG Z M, ZHANG B . Prediction of spatial distribution of topsoil organic matter content in cultivated land using Kriging methods. Arid Zone Research, 2017,34(4):798-805. DOI: 10.13866/j.azr.2017.04.12. (in Chinese)
[7] ZENG C Y, YANG L, ZHU A X, DAVID G R, LIU J, LIU J Z, QIN C Z, WANG D S . Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method. Geoderma, 2016,281:69-82.
doi: 10.1016/j.geoderma.2016.06.033
[8] 王合玲, 张辉国, 吕光辉 . 艾比湖流域土壤有机质与土壤因子响应关系的空间非平稳性分析. 水土保持研究, 2016,23(2):224-228,357,358.
WANG H L, ZHANG H G, LV G H . Analysis of spatial non- stationary relationships between soil organic matter and soil factors in Ebinur Lake Basin. Researcher of Soil and Water Conservation, 2016,23(2):224-228,357,358. DOI: 10.13869/j.cnki. rswc.2016.02.042. (in Chinese)
[9] 马泉来, 高凤杰, 张志民, 单培明, 韩文文, 周军, 曲茉莉 . 我国东北黑土丘陵区小流域土壤有机质空间分布模拟. 环境科学研究, 2016,29(3):382-390.
MA Q L, GAO F J, ZHANG Z M, SHAN P M, HAN W W, ZHOU J, QU M L . Simulation of spatial distribution of soil organic matter in a mollisol watershed in Northeastern China. Research of Environmental Sciences, 2016,29(3):382-390. DOI: 10.13198/j.issn.1001-6929.2016. 03.09. (in Chinese)
[10] YE H C, HUANG W J, HUANG S Y, HUANG Y F, ZHANG S W, DONG Y Y, CHEN P F . Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spatial Statistics, 2017,20:79-61.
[11] 石淑芹, 曹祺文, 李正国, 许恒周 . 气候与社会经济因素对土壤有机质影响的空间异质性分析——以黑龙江省中部地区为例. 中国生态农业学报, 2014,22(9):1102-1112.
SHI S Q, CAO Q W, LI Z G, XU H Z . Influence of spatial heterogeneity of climatic and socio-economic factors on soil organic matter —A case study of the central Heilongjiang Province, China. Chinese Journal of Eco-Agriculture, 2014,22(9):1102-1112. DOI: 10.13930/j.cnki.cjea.140097. (in Chinese)
[12] 杜一尘, 李明泽, 范文义, 王斌 . 基于地理加权回归模型与林火遥感数据估算森林年龄. 林业科学, 2019,55(6):184-194.
DU Y C, LI M Z, FAN W Y, WANG B . Estimation of forest stand age based on gwr model and forest fire remote sensing data. Scientia Silvae Sinicae, 2019,55(6):184-194. DOI: 10.11707/j.1001-7488. 20190622. (in Chinese)
[13] 王海宾, 侯瑞萍, 郑冬梅, 高秀会, 夏朝宗, 彭道黎 . 基于地理加权回归模型的亚热带地区乔木林生物量估算. 农业机械学报, 2018,49(6):184-190.
WANG H B, HOU R P, ZHENG D M, GAO X H, XIA C Z, PENG D L . Biomass estimation of arbor forest in subtropical region based on geographically weighted regression model. Transactions of the Chinese Society of Agricultural Machinery, 2018,49(6):184-190. DOI: 10.6041/j.issn.1000-1298.201.06.021. (in Chinese)
[14] 亚森江·喀哈尔, 茹克亚·萨吾提, 尼加提·卡斯木, 尼格拉·塔什甫拉提, 张飞, 阿不都艾尼·阿不里, 师庆东 . 优化光谱指数的露天煤矿区土壤重金属含量估算. 光谱学与光谱分析, 2019,39(8):2486-2494.
YASENJIANG K, RUKEYA S, NIJAT K, NIGARA T, ZHANG F, ABDUGHENI A, SHI Q D . Estimation of heavy metal contents in soil around open pit coal mine area based on optimized spectral index. Spectroscopy and Spectral Analysis, 2019,39(8):2486-2494. DOI: 10.3964/j.issn.1000-0593(2019)08-2486-09. (in Chinese)
[15] 许珊, 邹滨, 宫俊霞 . 2001~2015年中国城镇化与PM_(2.5)浓度时空关联特征. 中国环境科学, 2019,39(2):469-477.
XU S, ZOU B, GONG J X . Analysis of the spatial-temporal association between urbanization and PM2.5 concentration during 2001~2015 period in Mainland China. China Environmental Science, 2019,39(2):469-477. DOI: 10.19674/j.cnki.issn1000-6923.2019.0057. (in Chinese)
[16] XU C C, ZHAO J Y, LIU P . A geographically weighted regression approach to investigate the effects of traffic conditions and road characteristics on air pollutant emissions. Journal of Cleaner Production, 2019,239:118084.
doi: 10.1016/j.jclepro.2019.118084
[17] 王海军, 张彬, 刘耀林, 刘艳芳, 徐姗, 邓羽, 赵雲泰, 陈宇琛, 洪松 . 基于重心-GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析. 地理学报, 2018,73(6):1076-1092.
doi: 10.11821/dlxb201806007
WANG H J, ZHANG B, LIU Y L, LIU Y F, XU S, DENG Y, ZHAO Y T, CHEN Y C, HONG S . Multi-dimensional analysis of urban expansion patterns and their driving forces based on the center of gravity-GTWR model: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 2018,73(6):1076-1092. DOI: 10.11821/dlxb201806007. (in Chinese)
doi: 10.11821/dlxb201806007
[18] 杨晴青, 刘倩, 尹莎, 张戬, 杨新军, 高岩辉 . 秦巴山区乡村交通环境脆弱性及影响因素——以陕西省洛南县为例. 地理学报, 2019,74(6):1236-1251.
doi: 10.11821/dlxb201906012
YANG Q Q, LIU Q, YIN S, ZHANG J, YANG X J, GAO Y H . Vulnerability and influencing factors of rural transportation environment in Qinling-Daba mountainous areas: A case study of Luonan county in Shaanxi province. Acta Geographica Sinica, 2019,74(6):1236-1251. DOI: 10.11821/dlxb201906012. (in Chinese)
doi: 10.11821/dlxb201906012
[19] 鲍士旦 . 土壤农化分析. 3版. 北京: 中国农业出版社, 2015.
BAO S D. Soil and Agrochemical Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2015. (in Chinese)
[20] 刘爱利, 王培法, 丁园圆 . 地统计学概论. 北京: 科学出版社, 2012.
LIU A L, WANG P F, DING Y Y. Introduction to Geostatistics. Beijing: Science Press, 2012. (in Chinese)
[21] WU Z H, WANG B Z, HUANG J L, AN Z H, JIANG P, CHEN Y Y, LIU Y F . Estimating soil organic carbon density in plains using landscape metric-based regression Kriging model. Soil & Tillage Research, 2019,195:104381.
[22] HENGL T, HEUVELINK G B M, ROSSITER D G . About regression- kriging: From equations to case studies. Computers and Geosciences, 2007,33(10):1301-1315.
doi: 10.1016/j.cageo.2007.05.001
[23] SHEN Q S, WANG Y, WANG X R, LIU X, ZHANG X Y, ZHANG S L . Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China. Catena, 2019,174:59-72.
doi: 10.1016/j.catena.2018.10.052
[24] 杨顺华, 张海涛, 郭龙, 任艳 . 基于回归和地理加权回归Kriging的土壤有机质空间插值. 应用生态学报, 2015,26(6):1649-1656.
pmid: 26572015
YANG S H, ZHANG H T, GUO L, REN Y . Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging. Chinese Journal of Applied Ecology, 2015,26(6):1649-1656. DOI: 10.13287/j.1001-9332.20150331.023. (in Chinese)
pmid: 26572015
[25] 聂磊, 舒红, 刘艳 . 复杂地形地区月平均气温(混合)地理加权回归克里格插值. 武汉大学学报(信息科学版), 2018,43(10):1553-1559.
NIE L, SHU H, LIU Y . Interpolation of monthly average temperature by using (mixed) Geographically Weighted Regression Kriging in the complex terrain region. Geomatics and Information Science of Wuhan University, 2018,43(10):1553-1559. DOI: 10.13203/j.whugis20160433. (in Chinese)
[26] A. STEWART F, CHRIS B, MARTIN C . Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, 2002.
[27] A. STEWART F, YANG W B, KANG W . Multiscale Geographically Weighted Regression (MGWR). Annals of the American Association of Geographers, 2017,107(6):1247-1265.
doi: 10.1080/24694452.2017.1352480
[28] LI Z Q, TAYLOR O, STEWART F, KANG W, LEVI W, YU H C, LUO W . MGWR 1. 0 User Manual. Spatial Analysis Research Center (SPARC). [2019-11-1] https: //sgsup.asu.edu/sparc/mgwr.
[29] YANG S H, LIU F, SONG X D, LU Y Y, LI D C, ZHAO Y G, ZHANG G L . Mapping topsoil electrical conductivity by a mixed geographically Weighted Regression Kriging: A case study in the Heihe River Basin, northwest China. Ecological Indicators, 2019,102:252-264.
[30] 邱孟龙, 曹小曙, 周建, 冯小龙, 高兴川 . 基于GWR模型的渭北黄土旱塬粮食单产空间分异及其影响因子分析——以陕西彬县为例. 中国农业科学, 2019,52(2):273-284.
QIU M L, CAO X S, ZHOU J, FENG X L, GAO X C . Spatial differentiation and impact factors of grain yield per hectare in Weibei Plateau based on GWR Model: A case study of Binxian County, Shannxi. Scientia Agricultura Sinica, 2019,52(2):273-284. DOI: 10.3864/j.issn.0578-1752.2019.02.007. (in Chinese)
[31] 邹润彦, 周宏冀, 郭熙, 但承龙, 吕添贵, 李洪义 . 环鄱阳湖区农田土壤有机碳影响因素空间分布格局分析及制图研究. 长江流域资源与环境, 2019,28(5):1121-1131.
ZOU R Y, ZHOU H J, GUO X, DAN C L, LV T G, LI H Y . Spatial distribution and mapping of influencing factors of farmland soil organic carbon in the Poyang Lake Region. Resources and Environment in the Yangtze Basin, 2019,28(5):1121-1131. DOI: 10.11870/ cjlyzyyhj201905012. (in Chinese)
[32] 杨帆, 曾维忠, 张维康, 庄天慧 . 林农森林碳汇项目持续参与意愿及其影响因素. 林业科学, 2016,52(7):138-147.
doi: 10.11707/j.1001-7488.20160717
YANG F, ZENG W Z, ZHANG W K, ZHUANG T H . Foresters’ constant participation willingness and affecting factors in forest carbon sequestration project. Scientia Silvae Sinicae, 2016,52(7):138-147. DOI: 10.11707/j.1001-7488.20160717. (in Chinese)
doi: 10.11707/j.1001-7488.20160717
[33] 张吴平, 杨坚 . 食品试验设计与统计分析. 3版. 北京: 中国农业大学出版社, 2017.
ZHANG W P, YANG J. . Food Experimental Design and Statistical Analysis. 3rd ed. Beijing: China Agricultural University Press, 2017. (in Chinese)
[34] 郑新奇, 吕利娜 . 地统计学(现代空间统计学). 北京: 科学出版社, 2018.
ZHENG X Q, LV L N. Geostatistics (Modern Spatial Statistics). Beijing: Science Press, 2018. (in Chinese)
[35] 李哈滨, 王政权, 王庆成 . 空间异质性定量研究理论与方法. 应用生态学报, 1998(6):93-99.
LI H B, WANG Z Q, WANG Q C . Theory and methodology of spatial heterogeneity quantification. Chinese Journal of Applied Ecology, 1998(6):93-99. DOI: 10.13287/j.1001-9332.1998.0136. (in Chinese)
[36] 郑帅 . 温带森林土壤有机质分解对土壤含水量变化的响应[D]. 长春: 东北师范大学, 2019.
ZHENG S . Response of soil organic matter decomposition to soil water content change in temperate forests[D]. Changchun: Northeast Normal University, 2019. (in Chinese)
[37] 肖璐, 郎艺超, 夏浪, 楼昭涵, 孙楠, 黄李童, George Christakos . 基于多源数据的PM(2.5)浓度时空分布预测与制图. 环境科学, 2017,38(12):4913-4923.
doi: 10.13227/j.hjkx.201705122 pmid: 29964548
XIAO L, LANG Y C, XIA L, LOU Z H, SUN N, HUANG L T, GEORGE C . Space-time estimations and mapping of PM2.5 fine particulates based on multi-source data. Environmental Science, 2017,38(12):4913-4923. DOI: 10.13227/j.hjkx.201705122. (in Chinese)
doi: 10.13227/j.hjkx.201705122 pmid: 29964548
[38] 田瑞云, 王玉宽, 傅斌, 刘援 . 基于DEM的地形单元多样性指数及其算法. 地理科学进展, 2013,32(1):121-129. (in Chinese)
doi: 10.11820/dlkxjz.2013.01.013
TIAN R Y, WANG Y K, FU B, LIU Y . DEM-based topographic unit diversity index and its algorithm. Progress in Geography, 2013,32(1):121-129. DOI: 10.3724/SP.J.1033.2013.00121. (in Chinese)
doi: 10.11820/dlkxjz.2013.01.013
[39] RILEY S J, DEGLORIA S D, ELLIOT R . A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 1999,5:1-4.
[1] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[2] ZHANG ZhenHua,DING JianLi,WANG JingZhe,GE XiangYu,WANG JinJie,TIAN MeiLing,ZHAO QiDong. Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions [J]. Scientia Agricultura Sinica, 2020, 53(3): 563-573.
[3] HONG YongSheng, YU Lei, ZHU YaXing, LI SiDi, GUO Li, LIU JiaSheng, NIE Yan, ZHOU Yong. Using Orthogonal Signal Correction Algorithm Removing the Effects of Soil Moisture on Hyperspectral Reflectance to Estimate Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(19): 3766-3777.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!