Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 1032-1044.doi: 10.3864/j.issn.0578-1752.2019.06.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial and Temporal Variation of Soil Organic Matter and Cause Analysis in Hainan Island in Resent 30 Years

JIANG SaiPing1,2,ZHANG RenLian1,ZHANG WeiLi1,XU AiGuo1(),ZHANG HuaiZhi1,XIE LiangShang3,JI HongJie1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilization, Ministry of Agriculture and Rural, Beijing 100081
    2 Faculty of Geographical Science, Beijing Normal University, Beijing 100875
    3 Agricultural Environment and Soil Research Institute of Hainan Academy of Agricultural Sciences, Haikou 571100
  • Received:2018-08-01 Accepted:2018-11-15 Online:2019-03-16 Published:2019-03-22
  • Contact: AiGuo XU E-mail:xuaiguo@caas.cn

Abstract:

【Objective】Soil organic matter (SOM) is an important index for evaluating soil fertility and soil carbon pools. SOM usually has strong spatial and temporal variability for the complicated soil forming process and human activity. Studying the temporal and spatial variability of SOM could provide an important reference for the adjustment of agricultural planting structure and response to global climate change.【Method】The contents of SOM of 0-20 cm soil layer in Hainan Island in 1980s and 2012 were collected and measured by field investigation and soil sampling. RandomForest (RF) model was used to predict spatial distribution of SOM based on the training set of 410 and 128 samples, and then the predictions were validated with validating set of 103 and 32 samples, respectively. Then the spatial and temporal variability and driving factors of different land use types in Hainan Island in resent thirty years were studied by using statistical method combined agricultural statistical data.【Result】The mean value of SOM contents in 1980s was 20.57 g·kg -1, showing a distribution that SOM contents gradually decreased from southwest to northeast parts of the island. And SOM contents were mainly in two levels of 15-20 and 20-30 g·kg -1, which occupied 75.29% area of the whole island. The mean value of SOM contents in 2012 was 15.89 g·kg -1, showing a distribution that SOM contents were higher in the southwest and northeast parts, lower in the west and south parts. And the contents of SOM were mainly in two levels of 10-15 and 15-20 g·kg -1, which occupied 78.28% area of the whole island, but the ratio of 15-20 and 20-30 g·kg -1 levels was 66.04%, which lowered 9.45 percentage points compared with 1980s. The order of SOM contents in different land use types was: paddy field > garden plot > dry land. And there was a significant difference in SOM contents among three land use types in 1980s. In 2012, there was a significant difference in SOM contents between paddy fields and dry land, dry land and garden plot, while the difference in SOM contents between paddy fields and garden plot was not significant. 【Conclusion】 After nearly 30 years, SOM contents of Hainan Island showed a decreasing trend overall. In 2012, the mean value of SOM contents decreased by 4.68 g·kg -1 compared with 1980s, with a reduction of 22.75%. The mean value of SOM contents of paddy field decreased by 6.42 g·kg -1, with a reduction of 27.34%, which was most obvious among three land use types. And the mean value of SOM contents of garden plot decreased by 2.65 g·kg -1, with a reduction of 14.25%, while the mean value of SOM contents of dry land decreased by 1.28 g·kg -1, with a reduction of 8.84%. Rice crop rotation, land reclamation and increasing multiple crop indexes were the main reasons that caused the decrease of SOM contents in Hainan Island.

Key words: Hainan Island, soil organic matter, spatial and temporal variation, cause analysis

Table 1

The statistics table about the land-use types of samples"

土地利用类型
Land-use types
作物类型
Crop types
样点数
Number of samples
水田 Paddy field 水稻 Rice、稻菜轮作 Rice crop rotation 70
旱地 Dry land 菜豆Bean、菊花Chrysanthemum、辣椒Pepper、辣椒-西瓜Pepper-watermelon、木薯Cassava、玉米Corn、菠萝Pineapple、甘蔗Sugarcane、甘蔗-香蕉Sugarcane-Banana香蕉Banana2) 32
园地 Garden plot 芒果Mango、荔枝Litchi、胡椒Piper nigrum、绿橙Green orange、红毛丹Rambutan、茶叶Tea、橡胶Rubber、槟榔Areca catechu、桉树Eucalyptus、桑树Mulberry3) 60

Fig. 1

Hainan Island remote sensing interpretation land use map"

Fig. 2

Distribution of sampling sites in the study area"

Table 2

RF model parameter fitting results"

时期
Period
建模变量
Variables
决策树数量
ntree
节点分裂次数
mtry
袋外误差
OOB
模型解释率
var (%)
1980s x9x1x3x7 500 1 115.967 4 17.58
1 000 1 *115.668 8 17.79
1 500 1 115.736 2 17.75
2 000 1 115.982 4 17.57
2012 x6x7x8x1x5x9 500 2 47.892 6 19.15
1 000 2 47.839 6 19.24
1 500 2 **47.728 5 19.42
2 000 2 47.834 0 19.24

Table 3

Prediction accuracy of SOM contents using RF"

Period ME RMSE R2
1980s -0.464 6 10.146 9 0.206 0
2012 1.816 2 5.783 6 0.247 6

Fig. 3

Spatial distribution of SOM contents in 1980s and 2012"

Fig. 4

Temporal changing distribution of SOM contents from 1980s to 2012"

Fig. 5

Percentages of areas changed in SOM contents between 1980s and 2012"

Table 4

Statistical characters of SOM contents of different land use types in Hainan Island"

土地利用类型
Land-use types
1980s 2012年 SOM含量变化
Change of SOM
contents (g·kg-1)
样本数
Sample size
均值±标准误差
Mean ± Stderr (g·kg-1)
范围
Range (g·kg-1)
样本数
Sample size
均值±标准误差
Mean ± Stderr (g·kg-1)
范围
Range (g·kg-1)
水田 Paddy field 607 23.48±0.57 a 1.4—86.56 70 17.06±0.91 a 4.43—38.12 -6.42
旱地 Dry land 245 14.48±0.70 c 0.2—70.84 32 13.20±1.27 b 3.85—27.81 -1.28
园地 Garden plot 138 18.60±0.93 b 1.54—55.76 60 15.95±0.94 a 3.16—35.3 -2.65
总体 All 990 20.57±0.43 0.20—86.56 162 15.89±0.59 3.16—38.12 -4.68

Table 5

Change of agricultural statistics data from 1985 to 2012"

项目
Item
1985—1987年1)
Year 1985-1987
2010—2012年2)
Year 2010-2012
变化值
Change
变化率
Rate of change (%)
总耕地面积Arable land area(hm2 434 118 421 324 -12 794 -2.95
水田面积Paddy field area(hm2 258 288 224 206 -34 082 -13.20
旱地面积Dry land area(hm2 175 830 197 118 21 288 12.11
园地面积(含热作)
Garden plot area(include tropical crops) (hm2)
428 064 825 301 397 236 92.80
热作面积Tropical crops area(hm2 386 864 646 249 259 385 67.05
橡胶面积Rubber area(hm2 328 825 505 825 177 000 53.83
橡胶面积/园地面积
Rubber area/Garden plot area(%)
76.82 61.29 -15.53 --
总播种面积Total sown area(hm2 751 566 842 164 90 598 12.05
复种指数Multiple cropping index 1.73 2.00 0.27 --
水稻播种面积Rice sown area(hm2 395 371 321 412 -73 959 -18.71
蔬菜播种面积Vegetables sown area(hm2 32 440 223 032 190 592 587.52
水稻播种面积/总播种面积
Rice sown area/Vegetables sown area (%)
52.61 38.16 -14.44 --
蔬菜播种面积/总播种面积
Vegetables sown area/Total sown area(%)
4.32 26.48 22.26 --
[1] 方斌, 吴金凤 . 作物种植前后土壤有机质及养分因子的空间变异分析. 生态学报, 2014,34(4):983-992.
doi: 10.5846/stxb201209301364
FANG B, WU J F . Spatial variation analysis of soil organic matter and nutrient factor for before and after planting crops. Acta Ecologica Sinica, 2014,34(4):983-992. (in Chinese)
doi: 10.5846/stxb201209301364
[2] 齐雁冰, 王茵茵, 陈洋, 刘姣姣, 张亮亮 . 基于遥感与随机森林算法的陕西省土壤有机质空间预测. 自然资源学报, 2017,32(6):1074-1086.
doi: 10.11849/zrzyxb.20160623
QI Y B, WANG Y Y, CHEN Y, LIU J J, ZHANG L L . Soil organic matter prediction based on remote sensing data and random forest model in Shanxi Province. Journal of Natural Resources, 2017,32(6):1074-1086. (in Chinese)
doi: 10.11849/zrzyxb.20160623
[3] 黄耀, 孙文娟 . 近20年来中国大陆农田表土有机碳含量的变化趋势. 科学通报, 2006,51(7):750-763.
doi: 10.3321/j.issn:0023-074X.2006.07.002
HUANG Y, SUN W J . The change trend of organic carbon content in farmland topsoil in mainland China in recent 20 years. Chinese Science Bulletin, 2006,51(7):750-763. (in Chinese)
doi: 10.3321/j.issn:0023-074X.2006.07.002
[4] 杨帆, 徐洋, 崔勇, 孟远夺, 董燕, 李荣, 马义兵 . 近30年中国农田耕层土壤有机质含量变化. 土壤学报, 2017,54(5):1047-1056.
doi: 10.11766/trxb201703180633
YANG F, XU Y, CUI Y, MENG Y D, DONG Y, LI R, MA Y B . Variation of soil organic matter content in croplands of China over the last three decades. Acta Pedologica Sinica, 2017,54(5):1047-1056. (in Chinese)
doi: 10.11766/trxb201703180633
[5] 连纲, 郭旭东, 傅伯杰, 虎陈霞 . 黄土丘陵沟壑区县域土壤有机质空间分布特征及预测. 地理科学进展, 2006,25(2):112-122.
doi: 10.11820/dlkxjz.2006.02.013
LIAN G, GUO X D, FU B J, HU C X . Spatial variability and prediction of soil organic matter at county scale on the Loess Plateau. Progress in Geography, 2006,25(2):112-122. (in Chinese)
doi: 10.11820/dlkxjz.2006.02.013
[6] MCGRATH D, ZHANG C S . Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Applied Geochemistry, 2003,18(10):1629-1639.
doi: 10.1016/S0883-2927(03)00045-3
[7] 顾成军, 史学正, 于东升, 徐胜祥, 孙维侠, 赵永存 . 省域土壤有机碳空间分布的主控因子——土壤类型与土地利用比较. 土壤学报, 2013,50(3):425-432.
GU C J, SHI X Z, YU D S, XU S X, SUN W X, ZHAO Y C . Main factor controlling SOC spatial distribution at the province scale as affected by soil type and land use. Acta Pedologica Sinica, 2013,50(3):425-432. (in Chinese)
[8] 赵明松, 张甘霖, 吴运金, 李德成, 赵玉国 . 江苏省土壤有机质含量时空变异特征及驱动力研究. 土壤学报, 2014,51(3):448-458.
ZHAO M S, ZHANG G L, WU Y J, LI D C, ZHAO Y G . Temporal and spatial variability of soil organic matter and its driving force in Jiangsu Province, China. Acta Pedologica Sinica, 2014,51(3):448-458. (in Chinese)
[9] PAN G X, LI L Q, WU L S, ZHANG X H . Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology, 2004,10(1):79-92.
doi: 10.1111/j.1365-2486.2003.00717.x
[10] HU K L, LI H, LI B G, HUANG Y F . Spatial and temporal patterns of soil organic matter in the urban-rural transition zone of Beijing. Geoderma, 2007,141(3/4):302-310.
doi: 10.1016/j.geoderma.2007.06.010
[11] 曾招兵, 汤建东, 刘一峰, 张满红, 林碧姗 . 广东耕地土壤有机质的变化趋势及其驱动力分析. 土壤, 2013,45(1):84-90.
doi: 10.3969/j.issn.0253-9829.2013.01.013
ZENG Z B, TANG J D, LIU Y F, ZHANG M H, LIN B S . Changes and driving forces of farmland organic matter in Guangdong Province, China. Soils, 2013,45(1):84-90. (in Chinese)
doi: 10.3969/j.issn.0253-9829.2013.01.013
[12] 周睿, 潘贤章, 王昌坤, 刘娅, 李燕丽, 石荣杰, 解宪丽 . 上海市城郊土壤有机质的时空变异特征及其影响因素. 土壤, 2014,46(3):433-438.
ZHOU R, PAN X Z, WANG C K, LIU Y, LI Y L, SHI R J, XIE X L . Spatial-temporal variation characteristics of soil organic matter and its impact factors in suburban Shanghai. Soils, 2014,46(3):433-438. (in Chinese)
[13] HUANG B, SUN W X, ZHAO Y C, ZHU J, YANG R Q, ZOU Z, DING F, SU J P . Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma, 2007,139:336-345.
doi: 10.1016/j.geoderma.2007.02.012
[14] SHAH Z, SHAH S H, PEOPLES M B, SCHWENKE G D, HERRIDGE D F . Crop residue and fertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crops Research, 2003,83(1):1-11.
doi: 10.1016/S0378-4290(03)00005-4
[15] 漆智平, 张黎明, 桑爱云, 曹启民, 王华, 魏志远, 唐树梅 . 海南水稻土有机质的时空变异. 中国农学通报, 2007,23(7):547-551.
doi: 10.3969/j.issn.1000-6850.2007.07.123
QI Z P, ZHANG L M, SANG A Y, CAO Q M, WANG H, WEI Z Y, TANG S M . Spatial-temporal variance of paddy soil organic matter in Hainan Province. Chinese Agricultural Science Bulletin, 2007,23(7):547-551. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2007.07.123
[16] 杨昭君 . 不同尺度下橡胶园土壤养分时空变异特征研究[D]. 海口: 海南大学, 2010.
YANG Z J . Study on time-space variation characters of soil nutrients in different scales of rubber plantation[D]. Haikou: Hainan University, 2010. (in Chinese)
[17] 方圆 . 海南省土壤有机碳时空变异[D]. 海口: 海南大学, 2012.
FANG Y . On the spatial distribution patterns of soil organic carbon in the Hainan Province[D]. Haikou: Hainan University, 2012. (in Chinese)
[18] 吕丽平, 王登峰, 魏志远, 漆智平, 唐树梅 . 近20年海南岛土壤有机碳时空变异. 热带作物学报, 2016,37(2):338-344.
doi: 10.3969/j.issn.1000-2561.2016.02.020
LV L P, WANG D F, WEI Z Y, QI Z P, TANG S M . The spatial and temporal variability of SOC in Hainan island over the past 20 years. Chinese Journal of Tropical Crops, 2016,37(2):338-344. (in Chinese)
doi: 10.3969/j.issn.1000-2561.2016.02.020
[19] 姜赛平, 张怀志, 张认连, 李兆君, 谢良商, 徐爱国 . 基于三种空间预测模型的海南岛土壤有机质空间分布研究. 土壤学报, 2018,55(4):1007-1017.
JIANG S P, ZHANG H Z, ZHANG R L, LI Z J, XIE L S, XU A G . Research on spatial distribution of soil organic matter in Hainan island based on three spatial prediction models. Acta Pedologica Sinica, 2018,55(4):1007-1017. (in Chinese)
[20] 张甘霖, 龚子同 . 土壤调查实验室分析方法. 北京: 科学出版社, 2012.
ZHANG G L, GONG Z T. Soil Survey Laboratory Methods. Beijing: Science Press, 2012. (in Chinese)
[21] BREIMAN L . Random forests. Machine Learning, 2001,45:5-32.
doi: 10.1023/A:1010933404324
[22] LIAW A, WIENER M . Classification and regression by RandomForest. R News, 2002, 2/3: 18-22[2002-12]. ISSN 1609-3631.
[23] 黄文, 王正林 . 数据挖掘--R语言实战. 北京: 电子工业出版社, 2014.
HUANG W, WANG Z L. Data Mining: R In Action. Beijing: Electronic Industry Press, 2014. ( in Chinese)
[24] GENUER R, POGGI J M, TULEAU-MALOT C . Variable selection using random forests. Pattern Recognition Letters, 2010,31(14):2225-2236.
doi: 10.1007/3-540-35978-8_30
[25] 郭澎涛, 李茂芬, 罗微, 林清火, 唐群锋, 刘志崴 . 基于多源环境变量和随机森林的橡胶园土壤全氮含量预测. 农业工程学报, 2015,31(5):194-200.
doi: 10.3969/j.issn.1002-6819.2015.05.028
GUO P T, LI M F, LUO W, LIN Q H, TANG Q F, LIU Z W . Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):194-200. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2015.05.028
[26] 王茵茵, 齐雁冰, 陈洋, 解飞 . 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究. 土壤学报, 2016,53(2):342-354.
doi: 10.11766/trxb201508170308
WANG Y Y, QI Y B, CHEN Y, XIE F . Prediction of soil organic matter based on multi-resolution remote sensing data and random forest algorithm. Acta Pedologica Sinica, 2016,53(2):342-354. (in Chinese)
doi: 10.11766/trxb201508170308
[27] WIESMEIER M, BARTHOLD F, BLANK B , KÖGEL-KNABNER I . Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem. Plant and Soil, 2011,340:7-24.
doi: 10.1007/s11104-010-0425-z
[28] 李东, 王子芳, 郑杰炳, 高明 . 紫色丘陵土不同土地利用方式下土壤有机质和全量氮磷钾含量状况. 土壤通报, 2009,40(2):310-314.
LI D, WANG Z F, ZHENG J B, GAO M . Contents of soil organic matter, nitrogen, phosphorus and potassium under different land-use patterns in purple hill area. Chinese Journal of Soil Science, 2009,40(2):310-314. (in Chinese)
[29] 罗文杰, 罗文忠 . 海南稻田耕作制度的改革. 海南大学学报自然科学版, 2001,19(1):71-75.
doi: 10.3969/j.issn.1004-1729.2001.01.017
LUO W J, LUO W Z . Farming system reform of rice field in Hainan. Natural Science Journal of Hainan University, 2001,19(1):71-75. (in Chinese)
doi: 10.3969/j.issn.1004-1729.2001.01.017
[30] 李忠佩, 吴晓晨, 陈碧云 . 不同利用方式下土壤有机碳转化及微生物群落功能多样性变化. 中国农业科学, 2007,40(8):1712-1721.
doi: 10.3321/j.issn:0578-1752.2007.08.017
LI Z P, WU X C, CHEN B Y . Changes in transformation of soil organic carbon and functional diversity of soil microbial community under different land use patterns. Scientia Agricultura Sinica, 2007,40(8):1712-1721. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2007.08.017
[31] 史利江, 郑丽波, 梅雪英, 俞立中, 贾正长 . 上海市不同土地利用方式下的土壤碳氮特征. 应用生态学报, 2010,21(9):2279-2287.
SHI L J, ZHENG L B, MEI X Y, YU L Z, JIA Z C . Characteristics of soil organic carbon and total nitrogen under different land use types in Shanghai. Chinese Journal of Applied Ecology, 2010,21(9):2279-2287. (in Chinese)
[32] GUO L B, GRIFFORD R M . Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 2002,8:345-360.
doi: 10.1046/j.1354-1013.2002.00486.x
[33] 杨玉盛, 谢锦升, 盛浩, 陈光水, 李旭 . 中热带山区土地利用变化对土壤有机碳储量和质量的影响. 地理学报, 2007,62(11):1123-1131.
doi: 10.1007/s11442-009-0049-5
YANG Y S, XIE J S, SHENG H, CHEN G S, LI X . The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of southern China. Acta Geographica Sinica, 2007,62(11):1123-1131. (in Chinese)
doi: 10.1007/s11442-009-0049-5
[34] 全国土壤普查办公室. 中国土壤, 北京:中国农业出版社, 1998.
National soil survey office. Chinese Soil, Beijing: China Agriculture Press, 1998. (in Chinese)
[35] SONG C, WANG E L, HAN X Z, STIRZAKER R . Crop production, soil carbon and nutrient balances as affected by fertilization in a Mollisol agroecosystem. Nutrient Cycling In Agroecosystems, 2011,89:363-374.
doi: 10.1007/s10705-010-9401-5
[36] 张翠萍, 李睿达, 姜佳 . 海南中部国家重点生态功能区农户粮食生产与生态要素的函数研究—以琼中县为例. 安徽农业科学, 2017,45(12):213-217.
doi: 10.3969/j.issn.0517-6611.2017.12.069
ZHANG C P, LI R D, JIANG J . Modelling study based on farm households grain production and ecological element of Hainan middle national key ecological function areas-An empirical analysis of Qiongzhong County. Journal of Anhui Agricultural Sciences, 2017,45(12):213-217. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2017.12.069
[37] 吉清妹, 张文, 王敏, 黄绍文, 唐继伟, 翁艳梅, 潘孝忠, 谢良商 . 海南东北部地区蔬菜施肥现状与土壤养分状况. 广东农业科学, 2011, ( 22):61-63.
doi: 10.3969/j.issn.1004-874X.2011.22.021
JI Q M, ZHANG W, WANG M, HUANG S W, TANG J W, WENG Y M, PAN X Z, XIE L S . The situation of vegetable fertilization and soil nutrient in northeastern ainan. Guangdong Agricultural Sciences, 2011, (22):61-63. (in Chinese)
doi: 10.3969/j.issn.1004-874X.2011.22.021
[38] 官利兰, 伏广农, 徐鹏举, 程根, 姜煜, 张春艳, 张新朋 . 广东省菜园土壤施肥状况调查与分析. 南方农业学报, 2014,45(3):420-424.
doi: 10.3969/j.issn.2095-1191.2014.3.420
GUAN L L, FU G N, XU P J, CHENG G, JIANG Y, ZHANG C Y, ZHANG X P . Investigation and analysis of fertilization status of vegetable soil in Guangdong Province. Journal of Southern Agriculture, 2014,45(3):420-424. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2014.3.420
[39] 张怀志, 唐继伟, 袁硕, 黄绍文 . 津冀设施蔬菜施肥调查分析. 中国土壤与肥料, 2018(2):54-60. (in Chinese)
doi: 10.11838/sfsc.20180208
ZHANG H Z, TANG J W, YUAN S, HUANG S W . Investigation and analysis of greenhouse vegetable fertilization in Tianjin and Hebei province.Soil and Fertilizer Sciences in China, 2018(2):54-60. (in Chinese)
doi: 10.11838/sfsc.20180208
[40] 海南省农业厅土肥站. 海南土壤. 海口: 海南出版社, 1993,P151.
Soil Fertilizer Station of Hainan Provincial Department of Agriculture. Hainan Soil. Haikou: Hainan Press, 1993,P151. (in Chinese)
[41] 葛成军, 唐文浩, 陈淼, 唐天乐, 冯丹, 俞花美 . 海南岛典型农业土壤产流与面源污染特征分析. 热带作物学报, 2015,36(8):1469-1474.
doi: 10.3969/j.issn.1000-2561.2015.08.018
GE C J, TANG W H, CHEN M, TANG T L, FENG D, YU H M . Runoff characteristics of agricultural non-point source pollutants in typical soils in Hainan Island. Chinese Journal of Tropical Crops, 2015,36(8):1469-1474. (in Chinese)
doi: 10.3969/j.issn.1000-2561.2015.08.018
[42] LAL R . Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304:1623-1627.
doi: 10.1126/science.1097396
[43] PAN G X, SMITH P, PAN W N . The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems and Environment, 2009,129:344-348.
doi: 10.1016/j.agee.2008.10.008
[44] YANG O, ALAIN N R, WANG L X, YAN B X . Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors-A case study of the Black Soil Region of Northeastern China. Agriculture, Ecosystems and Environment, 2017,245:22-31.
doi: 10.1016/j.agee.2017.05.003
[45] LOVELAND P, WEBB J . Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil & Tillage Research, 2003,70:1-18.
doi: 10.1016/S0167-1987(02)00139-3
[46] 胡克林, 余艳, 张凤荣, 王茹 . 北京郊区土壤有机质含量的时空变异及其影响因素. 中国农业科学, 2006,39(4):764-771. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2006.04.017
HU K L, YU Y, ZHANG F R, WANG R . The spatial-temporal variability of soil organic matter and its influencing factors in suburban area of Beijing. Scientia Agricultura Sinica, 2006,39(4):764-771. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2006.04.017
[1] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[2] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[3] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[4] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
[5] DING Shang,FU Yang,GUO HaoHao,SONG ChenYang,LI BoLing,ZHAO HongWei. Nitrogen and Phosphorus Loads and Their Environmental Effects of Animal Manure in Hainan Island from 1988 to 2018 [J]. Scientia Agricultura Sinica, 2020, 53(18): 3752-3763.
[6] DING Shang,GUO HaoHao,SONG ChenYang,DIAO XiaoPing,ZHAO HongWei. Temporal and Spatial Variation Characteristics of Phosphorus Element Flows in the Crop-Livestock Production System of Hainan Island [J]. Scientia Agricultura Sinica, 2019, 52(5): 860-873.
[7] LIU Lin,JI BingJie,LI RuoNan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Characteristics of Soil Phosphorus in Winter Wheat/Summer Maize Cropping in Shaanxi Guanzhong Plain [J]. Scientia Agricultura Sinica, 2019, 52(21): 3878-3889.
[8] JIANG GuiYing, ZHANG YuJun, WEI Xi, ZHANG DongXu, LIU ShiLiang, LIU KaiLou, HUANG ShaoMin, SHEN FengMin. The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels [J]. Scientia Agricultura Sinica, 2018, 51(16): 3117-3129.
[9] SHANG Xuan, LI XiCan, XU YouYou, LIU ShaSha. The Role and Interaction of Soil Water and Organic Matter on Hyper-Spectral Reflectance [J]. Scientia Agricultura Sinica, 2017, 50(8): 1465-1475.
[10] ZHU YaXing, YU Lei, HONG YongSheng, ZHANG Tao, ZHU Qiang, LI SiDi, GUO Li, LIU JiaSheng. Hyperspectral Features and Wavelength Variables Selection Methods of Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(22): 4325-4337.
[11] HONG YongSheng, YU Lei, ZHU YaXing, LI SiDi, GUO Li, LIU JiaSheng, NIE Yan, ZHOU Yong. Using Orthogonal Signal Correction Algorithm Removing the Effects of Soil Moisture on Hyperspectral Reflectance to Estimate Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(19): 3766-3777.
[12] ZHOU Guo-peng, CAO Wei-dong, BAI Jin-shun, NIE jun, XU Chang-xu, ZENG Nao-hua, GAO Song-juan, WANG Yan-qiu, Shimizu Katsuyoshi. Effects of Different Fertilization Levels on Soil Organic Matter and Dissolved Organic Matter in Two Paddy Soils After Multi-Years’ Rotation of Chinese Milk Vetch and Double-Cropping Rice [J]. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106.
[13] NAN Feng, ZHU Hong-fen, BI Ru-tian. Hyperspectral Prediction of Soil Organic Matter Content in the Reclamation Cropland of Coal Mining Areas in the Loess Plateau [J]. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135.
[14] ZHANG Fu-tao, QIAO Yun-fa, MIAO Shu-jie, HAN Xiao-zeng. Chemical Structure Characteristics of All Fractionations in Mollisol Organic Matter Under Long-Term Continuous Maize Cropping [J]. Scientia Agricultura Sinica, 2016, 49(10): 1913-1924.
[15] Lü Wei, LI Jun, YUE Zhi-fang, CHEN Ning-ning, WANG Shu-lan. Effects of Rotational Tillage on Soil Organic Matter and Soil Total Nitrogen Contents of Continuous Cropping Wheat Field in Weibei Highland [J]. Scientia Agricultura Sinica, 2015, 48(16): 3186-3200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!