Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2572-2583.doi: 10.3864/j.issn.0578-1752.2022.13.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Geostatistical Characteristics of Soil Data from National Soil Survey Works in China

ZHANG WeiLi1(),FU BoJie2(),XU AiGuo1,YANG Peng1,CHEN Tao3,ZHANG RenLian1,SHI Zhou4,WU WenBin1,LI JianBing5,JI HongJie1,LIU Feng6,LEI QiuLiang1,LI ZhaoJun1,FENG Yao1,LI YanLi1,XU YongBing1,PEI Wei1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
    3Northwest A&F University, Yangling 712100, Shaanxi
    4Zhejiang University, Hangzhou 310058
    5Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125
    6Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
  • Received:2021-09-02 Accepted:2021-10-18 Online:2022-07-01 Published:2022-07-08

Abstract:

【Objective】China carried out the second state soil survey from 1979 to 1987 and the soil nutrient investigation of farmland from 2005 to 2017. Both surveys covered the whole country with a huge amount of ground soil samplings. The data generated from the two surveys have become the most detailed spatial-temporal data for soil types and quality in China. The purpose of the study was to test and to evaluate the geostatistical characteristics of the data by geostatistical testing approach, so as to provide the reference for the use of these data to characterize the temporal and spatial distribution of soil features in different disciplines. 【Method】7 testing areas were selected to represent different regions in China. Soil organic matter (SOM) contents of 0-20 cm soil layer from soil profile sampled in 1979-1987 and from plough layer sampled in 2005-2017 were extracted from the corresponding data bases. The ground sampling for soil profiles in 1979-1987 was to give priority to typical soil types firstly and secondly to keep an evenly distributed sampling as possible. 100 000 soil profiles with about 1m soil deep were finally sampled. After integrated data processing and coordinate matching, 60 000 profiles obtained coordinates. Ground sampling for soil plough layer in 2005-2017 was in grid distribution. 10 000 000 plough layer soil samples with GPS positioning coordinates have been completed. For each testing area, the data set contained two groups, about 500-1 300 SOM values from soil profile data and 50 000-250 000 values from plough layer data. The data from two time groups of each testing data set were analyzed by ordinary Kriging approach separately. 80% of the data were randomly selected as the training sample set for modeling and 20% as the verification sample set. The linear regression between the predicted value and the measured value of the validation sample was carried out. R2 (coefficient of determination) and RMSE (root mean square error) were calculated to evaluate the reliability and uncertainty of the data sets in expressing the spatial distribution of the soil feature. 【Result】It was showed that the reliability of mapping SOM content by profile data of all of the 7 testing areas reached significant levels. However, the deviation between predicted values and measured values of the test data set was relatively great. The values of R2 were low, between 0.223-0.380 and RMSE were relatively high. Testing results by soil plough layer data sampled in 2005-2017 showed that through large sample size and grid sampling, the reliability and prediction accuracy of mapping SOM content were improved greatly, for R2 increased and RMSE decreased. The geostatistical test results of two periods with a time interval of 30 years showed that although there were some changes in the contents of soil organic matter, the overall spatial distribution of SOM content in each testing area expressed by the two data groups was similar. 【Conclusion】 The reliability and accuracy of soil maps were much better in terms of characterizing the spatial distribution of soil features, when the soil investigation was by means of a large sample size with grid sampling. It meant that the reliability and accuracy of the original large-scale soil thematic maps, such as maps of soil types, organic matter, pH value, soil nitrogen, phosphorus and potassium nutrient contents from second state soil survey, were better than maps generated by profile data, as these original large-scale soil thematic maps were derived from the large sample size with grid sampling. However, the data of 60 000 soil profiles from second state soil survey, which contained many soil features and could supply reliable soil thematic maps, were also of great importance for understanding spatial characteristics of these soil features. It has been showed that a large sample size was essential for a precise and accurate mapping of soil feature of the whole country. For mapping long-term changing or stable soil features such as soil types, texture and morphological features, it would be difficult to obtain reliable maps by a soil sample size much less than the second state soil survey. Considering the current requirements and the available data resources in China, the soil investigation in the future could be mainly focused in investigating data missing areas as well as some missing soil features for soil functions.

Key words: soil survey, geostatistics, soil organic matter, soil quality, reliability test, digital soil mapping

Table 1

Sampling and geostatistical characteristics of data obtained from soil surveys in China"

时段
Period
调查内容
Object
调查覆盖区
Covering region
采样原则
Sampling principle
样本量
Sample size
调查成果
Achievement
生成空间数据
Generated vector data
地统计检验特征
Geostatistical characteristic
1979-
1986
土壤资源与
肥力调查
Soil types and fertility
全域
Whole land area
优先选取典型土壤类型前提下,尽量均衡分布
Under priority of typical soil types, evenly distributed sampling
100000 典型土壤剖面样本
Typical soil profile samplings
分县土种志(纸质)
County soil documentation
60000有坐标的土壤剖面点数据
Point data for soil profile with coordinates
可检验
Testable
网格化均衡分布
Grid sampling
5500000观测剖面
Observation profiles
分县1﹕5万土壤图(纸质)
County soil maps (paper)
1﹕5万土壤专题图数据:土壤类型、有机质、pH、氮磷钾养分含量
Polygon maps for soil, soil organic matter, pH and available nutrients
不能检验
Untestable
2000000 (0-20 cm depth)
土层样本
Top soil samplings
分县1﹕5万土壤有机质、pH、土壤有效养分含量图(纸质)
Maps of soil organic matter, pH and available nutrients (paper)
2005-
2017
耕层养分调查
Soil available nutrient
农田
Arable land
网格化均衡分布
Grid sampling
10000000 (0-20 cm depth)
土层样本
Soil samplings
10000000个有坐标的耕层采样点土壤养分含量
数据
Point data of ploughing layer with coordinates for soil organic matter, pH and available nutrients
可检验
Testable

Table 2

The 7 tested areas of geostatistical"

编号 Number 片区名
Regions for tested areas
县数
County number
剖面采样点数
Profile sampling number
耕层采样点数
Top soil sampling number
面积
Area
(km2)
耕地面积比1)
Arable land ratio (%)
1 东北片区 Northeast 19 546 45182 72353 79
2 冀鲁豫片区 Hebei, Shandong & Henan provinces 64 881 256341 50071 88
3 江浙片区 Jiangsu and Zhejiang provinces 53 1312 51759 63003 84
4 湖北片区 Hubei province 10 515 60545 21044 29
5 四川片区 Sichuan province 39 1283 206682 98052 50
6 粤闽赣片区 Guangdong, Fujian & Jiangxi provinces 27 801 51759 58745 21
7 陕甘片区 Shaanxi & Gansu provinces 47 990 256341 109010 40

Table 3

Testing results of soil organic matter contents from soil profile data of 7 areas by geostatistical approaches1)"

编号
Number
片区名
Region for tested area
剖面点数
Profile sampling number
决定系数2)
R2
均方根误差
RMSE
1 东北片区 Northeast 546 0.329** 14.769
2 冀鲁豫片区 Hebei, Shandong & Henan provinces 881 0.363** 5.649
3 江浙片区 Jiangsu and Zhejiang provinces 1312 0.334** 8.826
4 湖北片区 Hubei province 515 0.286** 20.213
5 四川片区 Sichuan province 1283 0.380** 9.201
6 粤闽赣片区 Guangdong, Fujian & Jiangxi provinces 801 0.223** 13.325
7 陕甘片区 Shaanxi & Gansu provinces 990 0.296** 7.202

Table 4

Testing results of soil organic matter contents from plough layer data of 7 areas by geostatistical approaches1)"

编号
Number
片区名
Region for tested area
采样点数
Sampling number
决定系数2)
R2
均方根误差
RMSE
1 东北片区 Northeast 45182 0.689** 6.324
2 冀鲁豫片区 Hebei, Shandong & Henan provinces 256341 0.429** 3.470
3 江浙片区 Jiangsu and Zhejiang provinces 51759 0.666** 4.050
4 湖北片区 Hubei province 60545 0.281** 11.093
5 四川片区 Sichuan province 206682 0.344** 7.080
6 粤闽赣片区 Guangdong, Fujian & Jiangxi provinces 51759 0.285** 6.420
7 陕甘片区 Shaanxi & Gansu provinces 256341 0.558** 2.480

Fig. 1

Testing area for Northeast region: soil organic matter content map and geostatistical test results"

Fig.2

Testing area for Hebei, Shandong & Henan provinces: soil organic matter content map and geostatistical test results"

Fig.3

Testing area for Jiangsu and Zhejiang provinces: soil organic matter content map and geostatistical test results"

Table 5

Soil survey years of some developed countries"

国家
Country
精细土壤调查时间
Soil survey years
土壤图比例尺
Soil map scale
美国 USA[18] 1900—1990 1∶12 000—24 000
加拿大 Canada[19] 1935—1990 1∶25 000—500 000
英国 Britain[20] 1950—1990 1∶25 000—66 000
德国 Germany[21] 1930—1970 1∶5 000—10 000
荷兰 Netherlands[22] 1945—1995 1∶50 000
澳大利亚 Australia[23] 1960—1990 1∶100 000—250 000
法国 France[24-25] 1960—2000 1∶100 000—250 000
日本 Japan[26] 1950—1990 1∶50 000
[1] 张维理, 张认连, 徐爱国, 田有国, 姚政, 段宗颜. 中国 1﹕5万比例尺数字土壤的构建. 中国农业科学, 2014, 47(16): 3195-3213.
ZHANG W L, ZHANG R L, XU A G, TIAN Y G, YAO Z, DUAN Z Y. Development of China digital soil maps(CDSM) at 1﹕50 000 scale. Scientia Agricultura Sinica, 2014, 47(16): 3195-3213. (in Chinese)
[2] 全国农业技术推广服务中心. 测土配方施肥土壤基础养分数据集: 2005-2014. 北京: 中国农业出版社, 2015: 1-533.
National Agricultural Technology Extension Service Center. Data set of soil nutrients for soil testing and formula fertilization (2005-2014). Beijing:Chinese Agriculture Press, 2015: 1-533. (in Chinese)
[3] WEBSTER R, OLIVER M A. Geostatistics for environmental scientists. Chichester, UK: John Wiley & Sons, Ltd, 2007.
[4] LAGACHERIE P, MCBRATNEY A B, VOLTZ M. Digital Soil Mapping, An Introductory Perspective. Amsterdam: Elsevier, 2007: 1-659.
[5] 史舟, 李艳. 地统计学在土壤学中的应用. 北京: 中国农业出版社, 2006: 1-190.
SHI Z, LI Y. Geostatistics and Its Application in Soil Science. Beijing: Chinese Agriculture Press, 2006: 1-190. (in Chinese)
[6] 张仁铎. 空间变异理论及应用. 北京: 科学出版社, 2005.
ZHANG R D. Theory and Application of Spatial Variation. Beijing: Science Press, 2005. (in Chinese)
[7] BOETTINGER J L, HOWELL D W, MOORE A C, HARTEMINK A E, KIENAST-BROWN S. Digital Soil Mapping. Dordrecht: Springer Netherlands, 2010.
[8] MCBRATNEY A B, MENDONÇA SANTOS M L, MINASNY B. On digital soil mapping. Geoderma, 2003, 117(1/2): 3-52.
doi: 10.1016/S0016-7061(03)00223-4
[9] DOBOS E, CARRÉ F, HENGL T, REUTER H I, TÓTH G. Digital Soil Mapping as a Support to Production of Functional Maps. Luxemburg: Office for Official Publications of the European Communities, EUR 22123 EN, 2006: 1-68.
[10] 张维理, 徐爱国, 张认连, 冀宏杰. 土壤分类研究回顾与中国土壤分类系统的修编. 中国农业科学, 2014, 47(16): 3214-3230.
ZHANG W L, XU A G, ZHANG R L, JI H J. Review of soil classification and revision of China soil classification system. Scientia Agricultura Sinica, 2014, 47(16): 3214-3230. (in Chinese)
[11] Thünen-Institut. Landwirtschaftlich Genutzte Böden in Deutschland - Ergebnisse der Bodenzustandserhebung. Braunschweig: Johann Heinrich von Thünen-Institut, 2019: 1-284. (in German)
[12] 国家测绘局. 数字地形图产品基本要求: GB/T 17278-2009. 北京: 中国标准出版社, 2009: 1-10.
National Surveying and Mapping Bureau. Basic Requirements for Products of Digital Topographic Map:GB/T 17278-2009. Beijing: China Standards Press, 2009: 1-10. (in Chinese)
[13] 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007.
doi: 10.3864/j.issn.0578-1752.2020.02.007
ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms. Scientia Agricultura Sinica, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.02.007
[14] https://www.esri.com/en-us/arcgis/about-arcgis
[15] 郑琳. 海伦市近30年农田黑土碳储量及其时空变化[D]. 哈尔滨: 东北农业大学, 2015.
ZHENG L. Spatial-temporal changes in carbon storage of cultivated mollisols in Hailun city[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[16] 尤孟阳, 郝翔翔, 李禄军. 海伦黑土有机碳和养分含量30年变化特征. 土壤与作物, 2020, 9(3): 211-220.
YOU M Y, HAO X X, LI L J. Changes of soil organic carbon and nutrients in Hailun Mollisols in the past thirty years. Soils and Crops, 2020, 9(3): 211-220. (in Chinese)
[18] https://websoilsurvey.nrcs.usda.gov.
[19] https://sis.agr.gc.ca/cansis/publications/surveys/index.html.
[20] http://ukso.org/static-maps/published-soil-maps-great-britain.html.
[21] https://www.bgr.bund.de/DE/Themen/Boden/Informationsgrundlagen/ Bodenkundliche_Karten_Datenbanken/bodenkundliche_karten_datenbanken _node.html.
[22] HARTEMINK A E, SONNEVELD M P W. Soil maps of The Netherlands. Geoderma, 2013, 204/205: 1-9. doi: 10.1016/j.geoderma.2013.03.022.
doi: 10.1016/j.geoderma.2013.03.022
[23] https://www.asris.csiro.au/themes/Atlas.html#Atlas_Beginners.
[24] https://esdac.jrc.ec.europa.eu/content/soil-map-france-carte-pedologique-vichy.
[25] VOLTZ M, ARROUAYS D, BISPO A, LAGACHERIE P, LAROCHE B, LEMERCIER B, RICHER-DE-FORGES A, SAUTER J, SCHNEBELEN N. Possible futures of soil-mapping in France. Geoderma Regional, 2020, 23: e00334. doi: 10.1016/j.geodrs.2020.e00334.
doi: 10.1016/j.geodrs.2020.e00334
[26] https://www.naro.affrc.go.jp/archive/niaes/marco/marco2012/pdf/ws3_15_takata.pdf.
[27] https://www.finanzamt.bayern.de/Informationen/Steuerinfos/Weitere_Themen/Bodenschaetzung/Merkblatt-ueber-den-Aufbau-der-Bodenschaetzung.pdf.
[28] MOHR H, RATZKE U. 75 Jahre einheitliche Bodenscahaetzung. Buddin: Kunsthaus Verlag, 2009: 1-97. (in German)
[29] Bundesministeriums der Justiz und für Verbraucherschutz. Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (Bodenschätzungsgesetz -BodSchätzG). 2007: 1-10. (in German)
[30] Bundesministeriums der Justiz und für Verbraucherschutz. Verordnung zur Durchführung des §6 Absatz 3 des Bodenschätzungsgesetzes (Bodenschätzungs-Durchführungsverordnung - BodSchätzDV). 2012: 1-114. (in German)
[31] 贵州省土壤普查办公室. 贵州省土壤. 贵阳: 贵州科技出版社, 1994.
Guizhou Provincial Soil Survey Office. Soils of Guizhou Province. Guiyang: Guizhou Science and Technology Press, 1994. (in Chinese)
[32] 山西土壤普查办公室. 山西土壤. 北京: 科学出版社, 1992.
Shanxi Provincial Soil Survey Office. Shanxi Soils. Beijing: Science Press, 1992. (in Chinese)
[33] 浙江省土壤普查办公室. 浙江土壤. 杭州: 浙江科学技术出版社, 1994.
Zhejiang Provincial Soil Survey Office. Zhejiang Soils. Hangzhou: Zhejiang Science and Technology Press, 1994. (in Chinese)
[34] 安徽省土壤普查办公室. 安徽土壤. 北京: 科学出版社, 1994.
Anhui Provincial Soil Survey Office. Anhui Soils. Beijing: Science Press, 1994. (in Chinese)
[35] 福建省土壤普查办公室. 福建土壤. 福州: 福建科学技术出版社, 1991.
Fujian Provincial Soil Survey Office. Fujian Soils. Fuzhou: Fujian Science and Technology Press, 1991. (in Chinese)
[36] 山东省土壤肥料工作站. 山东土壤. 北京: 中国农业出版社, 1994.
Shandong Provincial Soil and Fertilizer Workstation. Shandong Soils. Beijing: China Agricultural Press, 1994. (in Chinese)
[39] 陕西省土壤普查办公室. 陕西土壤. 北京: 科学出版社, 1992.
Shaanxi Provincial Soil Survey Office. Shaanxi Soils. Beijing: Science Press, 1992. (in Chinese)
[1] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[2] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[3] LI ShaoHua,WANG YunPeng,WANG RongCheng,YIN Ping,LI XiangDong,ZHENG FangQiang. Spatial Distribution Pattern and Sampling Technique of Conogethes punctiferalis Larvae in Maize Fields [J]. Scientia Agricultura Sinica, 2022, 55(10): 1961-1970.
[4] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[5] LI Xin,ZHANG WenJu,WU Lei,REN Yi,ZHANG JunDa,XU MingGang. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation [J]. Scientia Agricultura Sinica, 2021, 54(14): 3043-3056.
[6] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
[7] ZHANG ZhenHua,DING JianLi,WANG JingZhe,GE XiangYu,WANG JinJie,TIAN MeiLing,ZHAO QiDong. Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions [J]. Scientia Agricultura Sinica, 2020, 53(3): 563-573.
[8] JIANG SaiPing,ZHANG RenLian,ZHANG WeiLi,XU AiGuo,ZHANG HuaiZhi,XIE LiangShang,JI HongJie. Spatial and Temporal Variation of Soil Organic Matter and Cause Analysis in Hainan Island in Resent 30 Years [J]. Scientia Agricultura Sinica, 2019, 52(6): 1032-1044.
[9] LIU Lin,JI BingJie,LI RuoNan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Characteristics of Soil Phosphorus in Winter Wheat/Summer Maize Cropping in Shaanxi Guanzhong Plain [J]. Scientia Agricultura Sinica, 2019, 52(21): 3878-3889.
[10] JIANG GuiYing, ZHANG YuJun, WEI Xi, ZHANG DongXu, LIU ShiLiang, LIU KaiLou, HUANG ShaoMin, SHEN FengMin. The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels [J]. Scientia Agricultura Sinica, 2018, 51(16): 3117-3129.
[11] SHANG Xuan, LI XiCan, XU YouYou, LIU ShaSha. The Role and Interaction of Soil Water and Organic Matter on Hyper-Spectral Reflectance [J]. Scientia Agricultura Sinica, 2017, 50(8): 1465-1475.
[12] ZHU YaXing, YU Lei, HONG YongSheng, ZHANG Tao, ZHU Qiang, LI SiDi, GUO Li, LIU JiaSheng. Hyperspectral Features and Wavelength Variables Selection Methods of Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(22): 4325-4337.
[13] HONG YongSheng, YU Lei, ZHU YaXing, LI SiDi, GUO Li, LIU JiaSheng, NIE Yan, ZHOU Yong. Using Orthogonal Signal Correction Algorithm Removing the Effects of Soil Moisture on Hyperspectral Reflectance to Estimate Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(19): 3766-3777.
[14] ZHOU Guo-peng, CAO Wei-dong, BAI Jin-shun, NIE jun, XU Chang-xu, ZENG Nao-hua, GAO Song-juan, WANG Yan-qiu, Shimizu Katsuyoshi. Effects of Different Fertilization Levels on Soil Organic Matter and Dissolved Organic Matter in Two Paddy Soils After Multi-Years’ Rotation of Chinese Milk Vetch and Double-Cropping Rice [J]. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106.
[15] NAN Feng, ZHU Hong-fen, BI Ru-tian. Hyperspectral Prediction of Soil Organic Matter Content in the Reclamation Cropland of Coal Mining Areas in the Loess Plateau [J]. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!