Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3932-3944.doi: 10.3864/j.issn.0578-1752.2021.18.012

• HORTICULTURE • Previous Articles     Next Articles

Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique

SONG ChunHui1(),CHEN XiaoFei1(),WANG MeiGe1,ZHENG XianBo1,SONG ShangWei1,JIAO Jian1,WANG MiaoMiao1,MA FengWang2,BAI TuanHui1()   

  1. 1College of Horticulture, Henan Agricultural University, Zhengzhou 450002
    2College of Horticulture, Northwest A&F University, Yangling712100
  • Received:2021-01-28 Accepted:2021-04-13 Online:2021-09-16 Published:2021-09-26
  • Contact: TuanHui BAI E-mail:songchunhui060305@126.com;chenxiaofei0312@163.com;tuanhuibai88@163.com

Abstract:

【Background】 Apple (Malus×domestica Borkh) is one of the most cultivated fruit crops in China. While apple trees frequently encounter waterlogging stress mainly due to excess rainfall and poor soil drainage, resulting in yellowing leaf, declined fruit quality and yield in summer and autumn. 【Objective】 The aim of this study was to identify waterlogging-tolerant genes of apple, so as to provide a basis for waterlogging tolerance molecular marker assisted breeding, high-quality and high-yield cultivation of apple.【Method】In this study, 50 waterlogging-tolerant plants and 50 waterlogging-sensitive plants were selected to construct two bulked DNA pools from the 495 F1 population, which were derived from a cross of the waterlogging-tolerant apple rootstock G41 and the waterlogging-tolerant M. sieverii (Ledeb) Roem. Specific-locus amplified fragment (SLAF) labels and single nucleotide polymorphism (SNP) markers were developed by SLAF-seq technique. The mapping and candidate gene prediction of waterlogging tolerance in apple were carried out by combining apple genome and genetic association analysis, and the relative expression of the candidate gene was also analyzed in different waterlogging tolerance plants under waterlogging stress.【Result】A total of 119 072 SLAF labels were obtained, of which, 11 133 were polymorphic between both parents. A total 16 237 071 SNPs were identified by sequence analysis, including 170 617 SNPs with polymorphic. By association analysis with Eudidean distance (ED) and SNP-index, a candidate locus was found to be strongly associated with waterlogging tolerance, which was a region of 1.94-3.25 Mb on apple chromosome 10. The associated region was 1.31 Mb that contained 120 genes, and functional annotation of the genes in this region revealed a gene MD10G1014500, alcohol dehydrogenase gene (ADH1) related to respiratory metabolism. The expression level of ADH1 gene in waterlogging tolerant plants was significantly higher than that in waterlogging sensitive plants at 1, 2, 4 and 6 days after waterlogging treatment. 【Conclusion】 One gene (MD10G1014500) was identified as a potential candidate gene involved waterlogging tolerance of apple, which located in a 1.94-3.25 Mb interval on chromosome 10. These findings laid the foundation for gene cloning and functional analysis for waterlogging tolerance of apple.

Key words: apple, waterlogging tolerance, SLAF, SNP, candidate gene

Fig. 1

Plant symptoms after waterlogging for 18 days and recovery for 7 days A: 0 grade; B: 1 grade; C: 5 grade; D: 9 grade"

Fig. 2

The waterlogging tolerance evaluation of the F1 progeny of G41×M. sieversii after waterlogging for 18 days and recovery for 7 days"

Table 1

Quality of sample sequencing and matching of the data with reference genome"

样本
Sample
干净reads
Clean reads
干净碱基
Clean base
Q30
(%)
GC
(%)
总比对率
Total mapped (%)
正确比对率
Properly mapped (%)
G41 38 365 575 9 666 919 570 85.02 41.1 97.55 87.64
新疆野苹果M. sieversii 39 983 972 10 067 312 448 87.82 41.61 97.48 85.77
耐涝混池 Tolerant pool 10 873 511 2 174 702 200 89.47 39.89 94.94 82.30
不耐涝混池 Sensitive pool 10 279 180 2 055 836 000 88.94 39.86 93.01 80.64

Table 2

Number of SLAF and polymorphism SLAF on each chromosome"

染色体
Chromosome
SLAF 数目
SLAF number
多态性 SLAF
Polymorphic SLAF
Chr 01 3 809 354
Chr 02 4 892 530
Chr 03 4 628 436
Chr 04 3 224 251
Chr 05 4 304 495
Chr 06 3 595 308
Chr 07 3 620 383
Chr 08 3 880 394
Chr 09 4 790 455
Chr 10 4 474 423
Chr 11 4 717 435
Chr 12 4 234 418
Chr 13 5 244 486
Chr 14 4 038 405
Chr 15 6 297 567
Chr 16 3 011 281
Chr 17 3 214 337
Chr 00 47 101 4175
总计Total 119 072 11133

Fig. 3

Distribution of SLAF and polymorphism SLAF on the apple reference genome A: Distribution of total SLAFs on the reference genome; B: Distribution of polymorphic SLAFs on the reference genome. Each yellow strip represents a chromosome, the darker the color area is SLAF label concentrated distribution area"

Fig. 4

Distribution of ED and SNP index association values on chromosome"

Table 3

SNP information statistics of samples"

样本 Sample 总SNP Total SNP SNP数目 SNP number 杂合率 Heterozygous ratio (%)
G41 5 093 595 3 313 306 35.79
新疆野苹果M. sieversii 5 093 595 4 208 748 53.41
耐涝混池 Tolerant pool 1 143 476 1 104 683 51.19
不耐涝混池 Sensitive pool 1 143 476 1 090 476 49.99

Table 4

Correlation analysis of waterlogging tolerance traits of apple rootstocks"

方法
Method
染色体
Chromosome
起始位置
Start
终止位置
End
大小
Size (Mb)
基因数量
Gene number
欧式距离法
Euclidean distance
Chr10 1942245 3252362 1.31 121
Chr17 1839746 1853187 0.01 3
SNP-index法
SNP-index method
Chr10 12955610 13906230 0.95 45
Chr10 1942245 7959407 6.02 445
交集 Intersection Chr10 1942245 3252362 1.31 120

Table 5

Functional annotation of gene mapping segments"

编号No 基因编号Gene ID 注释信息 Function annotation
1 MD10G1014300 生长素输出载体家族蛋白 Auxin efflux carrier family protein
2 MD10G1014400 核小分子RNA71 SnoR71
3 MD10G1014500 乙醇脱氢酶1 Alcohol dehydrogenase 1
4 MD10G1014600 5S核糖体RNA 5S rRNA
5 MD10G1014700 5S核糖体RNA 5S rRNA
6 MD10G1014800 植物硬脂酰酰基载体蛋白去饱和酶家族蛋白 Plant stearoyl-acyl-carrier-protein desaturase family protein
7 MD10G1014900 管状分子分化相关6 Tracheary element differentiation-related 6
8 MD10G1015000 表皮毛双折射7 TRICHOME BIREFRINGENCE-LIKE 7
9 MD10G1015100 表皮毛双折射7 TRICHOME BIREFRINGENCE-LIKE 7
10 MD10G1015200 植物U3 Plant U3
11 MD10G1015300 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
12 MD10G1015400 非编码RNA ncRNA
13 MD10G1015500 丝氨酸羧肽酶42 Serine carboxypeptidase-like 42
14 MD10G1015600 三角状五肽重复序列(PPR)超家族蛋白 Pentatricopeptide repeat (PPR) superfamily protein
15 MD10G1015700 三角状五肽重复序列(PPR)超家族蛋白 Pentatricopeptide repeat (PPR) superfamily protein
16 MD10G1015800 植物糖原蛋白样淀粉起始蛋白2 Plant glycogenin-like starch initiation protein 2
17 MD10G1015900 植物糖原蛋白样淀粉起始蛋白2 Plant glycogenin-like starch initiation protein 2
18 MD10G1016000 液泡蛋白分选45 Vacuolar protein sorting 45
19 MD10G1016100 液泡蛋白分选45 Vacuolar protein sorting 45
20 MD10G1016200 5S核糖体RNA 5S rRNA
21 MD10G1016300 功能未知的蛋白(DUF506) Protein of unknown function (DUF506)
22 MD10G1016400 高尔基核苷酸糖转运蛋白1 Golgi nucleotide sugar transporter 1
23 MD10G1016500 ABC转运蛋白家族蛋白 ABC transporter family protein
24 MD10G1016600 功能未知的蛋白质(DUF300) Protein of unknown function (DUF300)
25 MD10G1016700 snoZ221 snoR21b
26 MD10G1016800 发病相关家族蛋白 Pathogenesis-related family protein
27 MD10G1016900 核糖体RNA 5S rRNA 5S
28 MD10G1017000 snoZ221 snoR21b
29 MD10G1017100 未知 Unknown
30 MD10G1017200 5S核糖体RNA 5S rRNA
31 MD10G1017300 发病相关家族蛋白 Pathogenesis-related family protein
32 MD10G1017400 糖脂转移蛋白2 Glycolipid transfer protein 2
33 MD10G1017500 未表征的蛋白质 Uncharacterized protein
34 MD10G1017600 真核生物翻译起始因子6-2 Eukaryotic translation initiation factor 6-2
35 MD10G1017700 功能未知的蛋白质 Protein of unknown function
36 MD10G1017800 Dof型锌指DNA结合家族蛋白 Dof-type zinc finger DNA-binding family protein
37 MD10G1017900 ABC转运G家族成员22 ABC transporter G family member 22-like
38 MD10G1018000 MAP激酶底物1 MAP kinase substrate 1
39 MD10G1018100 核内体靶向BRO1样结构域含蛋白 Endosomal targeting BRO1-like domain-containing protein
编号No 基因编号Gene ID 注释信息 Function annotation
40 MD10G1018200 RING / FYVE / PHD锌指超家族蛋白 RING/FYVE/PHD zinc finger superfamily protein
41 MD10G1018300 伴刀豆球蛋白A样凝集素蛋白激酶家族蛋白 Concanavalin A-like lectin protein kinase family protein
42 MD10G1018400 抗病蛋白(TIR-NBS-LRR类)家族 Disease resistance protein (TIR-NBS-LRR class) family
43 MD10G1018500 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
44 MD10G1018600 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
45 MD10G1018700 嘌呤生物合成4 Purine biosynthesis 4
46 MD10G1018800 未知 Unknown
47 MD10G1018900 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
48 MD10G1019000 未知 Unknown
49 MD10G1019100 铜转运蛋白2 Copper transporter 2-like
50 MD10G1019200 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
51 MD10G1019300 小核糖核蛋白家族蛋白 Small nuclear ribonucleoprotein family protein
52 MD10G1019400 伴刀豆球蛋白A样凝集素蛋白激酶家族蛋白 Concanavalin A-like lectin protein kinase family protein
53 MD10G1019500 伴刀豆球蛋白A样凝集素蛋白激酶家族蛋白 Concanavalin A-like lectin protein kinase family protein
54 MD10G1019600 伴刀豆球蛋白A样凝集素蛋白激酶家族蛋白 Concanavalin A-like lectin protein kinase family protein
55 MD10G1019700 抗病蛋白(TIR-NBS-LRR类)家族 Disease resistance protein (TIR-NBS-LRR class) family
56 MD10G1019800 伴刀豆球蛋白A样凝集素蛋白激酶家族蛋白 Concanavalin A-like lectin protein kinase family protein
57 MD10G1019900 伴刀豆球蛋白A样凝集素蛋白激酶家族蛋白 Concanavalin A-like lectin protein kinase family protein
58 MD10G1020000 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
59 MD10G1020100 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
60 MD10G1020200 未知 Unknown
61 MD10G1020300 伴刀豆球蛋白A样凝集素蛋白激酶家族蛋白 Concanavalin A-like lectin protein kinase family protein
62 MD10G1020400 含LIM结构域的蛋白质 LIM domain-containing protein
63 MD10G1020500 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
64 MD10G1020600 非编码RNA ncRNA
65 MD10G1020700 线粒体底物载体家族蛋白 Mitochondrial substrate carrier family protein
66 MD10G1020800 含LIM结构域的蛋白质 LIM domain-containing protein
67 MD10G1020900 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
68 MD10G1021000 抗病蛋白(TIR-NBS-LRR类) Disease resistance protein (TIR-NBS-LRR class)
69 MD10G1021100 功能未知的蛋白(DUF506) Protein of unknown function (DUF506)
70 MD10G1021200 β-酮酰基还原酶1 Beta-ketoacyl reductase 1
71 MD10G1021300 具有 FYVE 锌指结构域的染色体浓缩(RCC1)家族调节因子
Regulator of chromosome condensation (RCC1) family with FYVE zinc finger domain
72 MD10G1021400 植物U-box 29 Plant U-box 29
73 MD10G1021500 RNA结合蛋白2 RNA-binding protein 2-like
74 MD10G1021600 核苷酸结合 Nucleotide binding
75 MD10G1021700 未知 Unknown
76 MD10G1021800 非编码RNA ncRNA
77 MD10G1021900 ACT样蛋白酪氨酸激酶家族蛋白 ACT-like protein tyrosine kinase family protein
78 MD10G1022000 碳酸酐酶1 Carbonic anhydrase 1
79 MD10G1022100 F盒家族蛋白 F-box family protein
编号No 基因编号Gene ID 注释信息 Function annotation
80 MD10G1022200 碳酸酐酶2 Carbonic anhydrase 2
81 MD10G1022300 未知 Unknown
82 MD10G1022400 碳酸酐酶2 Carbonic anhydrase 2
83 MD10G1022500 RmlC样铜蛋白超家族蛋白 RmlC-like cupins superfamily protein
84 MD10G1022600 RmlC样铜蛋白超家族蛋白 RmlC-like cupins superfamily protein
85 MD10G1022700 未知 Unknown
86 MD10G1022800 未知 Unknown
87 MD10G1022900 RmlC样铜蛋白超家族蛋白 RmlC-like cupins superfamily protein
88 MD10G1023000 综合调控因子2 General regulatory factor 2
89 MD10G1023100 样铜蛋白超家族蛋白 RmlC-like cupins superfamily protein RmlC
90 MD10G1023200 TCP-1/cpn60伴侣蛋白家族蛋白 TCP-1/cpn60 chaperonin family protein
91 MD10G1023300 含LIM结构域的蛋白质 LIM domain-containing protein
92 MD10G1023400 泛素载体蛋白7 Ubiquitin carrier protein 7
93 MD10G1023500 胚芽蛋白样蛋白2 Germin-like protein 2
94 MD10G1023600 磷酸吡rid醛(PLP)依赖性转移酶 Pyridoxal phosphate (PLP)-dependent transferases superfamily protein
95 MD10G1023700 5S 核糖体RNA 5S rRNA
96 MD10G1023800 VIRE2相互作用蛋白 1VIRE2-interacting protein 1
97 MD10G1023900 Tho复合亚基7 / Mft1p Tho complex subunit 7/Mft1p
98 MD10G1024000 液泡铁转运蛋白(VIT)家族蛋白 Vacuolar iron transporter (VIT) family protein
99 MD10G1024100 真核翻译起始因子2(eIF-2)家族蛋白 Eukaryotic translation initiation factor 2 (eIF-2) family protein
100 MD10G1024200 非编码RNA ncRNA
101 MD10G1024300 泛素相互作用基序蛋白 Ubiquitin interaction motif-containing protein
102 MD10G1024400 果糖-1,6-二磷酸酶 Fructose-1,6-bisphosphatase
103 MD10G1024500 小核糖核蛋白家族蛋白 Small nuclear ribonucleoprotein family protein
104 MD10G1024600 小核糖核蛋白家族蛋白 Small nuclear ribonucleoprotein family protein
105 MD10G1024700 U6
106 MD10G1024800 序列特异性DNA结合转录因子 Sequence-specific DNA binding transcription factors
107 MD10G1024900 非编码RNA ncRNA
108 MD10G1025000 未知 Unknown
109 MD10G1025100 Trihelix转录因子 Trihelix transcription factor
110 MD10G1025200 Trihelix转录因子 Trihelix transcription factor
111 MD10G1025300 结瘤素MtN21/EamA样转运蛋白家族蛋白 Nodulin MtN21/EamA-like transporter family protein
112 MD10G1025400 U6
113 MD10G1025500 DEAD-box ATP依赖性RNA解旋酶21 DEAD-box ATP-dependent RNA helicase 21-like
114 MD10G1025600 桶状样F-box蛋白8(LOC103444645),mRNA Tubby-like F-box protein 8 (LOC103444645), mRNA
115 MD10G1025700 核小分子RNA118 snoR118
116 MD10G1025800 未知 Unknown
117 MD10G1025900 功能未知的蛋白质(DUF793) Protein of unknown function (DUF793)
118 MD10G1026000 非编码RNA ncRNA
119 MD10G1026100 HSP20样伴侣蛋白超家族蛋白 HSP20-like chaperones superfamily protein
120 MD10G1026200 铜氧还蛋白超家族蛋白 Cupredoxin superfamily protein

Fig. 5

Expression analysis of ADH1under waterlogging stress Different lowercase letters indicate significant difference (P<0.05)"

[1] CORNELIOUS B, CHEN P, CHEN Y, DE LEON N, SHANNON J G, WANG D. Identification of QTLs underlying water-logging tolerance in soybean. Molecular Breeding, 2005, 16(2): 103-112.
doi: 10.1007/s11032-005-5911-2
[2] ZHANG Y J, SONG X Z, YANG G Z, LI Z H, LU H Q, KONG X Q, ENEJI A E, DONG H Z. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crop Research, 2015, 179:164-172
doi: 10.1016/j.fcr.2015.05.001
[3] 生利霞, 王倩, 孟祥毅, 冯立国. 植物耐涝分子机理研究进展. 分子植物育种, 2017, 15(7): 2823-2828.
SHENG L X, WANG Q, MENG X Y, FENG L G. Research progress on molecular mechanism of waterlogging tolerance in plants. Molecular Plant Breeding, 2017, 15(7): 2823-2828. (in Chinese)
[4] BAILEY-SERRES J, CHANG R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of Botany, 2005, 96(4): 507-518.
doi: 10.1093/aob/mci206
[5] SALVATIERRA A, PIMENTEL P, ALMADA R, HINRICHSEN P. Exogenous GABA application transiently improves the tolerance to root hypoxia on a sensitive genotype of Prunus rootstock. Environmental and Experimental Botany, 2016, 125:52-66.
doi: 10.1016/j.envexpbot.2016.01.009
[6] ZHOU W G, CHEN F, MENG Y J, CHANDRASEKARAN U, LUO X F, YANG W Y, SHU K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry, 2020, 148:228-236.
doi: 10.1016/j.plaphy.2020.01.020
[7] BAI T H, LI C Y, MA F W, FENG F J, SHU H R. Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant and Soil, 2010, 327(1): 95-105.
doi: 10.1007/s11104-009-0034-x
[8] OLIVEIRA H C, FRESCHI L, SODEK L. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiology and Biochemistry, 2013, 66:141-149.
doi: 10.1016/j.plaphy.2013.02.015
[9] 魏国芹, 曹辉, 孙玉刚, 邓波, 张玮玮, 杨洪强. 硫化氢对淹水平邑甜茶根系形态构型、叶片活性氧和光合特性的影响. 应用生态学报, 2017, 28(10): 3267-3273.
WEI G Q, CAO H, SUN Y G, DENG B, ZHANG W W, YANG H Q. Effects of hydrogen sulfide on root architecture, leaf reactive oxygen and photosynthetic characteristics of Malus hupehensis under waterlogging. Chinese Journal of Applied Ecology, 2017, 28(10): 3267-3273. (in Chinese)
[10] XU K N, XU X, FUKAO T, CANLAS P, MAGHIRANG- RODRIGUEZ R, HEUER S, ISMAIL A M, BAILEY-SERRES J, RONALD P C, MACKILL D J. Sub1A is an ethylene-response- factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442(7103): 705-708.
doi: 10.1038/nature04920
[11] SEPTININGSIH E M, SANCHEZ D L, SINGH N, SENDON P M D, PAMPLONA A M, HEUER S, MACKILL D J. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theoretical and Applied Genetics, 2012, 124(5): 867-874.
doi: 10.1007/s00122-011-1751-0
[12] MANO Y, OMORI F, KINDIGER B, TAKAHASHI H. A linkage map of maize × teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Molecular Breeding, 2008, 21(3): 327-337.
doi: 10.1007/s11032-007-9132-8
[13] XU X W, JI J, XU Q, QI X H, WENG Y Q, CHEN X H. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. The Plant Journal, 2018, 93(5): 917-930.
doi: 10.1111/tpj.2018.93.issue-5
[14] DONG Z M, CHEN L, LI Z, LIU N X, ZHANG S C, LIU J, LIU B Q. Identification and molecular mapping of the semi-dwarf locus (sdf-1) in soybean by SLAF-seq method. Euphytica, 2020, 216(6): 103.
doi: 10.1007/s10681-020-02633-7
[15] WEI Q Z, WANG W H, HU T H, HU H J, WANG J L, BAO C L. Construction of a SNP-based genetic map using SLAF-Seq and QTL analysis of morphological traits in eggplant. Frontiers in Genetics, 2020, 11:178
doi: 10.3389/fgene.2020.00178
[16] ZHANG S Z, HU X H, MIAO H R, CHU Y, CUI F G, YANG W Q, WANG C M, SHEN Y, XU T T, ZHAO L B, ZHANG J C, CHEN J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biology, 2019, 19(1): 537.
doi: 10.1186/s12870-019-2164-5
[17] 白团辉, 马锋旺, 李翠英, 束怀瑞, 韩明玉, 王昆. 苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析. 中国农业科学, 2008, 41(12): 4140-4148.
BAI T H, MA F W, LI C Y, SHU H R, HAN M Y, WANG K. Physiological responses and analysis of tolerance of apple rootstocks to root-zone hypoxia stress. Scientia Agricultura Sinica, 2008, 41(12): 4140-4148. (in Chinese)
[18] BAI T H, LI C Y, LI C, LIANG D, MA F W. Contrasting hypoxia tolerance and adaptation in Malus species is linked to differences in stomatal behavior and photosynthesis. Physiologia Plantarum, 2013, 147(4): 514-523.
doi: 10.1111/ppl.2013.147.issue-4
[19] MENG D, LI Y Y, BAI Y, LI M J, CHENG L L. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress. Plant Physiology and Biochemistry, 2016, 103:71-83.
doi: 10.1016/j.plaphy.2016.02.006
[20] SUN X W, LIU D Y, ZHANG X F, LI W B, LIU H, HONG W G, JIANG C B, GUAN N, MA C X, ZENG H P, XU C H, SONG J, HUANG L, WANG C M, SHI J J, WANG R, ZHENG X H, LU C Y, WANG X W, ZHENG H K. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high- throughput sequencing. PLoS ONE, 2013, 8(3): e58700.
doi: 10.1371/journal.pone.0058700
[21] HILL J T, DEMAREST B L, BISGROVE B W, GORSI B, SU Y C, YOST H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 2013, 23(4): 687-697.
doi: 10.1101/gr.146936.112
[22] HIROKI T, AKIRA A, KENTARO Y, SHUNICHI K, SATOSHI N, CHIKAKO M, AIKO U, HIROE U, MULUNEH T, SHOHEI T, HIDEKI I, CANO LILIANA M, SOPHIEN K, RYOHEI T. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.
doi: 10.1111/tpj.2013.74.issue-1
[23] 米银法, 马锋旺, 马小卫. 根际低氧对不同抗性猕猴桃幼苗抗氧化系统的影响. 中国农业科学, 2008, 41(12): 4328-4335.
MI Y F, MA F W, MA X W. Effect of root-zone hypoxia stress on anti-oxidative system of Chinese gooseberry seedlings with different resistances. Scientia Agricultura Sinica, 2008, 41(12): 4328-4335. (in Chinese)
[24] 马瑞娟, 张斌斌, 蔡志翔, 沈志军, 俞明亮. 不同桃砧木品种对淹水的光合响应及其耐涝性评价. 园艺学报, 2013, 40(3): 409-416.
MA R J, ZHANG B B, CAI Z X, SHEN Z J, YU M L. Evaluation of peach rootstock waterlogging tolerance based on the responses of the photosynthetic indexes to continuous submergence stress. Acta Horticulturae Sinica, 2013, 40(3): 409-416. (in Chinese)
[25] ARBONA V, GÓMEZ-CADENAS A. Hormonal modulation of Citrus responses to flooding. Journal of Plant Growth Regulation, 2008, 27(3): 241.
doi: 10.1007/s00344-008-9051-x
[26] 李艳, 杜远鹏, 付艳东, 翟衡. 不同砧木嫁接的赤霞珠葡萄对淹水的生理响应. 园艺学报, 2013, 40(11): 2105-2114.
LI Y, DU Y P, FU Y D, ZHAI H. Physiological responses of waterlogging on different rootstock combinations of cabernet sauvignon grape. Acta Horticulturae Sinica, 2013, 40(11): 2105-2114. (in Chinese)
[27] BHUSAL N, KIM H S, HAN S G, YOON T M. Photosynthetic traits and plant-water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environmental and Experimental Botany, 2020, 176:104111.
doi: 10.1016/j.envexpbot.2020.104111
[28] SONG J Y, LI J Q, SUN J, HU T, WU A T, LIU S T, WANG W J, MA D T, ZHAO M H. Genome-wide association mapping for cold tolerance in a core collection of rice (Oryza sativa L.) landraces by using high-density single nucleotide polymorphism markers from specific-locus amplified fragment sequencing. Frontiers in Plant Science, 2018, 9:875.
doi: 10.3389/fpls.2018.00875
[29] 贾秀苹, 卯旭辉, 岳云, 陈炳东, 梁根生, 王兴珍. 利用BSA-Seq方法鉴定向日葵耐盐候选基因. 中国油料作物学报, 2018, 40(6): 777-784.
JIA X P, MAO X H, YUE Y, CHEN B D, LIANG G S, WANG X Z. Identification of major salt-tolerant genes via BSA-Seq method in sunflower. Chinese Journal of Oil Crop Sciences, 2018, 40(6): 777-784. (in Chinese)
[30] HATTORI Y, NAGAI K, FURUKAWA S, SONG X J, KAWANO R, SAKAKIBARA H, WU J Z, MATSUMOTO T, YOSHIMURA A, KITANO H, MATSUOKA M, MORI H, ASHIKARI M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460(7258): 1026-1030.
doi: 10.1038/nature08258
[31] FUKAO T, XU K N, RONALD P C, BAILEY-SERRES J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. The Plant Cell, 2006, 18(8): 2021-2034.
doi: 10.1105/tpc.106.043000
[32] LI C Y, BAI T H, MA F W, HAN M Y. Hypoxia tolerance and adaption of anaerobic respiration to hypoxia stress in two Malus species. Scientia Horticulturae, 2010, 124:274-279.
doi: 10.1016/j.scienta.2009.12.029
[33] CARUSO P, BALDONI E, MATTANA M, PIETRO PAOLO D, GENGA A, CORAGGIO I, RUSSO G, PICCHI V, REFORGIATO RECUPERO G, LOCATELLI F. Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 109(2): 327-339.
doi: 10.1007/s11240-011-0098-1
[34] TOUGOU M, HASHIGUCHI A, YUKAWA K, NANJO Y, HIRAGA S, NAKAMURA T, NISHIZAWA K, KOMATSU S. Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnology, 2012, 29(3): 301-305.
doi: 10.5511/plantbiotechnology.12.0301a
[1] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[2] LIN YuNong, WANG ZeZhao, CHEN Yan, ZHU Bo, GAO Xue, ZHANG LuPei, GAO HuiJiang, XU LingYang, CAI WenTao, LI YingHao, LI JunYa, GAO ShuXin. Comparison of Imputation Accuracy for Different Low-Density SNP Selection Strategies [J]. Scientia Agricultura Sinica, 2023, 56(8): 1585-1593.
[3] SUN Zheng, LAI ZhongXiao, ZHAO XiaoMin, JIANG ZhiLi, CHEN GuangYou, MA ZhiQing. Application Evaluation of the Whole-Process Biological Management Scheme for Apple Pests in the Weibei Dry Highland [J]. Scientia Agricultura Sinica, 2023, 56(6): 1102-1112.
[4] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[5] ZHENG WenYan, CHANG YuanSheng, HE Ping, HE XiaoWen, WANG Sen, GAO WenSheng, LI LinGuang, WANG HaiBo. Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1 [J]. Scientia Agricultura Sinica, 2023, 56(5): 935-950.
[6] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[7] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[8] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[9] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[10] LIU SuNing, BIE HangLing, WANG JunXiu, CHEN XueJia, WANG XinWei, WANG LiRong, CAO Ke. Background Selection and Comparison of Marker Superiority and Inferiority of Aphid-Resistant Seedlings in an Interspecific Cross Peach Population [J]. Scientia Agricultura Sinica, 2023, 56(15): 2995-3005.
[11] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[12] GAO XinPei, ZHAO Jun, LIU BoFan, GUO Yi, KANG ZhenSheng, ZHAN GangMing. Population Genetic Analysis of Puccinia striiformis tritici in Main Winter-Increasing Areas Based on Virulent Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2023, 56(14): 2629-2642.
[13] TONG Xiong, LUO Wei, MIN Li, ZHANG ZhiFei, MA XinYan, LUO ChengLong, CHEN WeiDong, XU Bin, LI DaGang. Population Structure and Genetic Diversity of Lufeng Cattle and Leiqiong Cattle Based on Genome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(14): 2798-2811.
[14] LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573.
[15] YAO QiFu, CHEN HuangXin, ZHOU JieGuang, MA RuiYing, DENG Liang, TAN ChenXinYu, SONG JingHan, LÜ JiJuan, MA Jian. QTL Identification and Genetic Analysis of Plant Height in Wheat Based on 16K SNP Array [J]. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!