Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (2): 228-239.doi: 10.3864/j.issn.0578-1752.2017.02.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome Wide Association Analysis of Silique Length in Brassica napus L.

ZHOU QingHong1, ZHOU Can1, ZHENG Wei2, FU DongHui1   

  1. 1 College of Agronomy, Jiangxi Agricultural University/The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045; 2Jiangxi Institute of Red Soil, Jinxian 331717, Jiangxi
  • Received:2016-07-19 Online:2017-01-16 Published:2017-01-16

Abstract: 【Objective】The objective of this study is to detect the SNP loci and determine related candidate genes affecting the silique length of B. napus significantly to reveal its genetic basis and molecular mechanism, and lay a foundation for the marker assisted selection in high yield breeding of B. napus. 【Method】In this study, the phenotype of silique length was investigated at two environments (JXAU of Nanchang and JXIRS of Jinxian) with 300 accessions of B. napus, combining with the 201,817 SNPs developed from specific locus amplified fragment sequencing (SLAF-seq) technology, the genome-wide association analysis was proceeded to detect the SNP loci affecting the silique length significantly, and the regions were scanned with 100 kb apart from the loci of SNP associated dramatically with silique length based on linkage disequilibrium analysis, and finally the candidate genes were predicted with relation to silique length by BLAST analysis.【Result】The variation ranges of silique length in the two places were 46.35-107.07 mm and 39.41-101.35 mm, respectively, which both showed extensive phenotypic variation in two environments. In addition, a total of 121 SNP loci in JXAU correlatively with silique length were excavated by general linear model (GLM), which distributed on A04, A06, A08, A09, C02, C03, C06 and C09 chromosomes, and the largest number of SNPs (83) was on A09 chromosome. Otherwise, 22 SNPs in JXIRS with 1 on C09 and 21 on A09 were detected, and there were 20 consensus SNPs under two environments. Besides, 5 SNPs in JXAU and 3 SNPs (P<4.96E-07) in JXIRS all distributed on A09 chromosome were detected respectively using the mixed linear model (MLM), three of which were consistent in two environments. There were 40 candidate genes screened in the candidate regions with 100 kb apart from the positions of SNPs associated significantly with silique length, functional analyses showed that these genes involved in regulation of carbohydrate transportation and synthesis, flower and seed development, signal transduction and etc., which might result in the variation of silique length through affecting the growth and development of silique in B. napus. 【Conclusion】The SNP loci and candidate genes related closely with silique length of B. napus were detected in this study, thus providing a theoretical basis for the seed yield regulatory network of B. napus and molecular assisted selection of high-yield breeding of rapeseed.

Key words: Brassica napus, Genome-wide association study, silique length, SNP locus, candidate gene

[1]    张永霞, 赵锋, 张红玲. 中国油菜产业发展现状、问题及对策分析. 世界农业, 2015, 4: 96-99, 203-204.
ZHANG Y X, ZHAO F, ZHANG H L. The current situation, problem and solutions of China’s rape industry. World Agriculture, 2015, 4: 96-99, 203-204. (in chinese)
[2]    BENNETT E J, ROBERTSs J A, Wagstaff C. The role of the pod in seed development: Strategies for manipulating yield. New Phytologist, 2011, 190(4): 838-853.
[3]    KING S P, LUNN J E, FURBANK R T. Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiology, 1997, 114(1): 153-160.
[4]    丁秀琦. 白菜型春油菜角果和种子性状研究. 中国油料, 1996, 18(4): 28-30.
DING X Q. Study on characters of silique and seed in spring rape (Brassica campestris). Oil crops of China, 1996, 18(4): 28-30. (in Chinese)
[5]    ÖZER H, ORAL E. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turkish Journal of Agriculture and Forestry, 1999, 23(6): 603-608.
[6]    国审长角果大粒型高产双低油菜华双4. 农村实用技术与信息, 2006(4): 37.
National registered long-pod, large-grain, high-yield rape cultivar ‘Huashuang 4’ with double low content. Rural practical technology and information, 2006(4): 37. (in Chinese)
[7]   AYTAC Z, KINACI G. Genetic variability and association studies of some quantitative characters in winter rapeseed (Brassica napus L.). African Journal of Biotechnology, 2009, 8(15): 3547-3554.
[8]    ZHANG L, YANG G, LIU P, HONG D, LI S, HE Q. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theoretical and Applied Genetics, 2011, 122(1): 21-31.
[9]    YANG P, SHU C, CHEN L, XU J, WU J, LIU K. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2012, 125(2): 285-296.
[10]   漆丽萍. 甘蓝型油菜株型与角果相关性状的QTL分析[D]. 武汉: 华中农业大学, 2014.
QI L P. QTL analysis for the traits associated with plant architecture and silique in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[11]   HUANG X, HAN B. Natural variations and genome-wide association studies in crop plants. Annual review of plant biology, 2014, 65: 531-551.
[12]   LI F, CHEN B, XU K, GAO G, YAN G, QIAO J, LI J, LI H, LI L, XIAO X. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Science, 2016, 242: 169-177.
[13]   LUO X, MA C, YUE Y, HU K, LI Y, DUAN Z, WU M, TU J, SHEN J, YI B, FU T. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015, 16: 379-388.
[14]   LI F, CHEN B, XU K, WU J, SONG W, BANCROFT I, HARPER A L, TRICK M, LIU S, GAO G, WANG N, YAN G, QIAO J, LI J, LI H, XIAO X, ZHANG T, WU X. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Research, 2014, 21(4): 355-367.
[15]   HATZIG S V, FRISCH M, BREUER F, NESI N, DUCOURNAU S, WAGNER M H, LECKBAND G, ABBADI A, SNOWDON R J. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Science, 2015, 6: 221-233.
[16]   CHALHOUB B, DENOEUD F, LIU S, PARKIN I A, TANG H, WANG X, CHIQUET J, BELCRAM H, TONG C, SAMANS B, CORREA M, DA SILVA C, JUST J, FALENTIA C, KOH C S, LE CLAINCHE I, BERNARD M, BENTO P, NOEL B, LABADIE K, ALBERTI A, CHARLES M, ARNAUD D, GUO H, DAVIAUD C, ALANERY S, JABBARI K, ZHAO M, EDGER P P, CHELAIFA H, TACK D, LASSLLE G, MESTIRI I, SCHNEL N, LE PASLIER M C, FAN G, RENAULT V, BAYER P E, GOLICZ A A, MANOLI S, LEE T H, THI V H, CHALABI S, HU Q, FAN C, TOLLENAERE R, LU Y, BATTAIL C, SHEN J, SIDEBOTTOM C H, WANG X, CANAGUIER A, CHAUVEAU A, BERARD A, DENIOT G, GUAN M, LIU Z, SUN F, LIM Y P, LYONS E, TOWN D, BANCROFT I, WANG X, MENG J L, MA J, PIRES J C, KING G J, BRUNEL D, DELOURME R, RENARD M, AURY J M, AADAMS K L, BATLEY J, SNOWDON R J, TOST J, EDWARDS D, ZHOU Y, HUA W, SHARP A G, PATERSON A H, GUAN C, WINCKER P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345(6199): 950-953.
[17]   SUN X, LIU D, ZHANG X F, LI W B, LIU H, HONG W G, JIANG C B, GUAN N, MA C X, ZENG H P, XU C H, SONG J, HUANG L, ZHENG H K. SLAF-seq: an efficient method of large-scale De novo SNP discovery and genotyping using high-throughput sequencing. PloS one, 2013, 8(3): e58700.
[18]   陆光远, 伍晓明, 陈碧云. 油菜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007.
LU G Y, WU X M, CHEN B Y. Descriptors and data standard for rapeseed (Brassica spp.). Beijing: China Agriculture Press, 2007. (in Chinese)
[19]   PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M, BENDER D, MALLER J, SKLAR P, de BAKKER P, DALY M J, SHAM P C. PLINK: a tool set for wholegenome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
[20]   ZONDERVAN K T, CARDON L R. The complex interplay among factors that influence allelic association. Nature Reviews Genetics, 2004(2): 89-100.
[21]   BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
[22]   HARDY O J, VEKEMANS X. SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2002, 2(4): 618-620.
[23]   ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals. Genome research, 2009, 19(9): 1655-1664.
[24]   GINESTET C. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society: Series A, 2011, 174(1): 245-246.
[25]   TURNER S D. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 2014: 005165.
[26] CHAY P, THURLING N. Identification of genes controlling pod length in spring rapeseed, Brassica napus L., and their utilization for yield improvement. Plant Breeding, 1989, 103(1): 54-62.
[27]   DIEPENBROCK W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Research, 2000, 67(1): 35-49.
[28]   LIU J, HUA W, HU Z, YANG H L, ZHANG L, LI R J, DENG L B, SUN X C, WANG X F, WANG H Z. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proceedings of the National Academy of Sciences of the USA, 2015, 112(37): E5123-E5132.
[29]   CHEN W, ZHANG Y, LIU X, CHEN B, TU J X, FU T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theoretical and Applied Genetics, 2007, 115(6): 849-858.
[30]   袁泽俊. 油菜A9染色体角果长和千粒重主效QTL的验证[D]. 武汉: 华中农业大学, 2013.
YUAN Z J. Confirmation of the major QTL for silique length and seed weight on chromosome A9 of Brassica napus [D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[31]   ZHANG L, LI S, CHEN L, YANG G. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L.. Theoretical and Applied Genetics, 2012, 125(4): 695-705.
[32]   FERMANI S, TRIVELLI X, SPARLA F, THUMIGER A, CALVARESI M, MARRI L, TROST P. Conformational selection and folding-upon-binding of intrinsically disordered protein CP12 regulate photosynthetic enzymes assembly. Journal of Biological Chemistry, 2012, 287(25): 21372-21383.
[33]   WANG Y, ZHANG W Z, SONG L F, ZOU J J, SU Z, Wu W H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant physiology, 2008, 148(3): 1201-1211.
[34]   STIEFEL V, RUIE-AVILA L, RAZ R, VALLES M P, GOMEZ J, PAGES M, NELSON T. Expression of a maize cell wall hydroxyproline- rich glycoprotein gene in early leaf and root vascular differentiation. The Plant Cell, 1990, 2(8): 785-793.
[35]   GONZALEZ, Z H, ROMPA U, PETERS J L, BHATT A M, WAGSTAFF C, STEAD A D, ROBERTS J A. HAWAIIAN SKIRT: an F-box gene that regulates organ fusion and growth in Arabidopsis. Plant physiology, 2007, 144(3): 1370-1382.
[36]   LI H, XU T, LIN D, WEN M, XIE M, DUCLERCQ J, BENKOVA E. Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis. Cell research, 2013, 23(2): 290-299.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[7] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[8] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[9] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[10] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[11] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[12] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[13] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[14] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[15] XiaoShuai HAO,MengMeng FU,ZaiDong LIU,JianBo HE,YanPing WANG,HaiXiang REN,DeLiang WANG,XingYong YANG,YanXi CHENG,WeiGuang DU,JunYi GAI. Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population [J]. Scientia Agricultura Sinica, 2020, 53(9): 1717-1729.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!