Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3307-3318.doi: 10.3864/j.issn.0578-1752.2020.16.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Continuous Application of Soil Amendments on Fluvo- Aquic Soil Fertility and Active Organic Carbon Components

ZHOU JiXiang(),ZHANG He,YANG Jing,LI GuiHua(),ZHANG JianFeng()   

  1. National Engineering Laboratory of Cultivated Land Cultivation Technology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-09-26 Accepted:2019-12-30 Online:2020-08-16 Published:2020-08-27
  • Contact: GuiHua LI,JianFeng ZHANG E-mail:1011841170@qq.com;liguihua@caas.cn;zhangjianfeng@caas.cn

Abstract:

【Objective】Impacting of two soil amendments on the contents of active organic carbon components and soil carbon pool management index were studied from 2015 to 2018 in a sandy fluvo-aquic soil in Langfang City, Hebei Province under wheat-corn rotation. The purpose of the study was to provide a theoretical basis for the higher accumulation of organic carbon in sandy fluvo-aquic soil and for the improvement of soil quality. 【Method】 The experiment was carried out by a single factor randomized block design with four treatments: (1) chemical fertilizer only (CK), (2) CK+ organic amendment 15 t·hm-2 (T1), (3) CK+ inorganic amendment 2.25 t·hm-2(T2), and (4) CK+ organic amendment 15 t·hm-2+ inorganic amendment 2.25 t·hm-2 (T3). Soil organic matter content, total nitrogen, pH, available phosphorus and available potassium were measured to calculate soil integrated fertility index (IFI) by modified Nemero index method. Active organic carbon pools were also measured to calculate carbon pool management index (CPMI). Both IFI and CPMI were used to evaluate the soil amendments for the improvement of soil quality. 【Result】 The results showed that soil organic carbon (TOC) and IFI increased significantly under organic amendment comparing to CK, especially under the combination of organic with inorganic amendment (T3). The contents of active carbon pools increased under organic amendment, and was in the order of easily labile organic carbon (LOC)> dissolved organic carbon (DOC)>microbial biomass carbon (MBC). The ratio of active carbon pools to TOC decreased under organic amendment: the ratio of easily labile organic carbon to TOC (LOC/TOC) decreased significantly by 12.57% and 12.02% under T1 and T3, respectively; the ratio of microbial biomass carbon to TOC MBC/TOC decreased significantly by 12.84% and 12.30% under T1 and T3, respectively. Inorganic amendment (T2) had no effects on TOC and active carbon pools, therefore, the decreased ratios of active carbon pools to TOC mean that organic amendment increased stable TOC more than active carbon pools. The increase of CPMI and decrease of the ratio of soil carbon pools to TOC under organic amendment (T1 and T3) indicated that organic amendment resulted in the accumulation of organic carbon. The CPMI increased under the organic amendment. Principal component analysis showed that the organic amendment affected the composition and ratio of active carbon pools in the soil. 【Conclusion】 Continuous application of organic amendment significantly improved fertility of sandy fluvo-aquic soil, increased soil carbon pool management index and carbon storage capacity, and ultimately improved soil quality.

Key words: soil amendment, sandy fluvo-aquic soil, fertility factor, soil active organic carbon, carbon pool management index

Table 1

Basic physical and chemical property of test amendments"

含水量
Water content (%)
SOC
(g·kg-1)
TN
(g·kg-1)
TP
(g·kg-1)
pH TK
(g·kg-1)
有机改良剂
Organic amendment
13.2 73.74 14.7 21.05 7.75 22.88
CEC
mol/100g
吸水率
(%)
比表面积
(m2·g-1)
TN
(mg·kg-1)
TP
(mg·kg-1)
pH TK
(mg·kg-1)
无机改良剂
Inorganic amendment
2196 202 369 68.5 82.3 8.40 10.55

Table 2

Nutrient input in different treatments oftwo soil amendments"

处理 Treatment TN (kg·hm-2) TP (kg·hm-2) TK (kg·hm-2)
CK 150 52.39 46.68
T1 370.5 (150+220.5) 368.14 (52.39+315.75) 389.88 (46.68+343.2)
T2 150.15 (150+0.15) 52.58 (52.39+0.185) 46.70 (46.68+0.024)
T3 370.65 (150+220.5+0.15) 368.33 (52.39+315.75+0.185) 389.90 (46.68+343.2+0.024)

Table 3

The grading standards of soil properties"

分级
Grade
pH
(H2O)
有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
速效磷
Avail. P (mg·kg-1)
速效钾
Avail. K (mg·kg-1)
Xa 4.5 20 1.0 10 100
Xc 6.5 30 1.5 20 150
Xp 8.5 40 2.0 40 200

Table 4

Changes of soil chemical properties and integrated fertility index with two soil amendments"

处理Treatment 有机碳
TOC (g·kg-1)
全氮
TN (g·kg-1)
速效磷
AP (mg·kg-1)
速效钾
AK (mg·kg-1)
pH 土壤综合肥力指数
IFI
CK 7.41±0.41b 0.92±0.15ab 22.76±6.85b 213.67±18.23d 8.65±0.09a 1.15±0.07b
T1 9.51±0.34a 1.14±0.21ab 78.24±1.50a 307.33±28.02b 8.30±0.02b 1.33±0.04a
T2 7.77±0.34b 0.84±0.21b 24.94±3.12b 256.00±15.10c 8.43±0.09b 1.17±0.04b
T3 9.84±0.62a 1.18±0.10a 80.61±16.68a 372.00±21.00a 8.37±0.06b 1.35±0.03a

Fig. 1

Changes of active carbon content with two soil amendments"

Table 5

Changes of the ratios of soil available carbon content to soil organic carbon with two soil amendments (%)"

处理Treatment LOC/TOC MBC/TOC DOC/TOC
CK 32.13±1.03a 5.05±0.41a 0.64±0.02ab
T1 28.09±1.21b 4.02±0.34c 0.58±0.02b
T2 32.23±0.83a 4.57±0.12ab 0.65±0.07ab
T3 28.27±2.44b 4.19±0.30bc 0.67±0.03a

Table 6

Effects of soil amendments on carbon pool management index (CPMI)"

处理
Treatment
碳库指数
CPI
碳库活度
L
碳库活度指数
LI
碳库管理指数
CPMI
CK0 1 0.53 1 100
CK 1.08b 0.47a 0.90a 96.92b
T1 1.39a 0.39b 0.74b 102.84ab
T2 1.14b 0.48a 0.90a 102.32ab
T3 1.44a 0.40b 0.75b 107.23a

Fig. 2

Principal component analyses (PCA) of soil carbon indices under two soil amendments"

Table 7

Correlation coefficients (r) between soil active carbon, CPMI and the carbon pool component allocation ratio"

LOC MBC DOC CPMI LOC/TOC MBC/TOC DOC/TOC
LOC 1 0.726** 0.738** 0.869** -0.562 -0.613* -0.132
MBC 1 0.659* 0.631* -0.392 -0.101 0.085
DOC 1 0.437 -0.748** -0.63* 0.358
CPMI 1 -0.08 -0.232 -0.042
[1] 杨劲松, 余世鹏, 刘广明, 李冬顺. 黄淮海平原高水肥改良中低产田耕地质量动态评估. 干旱地区农业研究, 2009,27(3):232-238, 266.
YANG J S, YU S P, LIU G M, LI D S. Assessment of farmland quality in the improvement process of mid-low yield lands under high water-fertilizer treatments in Huang-Huai-Hai Plain. Agricultural Research in the Arid Areas, 2009, 27(3):232-238, 266. (in Chinese)
[2] 周岩, 武继承. 土壤改良剂的研究现状、问题与展望. 河南农业科学, 2010(8):152-155.
doi: 10.3969/j.issn.1004-3268.2010.08.041
ZHOU Y, WU J C. Research status, problems and prospects of soil amendment. Journal of Henan Agricultural Sciences, 2010(8):152-155. (in Chinese)
doi: 10.3969/j.issn.1004-3268.2010.08.041
[3] 刘恋, 张建峰, 姜慧敏, 杨俊诚, 邓仕槐, 郭俊娒, 谢义琴, 张水勤, 王峰源, 李玲玲. 无害化污泥施用对土壤有机质、微生物量碳和氮含量的影响. 农业环境科学学报, 2014,33(5):978-984.
LIU L, ZHANG J F, JIANG H M, YANG J C, DENG S H, GUO J M, XIE Y Q, ZHANG S Q, WANG F Y, LI L L. Effects of non-hazardous sewage sludge application on soil organic matter and soil microbial biomass carbon and nitrogen. Journal of Agro-Environment Science, 2014,33(5):978-984. (in Chinese)
[4] 刘晓, 黄林, 郭康莉, 张雪凌, 杨俊诚, 姜慧敏, 张建峰. 无害化污泥与钼尾矿配施对沙化潮土土壤质量的影响. 农业环境科学学报, 2016,35(12):2385-2396.
LIU X, HUANG L, GUO K L, ZHANG X L, YANG J C, JIANG H M, ZHANG J F. Effect on the quality of sandy fluvo-aquic soil by application of non-hazardous sewage sludge with molybdenum tailings. Journal of Agro-Environment Science, 2016,35(12):2385-2396. (in Chinese)
[5] BRYANT C S, ELSA N M, MICHELLE C, KELB F. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. Journal of Environmental Quality, 2013,42(5):1372-1385.
pmid: 24216415
[6] LLORET E, PASCUAL J A, BRODIE E L, BOUSKILL N J, INSAM H, JUAREZ M F, GOBEMA M. Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Applied Soil Ecology, 2016,101:37-46.
[7] 肖占文, 闫治斌, 王学, 马世军, 闫富海, 秦嘉海. 有机碳土壤改良剂对风沙土改土效应的影响. 水土保持通报, 2017,37(3):35-42.
XIAO Z W, YAN Z B, WANG X, MA S J, YAN F H, QIN J H. Effect of organic carbon soil amendment on sandy soil improvement. Bulletin of Soil and Water Conservation, 2017,37(3):35-42. (in Chinese)
[8] 文星, 李明德, 吴海勇, 刘琼峰. 土壤改良剂对酸性水稻pH值、交换性钙镁及有效磷的影响. 农业现代化研究, 2014,35(5):618-623.
WEN X, LI M D, WU H Y, LIU Q F. The effects of acid soil modifiers on soil pH, exchangeable calcium and exchangeable magnesium, and available phosphorus in acid paddy soils. Research of Agricultural Modernization, 2014,35(5):618-623. (in Chinese)
[9] 刘慧军, 刘景辉, 于健, 徐胜涛, 史吉刚. 土壤改良剂对燕麦土壤理化性状及微生物量碳的影响. 水土保持学报, 2012,26(5):68-72, 77.
LIU H J, LIU J H, YU J, XU S T, SHI J G. Effects of soil amendment on soil physicochemical properties of oat and soil microbial biomass carbon. Journal of Soil and Water Conservation, 2012,26(5):68-72, 77. (in Chinese)
[10] ZHANG X, SUN N, WU L, XU M, BINGHAM I, Li Z. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in china. Science of the Total Environment, 2016,562:247-259.
pmid: 27100005
[11] DALAL R C, CHAN K Y. Soil organic matter in rainfed cropping systems of the Australian cereal belt. Australian Journal of Soil Research, 2001,39:435-464.
[12] 裴久渤. 玉米秸秆碳在东北旱田土壤中的转化与固定[D]. 沈阳: 沈阳农业大学, 2015.
PEI J B. Transformation and fixation of maize straw carbon in the dryland soils of northeast China[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese)
[13] STOCKMANN U, ADAMS M A, CRAWFORD J W, FIELD D J, JENKINS N H M, MINASNY B, MCBRATNEY A B, COURCELLES V R, SINGH K, WHEELER I, ABBOTT L, ANGERS D, BALDOCK J, BIRD M, BROOKES P C, CHENU C, JASTROE J D, LAL R, LEHMANN J, O’DONNELL A G, PARTON W J, WHITEHEAD D, ZIMMERMANN M. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 2013,164:80-99.
doi: 10.1016/j.agee.2012.10.001
[14] YAN D Z, WANG D J, YANG L Z. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biology and Fertility of Soil, 2007,44:93-101.
[15] SCHULZ E. Influence of site conditions and management on different soil organic matter (SOM) pools. Archives of Agronomy and Soil Science, 2004,50:33-48.
[16] 张仕吉, 项文化. 土地利用方式对土壤活性有机碳影响的研究进展. 中南林业科技大学学报, 2012,32(5):134-143.
ZHANG S J, XIANG W H. Research progress in effects of land use mode on soil active organic carbon. Journal of Central South University of Forestry and Technology, 2012,32(5):134-143. (in Chinese)
[17] 谢钧宇, 孟会生, 焦欢, 洪坚平, 张杰, 李丽娜, 黄晓磊, 栗丽, 赵林婷, 李廷亮. 施肥对复垦土壤中活性和难降解碳氮组分的影响. 应用与环境生物学报, 2019,25(5):1113-1121.
XIE J Y, MENG H S, JIAO H, HONG J P, ZHANG J, LI L N, HUANG X L, LI L, ZHAO L T, LI T L. Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions of reclaimed soils. Chinese Journal of Applied & Environmental Biology, 2019,25(5):1113-1121. (in Chinese)
[18] LEIFELD J, KOGEL-KNABNER I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma, 2005,124:143-155.
[19] LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil, 1993,155/156(1):399-402.
[20] BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995,46(7):1459-1466.
[21] 徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响. 植物营养与肥料学报, 2006(4):459-465.
XU M G, YU R, SUN X F, LIU H, WANG B R, LI J M. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Journal of Plant Nutrition and Fertilizers, 2006(4):459-465. (in Chinese)
[22] 张影, 刘星, 任秀娟, 李东方, 吴大付, 陈锡岭. 秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响. 水土保持学报, 2019,33(3):153-159, 165.
ZHANG Y, LIU X, REN X J, LI D F, WU D F, CHEN X L. Effects of straw and biochar on soil carbon pool management index and organic carbon mineralization. Journal of Soil and Water Conservation, 2019,33(3):153-159, 165. (in Chinese)
[23] 郭康莉, 冀拯宇, 刘晓, 朱兴娟, 姜慧敏, 杨俊诚, 李桂花, 张建峰. 无害化污泥堆肥施用量对沙质潮土土壤活性有机碳组分的影响. 农业环境科学学报, 2018,37(1):105-113.
GUO K L, JI Z Y, LIU X, ZHU X J, JIANG H M, YANG J C, LI G H, ZHANG J F. Effects of the application rate of non-hazardous composted sewage sludge on soil active organic carbon fractions of sandy fluvo-aquic soil. Journal of Agro-Environment Science, 2018,37(1):105-113. (in Chinese)
[24] 许帆, 张亚萍, 田兴武, 刘馨, 祁娟霞, 张雪艳. 复合型有机酸性土壤改良剂不同施用量对连作黄瓜土壤改良效果研究. 北方园艺, 2016(14):187-192.
XU F, ZHANG Y P, TIAN X W, LIU X, QI J X, ZHANG X Y. Different dosages of complex organic soil amendments on soil improvement effect of continuous cropping cucumber. Northern Horticulture, 2016(14):187-192. (in Chinese)
[25] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 25-100.
BAO S D. Soil and Agrochemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 25-100. (in Chinese)
[26] 吴金水, 林启美, 黄巧云, 肖和艾. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006: 54-74.
WU J S, LIN Q M, HUANG Q Y, XIAO H A. Method for measuring Soil Microbial Biomass and Its Application. Beijing: China Meteorological Press, 2006: 54-74. (in Chinese)
[27] 彭华, 纪雄辉, 吴家梅, 朱坚, 田发祥. 不同稻草还田模式下双季稻土壤有机碳及碳库管理指数研究. 生态环境学报, 2016,25(4):563-568.
PENG H, JI X H, WU J M, ZHU J, TIAN F X. Organic carbon and carbon pool management index in soil under different rice straw returning way in double-croping paddy fields. Ecology and Environmental Sciences, 2016,25(4):563-568. (in Chinese)
[28] 韩琳, 张玉龙, 金烁, 王娇, 魏岩岩, 崔宁, 魏巍. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响. 中国农业科学, 2010,43(8):1625-1633.
HAN L, ZHANG Y L, JIN S, WANG J, WEI Y Y, CUI N, WEI W. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field. Scientia Agricultura Sinica, 2010,43(8):1625-1633. (in Chinese)
[29] 沈宏, 曹志洪. 长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响. 热带亚热带土壤科学, 1998(1):1-5.
SHEN H, CAO Z H. Effect of long term fertilization on soil available carbon pool and available ratio of soil carbon under different agroecosystems. Tropicaland Subtropical Soil Science, 1998(1):1-5. (in Chinese)
[30] 徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化. 土壤学报, 2006,43(5):723-729.
XU M G, YU R, WANG B R. Labile organic matter and carbon management index in red soil under long-term fertilization. Acta Pedologica Sinica, 2006,43(5):723-729. (in Chinese)
[31] 包耀贤, 徐明岗, 吕粉桃, 黄庆海, 聂军, 张会民, 于寒青. 长期施肥下土壤肥力变化的评价方法. 中国农业科学, 2012,45(20):4197-4204.
BAO Y X, XU M G, LÜ F T, HUANG Q H, NIE J, ZHANG H M, YU H Q. Evaluation method on soil fertility under long-term fertilization. Scientia Agricultura Sinica, 2012,45(20):4197-4204. (in Chinese)
[32] 陈涛, 王新, 梁仁禄, 杨玉森, 尹宏生, 张大南. 污泥草地利用的初步研究. 应用生态学报, 2002(4):463-466.
pmid: 12222055
CHEN T, WANG X, LIANG R L, YANG Y S, YIN H S, ZHANG D N. Sewage sludgeas fertilizer for grassland. Chinese Journal of Applied Ecology, 2002(4):463-466. (in Chinese)
pmid: 12222055
[33] 李艳霞, 赵莉, 陈同斌. 城市污泥堆肥用作草皮基质对草坪草生长的影响. 生态学报, 2002,22(6):797-801.
LI Y X, ZHAO L, CHEN T B. The municipal sewage sludge compost used as lawn medium. Acta Ecologica Sinica. 2002,22(6):797-801. (in Chinese)
[34] 赵金星, 周伟, 战英策, 历永杰, 高洪波, 何松榆, 张玉先, 张明聪. 土壤改良剂对盐化草甸土物理性质及水稻产量的影响 作物杂志, 2018(6):138-143.
ZHAO J X, ZHOU W, ZHAN Y C, LI Y J, GAO H B, HE S Y, ZHANG Y X, ZHANG M C. Effects of a new soil ameliorants on soil physical properties and yield of rice in saline meadow soil. Crops, 2018(6):138-143. (in Chinese)
[35] 李小炜, 白春梅, 田丽, 李晓韬. 两种土壤改良剂对陕北旱区玉米生长及产量的影响. 湖北农业科学, 2019,58(8):64-66.
LI X W, BAI C M, TIAN L, LI X T. Effects of two soil improvers on maize growth and yield in northern Shaanxi arid region. Hubei Agricultural Sciences, 2019,58(8):64-66. (in Chinese)
[36] 肖胜生, 房焕英, 段剑, 董云社, 杨洁. 植被恢复对侵蚀型红壤碳吸存及活性有机碳的影响. 环境科学研究, 2015,28(5):728-735.
XIAO S S, FANG H Y, DUAN J, DONG Y S, YANG J. Effects of vegetation restoration on soil carbon sequestration and active organic carbon in eroded red soil. Research of Environmental Sciences, 2015,28(5):728-735. (in Chinese)
[37] 骆坤, 胡荣桂, 张文菊, 周宝库, 徐明岗, 张敬业, 夏平平. 黑土有机碳、氮及其活性对长期施肥的响应. 环境科学, 2013,34(2):676-684.
LUO K, HU R G, ZHANG W J, ZHOU B K, XU M G, ZHANG J Y, XIA P P. Response of black soil organic carbon, nitrogen and its availability to long-term fertilization. Environmental Science, 2013,34(2):676-684. (in Chinese)
[38] 张瑞, 张贵龙, 姬艳艳, 李刚, 常泓, 杨殿林. 不同施肥措施对土壤活性有机碳的影响. 环境科学, 2013,34(1):277-282.
ZHANG R, ZHANG G L, JI Y Y, LI G, CHANG H, YANG D L. Effects of different fertilizer application on soil active organic carbon. Environmental Science, 2013,34(1):277-282. (in Chinese)
[39] 黄倩, 吴靖霆, 陈杰, 蔡武, 王昊, 陈韦, 何云峰. 土壤吸附可溶性有机碳研究进展. 土壤, 2015,47(3):446-452.
HUAN Q, WU J T, CHEN J, CAI W, WANG H, CHEN W, HE Y F. Adsorption of dissolved organic carbon(DOC) on soil: a review. Soils, 2015,47(3):446-452. (in Chinese)
[40] 孙凤霞, 张伟华, 徐明岗, 张文菊, 李兆强, 张敬业. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响. 应用生态学报, 2010,21(11):2792-2798.
SUN F X, ZHANG W H, XU M G, ZHANG W J, LI Z Q, ZHANG J Y. Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil. Chinese Journal of Applied Ecology, 2010,21(11):2792-2798. (in Chinese)
[41] 佟小刚, 韩新辉, 杨改河, 冯永忠, 任广鑫, 梁爱华, 康迪. 碳库管理指数对退耕还林土壤有机碳库变化的指示作用. 中国环境科学, 2013,33(3):466-473.
TONG X G, HAN X H, YANG G H, FENG Y Z, REN G X, LIANG A H, KANG D. Carbon management index as an indicator for changes in soil organic carbon pool under conversion from cropland to forestland. China Environmental Science, 2013,33(3):466-473. (in Chinese)
[42] 杨滨娟, 黄国勤, 兰延, 陈洪俊, 王淑彬. 施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响. 应用生态学报, 2014,25(10):2907-2913.
YANG B J, HUANG G Q, LAN Y, CHEN H J, WANG S B. Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index. Chinese Journal of Applied Ecology, 2014,25(10):2907-2913. (in Chinese)
[43] 廖敏, 彭英, 陈义, 谢晓梅, 吴春艳, 唐旭, 刘玉学, 杨生茂. 长期不同施肥管理对稻田土壤有机碳库特征的影响. 水土保持学报, 2011,25(6):129-133, 138.
LIAO M, PENG Y, CHEN Y, XIE X M, WU C Y, TANG X, LIU Y X, YANG S M. Effect of long-term different fertilizer management on soil carbon stock characteristics in paddy soil. Journal of Soil and Water Conservation, 2011,25(6):129-133, 138. (in Chinese)
[44] 吴建富, 曾研华, 潘晓华, 石庆华, 李涛, 王苏影. 稻草还田方式对双季水稻产量和土壤碳库管理指数的影响. 应用生态学报, 2013,24(6):1572-1578.
pmid: 24066542
WU J F, ZENG Y H, PAN X H, SHI Q H, LI T, WANG S Y. Effects of rice straw returning mode on rice grain yield and soil carbon pool management index in double rice-cropping system. Chinese Journal of Applied Ecology, 2013,24(6):1572-1578. (in Chinese)
pmid: 24066542
[45] POWLSON D S, WHITMORE A P, GOULDING K W T. Soil carbon sequestration to mitigate climate change: Acritical re-examination to identify the true and the false. European Journal of Soil Science, 2011,62(1):42-55.
doi: 10.1111/j.1365-2389.2010.01342.x
[46] 刘向华. 可持续发展战略下河南粮食生产能力提高的低碳路径探析. 生态经济, 2015,31(9):114-117.
LIU X H. Analysis on low-carbon development of grain productivity in Henan under the strategy of sustainability. Ecological Economy, 2015,31(9):114-117. (in Chinese)
[47] JORGE-MARDOMINGO I, SOLER-ROVIRAP , CASERMEIRO M A, CRUZ M T, POLO A. Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma, 2013,206:40-48.
doi: 10.1016/j.geoderma.2013.04.025
[48] SCIUBBA L, CAVANI L, NEGRONI A, ZANZROLI G, FAVA F, CIAVATTA C, MARZADORI C. CChanges in the functional properties of a sandy loam soil amended with biosolids at different application rates. Geoderma, 2014,221/222:40-49.
doi: 10.1016/j.geoderma.2014.01.018
[49] 李硕, 李有兵, 王淑娟, 师江澜, 田霄鸿. 关中平原作物秸秆不同还田方式对土壤有机碳和碳库管理指数的影响. 应用生态学报, 2015,26(4):1215-1222.
pmid: 26259466
LI S, LI Y B, WANG S J, SHI J L, TIAN X H. Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong Plain, Northwest China. Chinese Journal of Applied Ecology, 2015,26(4):1215-1222. (in Chinese)
pmid: 26259466
[50] 王朔林, 杨艳菊, 王改兰, 赵旭, 陈春玉, 黄学芳. 长期施肥对栗褐土活性有机碳的影响. 生态学杂志, 2015,34(5):1223-1228.
WANG S L, YANG Y J, WANG G L, ZHAO X, CHEN C Y, HUANG X F. Effect of long-term fertilization on labile organic carbon in cinnamon soil. Chinese Journal of Ecology, 2015,34(5):1223-1228. (in Chinese)
[1] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
[2] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[3] ZHAO Chang-ping, WANG Jing-yan, GONG Wei, YAN Si-yu, SHU Zheng-yue, CAI Yu. Soil Amendment and Enrichment Efficiency of Agro-Forestry Models in Serious Earthquake Region of Northern Sichuan Basin [J]. Scientia Agricultura Sinica, 2016, 49(15): 2999-3009.
[4] LI Wei, ZHENG Zi-Cheng, LI Ting-Xuan, WANG Yong-Dong. Effects of Returning Farmland to Tea on Soil Organic Carbon Pool of Hilly Region in the Western Sichuan [J]. Scientia Agricultura Sinica, 2014, 47(8): 1642-1651.
[5] WANG Dong,LI Hui-xin,LI Xiao-hong,WANG Jing,HU Feng
. Soil Labile Organic Carbon as Affected by Non-flooded Rice Cultivation with Straw Mulching Under Different Tillages
[J]. Scientia Agricultura Sinica, 2011, 44(1): 75-83 .
[6] ,,. Management of Strawberry (Fragria ananassa Duch) Replanting Problem by Soil Amendments of Medicinal Herbs [J]. Scientia Agricultura Sinica, 2005, 38(04): 730-735 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!