Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3932-3944.doi: 10.3864/j.issn.0578-1752.2021.18.012
• HORTICULTURE • Previous Articles Next Articles
SONG ChunHui1(),CHEN XiaoFei1(),WANG MeiGe1,ZHENG XianBo1,SONG ShangWei1,JIAO Jian1,WANG MiaoMiao1,MA FengWang2,BAI TuanHui1()
[1] |
CORNELIOUS B, CHEN P, CHEN Y, DE LEON N, SHANNON J G, WANG D. Identification of QTLs underlying water-logging tolerance in soybean. Molecular Breeding, 2005, 16(2): 103-112.
doi: 10.1007/s11032-005-5911-2 |
[2] |
ZHANG Y J, SONG X Z, YANG G Z, LI Z H, LU H Q, KONG X Q, ENEJI A E, DONG H Z. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crop Research, 2015, 179:164-172
doi: 10.1016/j.fcr.2015.05.001 |
[3] | 生利霞, 王倩, 孟祥毅, 冯立国. 植物耐涝分子机理研究进展. 分子植物育种, 2017, 15(7): 2823-2828. |
SHENG L X, WANG Q, MENG X Y, FENG L G. Research progress on molecular mechanism of waterlogging tolerance in plants. Molecular Plant Breeding, 2017, 15(7): 2823-2828. (in Chinese) | |
[4] |
BAILEY-SERRES J, CHANG R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of Botany, 2005, 96(4): 507-518.
doi: 10.1093/aob/mci206 |
[5] |
SALVATIERRA A, PIMENTEL P, ALMADA R, HINRICHSEN P. Exogenous GABA application transiently improves the tolerance to root hypoxia on a sensitive genotype of Prunus rootstock. Environmental and Experimental Botany, 2016, 125:52-66.
doi: 10.1016/j.envexpbot.2016.01.009 |
[6] |
ZHOU W G, CHEN F, MENG Y J, CHANDRASEKARAN U, LUO X F, YANG W Y, SHU K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry, 2020, 148:228-236.
doi: 10.1016/j.plaphy.2020.01.020 |
[7] |
BAI T H, LI C Y, MA F W, FENG F J, SHU H R. Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant and Soil, 2010, 327(1): 95-105.
doi: 10.1007/s11104-009-0034-x |
[8] |
OLIVEIRA H C, FRESCHI L, SODEK L. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiology and Biochemistry, 2013, 66:141-149.
doi: 10.1016/j.plaphy.2013.02.015 |
[9] | 魏国芹, 曹辉, 孙玉刚, 邓波, 张玮玮, 杨洪强. 硫化氢对淹水平邑甜茶根系形态构型、叶片活性氧和光合特性的影响. 应用生态学报, 2017, 28(10): 3267-3273. |
WEI G Q, CAO H, SUN Y G, DENG B, ZHANG W W, YANG H Q. Effects of hydrogen sulfide on root architecture, leaf reactive oxygen and photosynthetic characteristics of Malus hupehensis under waterlogging. Chinese Journal of Applied Ecology, 2017, 28(10): 3267-3273. (in Chinese) | |
[10] |
XU K N, XU X, FUKAO T, CANLAS P, MAGHIRANG- RODRIGUEZ R, HEUER S, ISMAIL A M, BAILEY-SERRES J, RONALD P C, MACKILL D J. Sub1A is an ethylene-response- factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442(7103): 705-708.
doi: 10.1038/nature04920 |
[11] |
SEPTININGSIH E M, SANCHEZ D L, SINGH N, SENDON P M D, PAMPLONA A M, HEUER S, MACKILL D J. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theoretical and Applied Genetics, 2012, 124(5): 867-874.
doi: 10.1007/s00122-011-1751-0 |
[12] |
MANO Y, OMORI F, KINDIGER B, TAKAHASHI H. A linkage map of maize × teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Molecular Breeding, 2008, 21(3): 327-337.
doi: 10.1007/s11032-007-9132-8 |
[13] |
XU X W, JI J, XU Q, QI X H, WENG Y Q, CHEN X H. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. The Plant Journal, 2018, 93(5): 917-930.
doi: 10.1111/tpj.2018.93.issue-5 |
[14] |
DONG Z M, CHEN L, LI Z, LIU N X, ZHANG S C, LIU J, LIU B Q. Identification and molecular mapping of the semi-dwarf locus (sdf-1) in soybean by SLAF-seq method. Euphytica, 2020, 216(6): 103.
doi: 10.1007/s10681-020-02633-7 |
[15] |
WEI Q Z, WANG W H, HU T H, HU H J, WANG J L, BAO C L. Construction of a SNP-based genetic map using SLAF-Seq and QTL analysis of morphological traits in eggplant. Frontiers in Genetics, 2020, 11:178
doi: 10.3389/fgene.2020.00178 |
[16] |
ZHANG S Z, HU X H, MIAO H R, CHU Y, CUI F G, YANG W Q, WANG C M, SHEN Y, XU T T, ZHAO L B, ZHANG J C, CHEN J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biology, 2019, 19(1): 537.
doi: 10.1186/s12870-019-2164-5 |
[17] | 白团辉, 马锋旺, 李翠英, 束怀瑞, 韩明玉, 王昆. 苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析. 中国农业科学, 2008, 41(12): 4140-4148. |
BAI T H, MA F W, LI C Y, SHU H R, HAN M Y, WANG K. Physiological responses and analysis of tolerance of apple rootstocks to root-zone hypoxia stress. Scientia Agricultura Sinica, 2008, 41(12): 4140-4148. (in Chinese) | |
[18] |
BAI T H, LI C Y, LI C, LIANG D, MA F W. Contrasting hypoxia tolerance and adaptation in Malus species is linked to differences in stomatal behavior and photosynthesis. Physiologia Plantarum, 2013, 147(4): 514-523.
doi: 10.1111/ppl.2013.147.issue-4 |
[19] |
MENG D, LI Y Y, BAI Y, LI M J, CHENG L L. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress. Plant Physiology and Biochemistry, 2016, 103:71-83.
doi: 10.1016/j.plaphy.2016.02.006 |
[20] |
SUN X W, LIU D Y, ZHANG X F, LI W B, LIU H, HONG W G, JIANG C B, GUAN N, MA C X, ZENG H P, XU C H, SONG J, HUANG L, WANG C M, SHI J J, WANG R, ZHENG X H, LU C Y, WANG X W, ZHENG H K. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high- throughput sequencing. PLoS ONE, 2013, 8(3): e58700.
doi: 10.1371/journal.pone.0058700 |
[21] |
HILL J T, DEMAREST B L, BISGROVE B W, GORSI B, SU Y C, YOST H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 2013, 23(4): 687-697.
doi: 10.1101/gr.146936.112 |
[22] |
HIROKI T, AKIRA A, KENTARO Y, SHUNICHI K, SATOSHI N, CHIKAKO M, AIKO U, HIROE U, MULUNEH T, SHOHEI T, HIDEKI I, CANO LILIANA M, SOPHIEN K, RYOHEI T. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.
doi: 10.1111/tpj.2013.74.issue-1 |
[23] | 米银法, 马锋旺, 马小卫. 根际低氧对不同抗性猕猴桃幼苗抗氧化系统的影响. 中国农业科学, 2008, 41(12): 4328-4335. |
MI Y F, MA F W, MA X W. Effect of root-zone hypoxia stress on anti-oxidative system of Chinese gooseberry seedlings with different resistances. Scientia Agricultura Sinica, 2008, 41(12): 4328-4335. (in Chinese) | |
[24] | 马瑞娟, 张斌斌, 蔡志翔, 沈志军, 俞明亮. 不同桃砧木品种对淹水的光合响应及其耐涝性评价. 园艺学报, 2013, 40(3): 409-416. |
MA R J, ZHANG B B, CAI Z X, SHEN Z J, YU M L. Evaluation of peach rootstock waterlogging tolerance based on the responses of the photosynthetic indexes to continuous submergence stress. Acta Horticulturae Sinica, 2013, 40(3): 409-416. (in Chinese) | |
[25] |
ARBONA V, GÓMEZ-CADENAS A. Hormonal modulation of Citrus responses to flooding. Journal of Plant Growth Regulation, 2008, 27(3): 241.
doi: 10.1007/s00344-008-9051-x |
[26] | 李艳, 杜远鹏, 付艳东, 翟衡. 不同砧木嫁接的赤霞珠葡萄对淹水的生理响应. 园艺学报, 2013, 40(11): 2105-2114. |
LI Y, DU Y P, FU Y D, ZHAI H. Physiological responses of waterlogging on different rootstock combinations of cabernet sauvignon grape. Acta Horticulturae Sinica, 2013, 40(11): 2105-2114. (in Chinese) | |
[27] |
BHUSAL N, KIM H S, HAN S G, YOON T M. Photosynthetic traits and plant-water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environmental and Experimental Botany, 2020, 176:104111.
doi: 10.1016/j.envexpbot.2020.104111 |
[28] |
SONG J Y, LI J Q, SUN J, HU T, WU A T, LIU S T, WANG W J, MA D T, ZHAO M H. Genome-wide association mapping for cold tolerance in a core collection of rice (Oryza sativa L.) landraces by using high-density single nucleotide polymorphism markers from specific-locus amplified fragment sequencing. Frontiers in Plant Science, 2018, 9:875.
doi: 10.3389/fpls.2018.00875 |
[29] | 贾秀苹, 卯旭辉, 岳云, 陈炳东, 梁根生, 王兴珍. 利用BSA-Seq方法鉴定向日葵耐盐候选基因. 中国油料作物学报, 2018, 40(6): 777-784. |
JIA X P, MAO X H, YUE Y, CHEN B D, LIANG G S, WANG X Z. Identification of major salt-tolerant genes via BSA-Seq method in sunflower. Chinese Journal of Oil Crop Sciences, 2018, 40(6): 777-784. (in Chinese) | |
[30] |
HATTORI Y, NAGAI K, FURUKAWA S, SONG X J, KAWANO R, SAKAKIBARA H, WU J Z, MATSUMOTO T, YOSHIMURA A, KITANO H, MATSUOKA M, MORI H, ASHIKARI M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460(7258): 1026-1030.
doi: 10.1038/nature08258 |
[31] |
FUKAO T, XU K N, RONALD P C, BAILEY-SERRES J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. The Plant Cell, 2006, 18(8): 2021-2034.
doi: 10.1105/tpc.106.043000 |
[32] |
LI C Y, BAI T H, MA F W, HAN M Y. Hypoxia tolerance and adaption of anaerobic respiration to hypoxia stress in two Malus species. Scientia Horticulturae, 2010, 124:274-279.
doi: 10.1016/j.scienta.2009.12.029 |
[33] |
CARUSO P, BALDONI E, MATTANA M, PIETRO PAOLO D, GENGA A, CORAGGIO I, RUSSO G, PICCHI V, REFORGIATO RECUPERO G, LOCATELLI F. Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 109(2): 327-339.
doi: 10.1007/s11240-011-0098-1 |
[34] |
TOUGOU M, HASHIGUCHI A, YUKAWA K, NANJO Y, HIRAGA S, NAKAMURA T, NISHIZAWA K, KOMATSU S. Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnology, 2012, 29(3): 301-305.
doi: 10.5511/plantbiotechnology.12.0301a |
[1] | WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573. |
[2] | LIN YuNong, WANG ZeZhao, CHEN Yan, ZHU Bo, GAO Xue, ZHANG LuPei, GAO HuiJiang, XU LingYang, CAI WenTao, LI YingHao, LI JunYa, GAO ShuXin. Comparison of Imputation Accuracy for Different Low-Density SNP Selection Strategies [J]. Scientia Agricultura Sinica, 2023, 56(8): 1585-1593. |
[3] | SUN Zheng, LAI ZhongXiao, ZHAO XiaoMin, JIANG ZhiLi, CHEN GuangYou, MA ZhiQing. Application Evaluation of the Whole-Process Biological Management Scheme for Apple Pests in the Weibei Dry Highland [J]. Scientia Agricultura Sinica, 2023, 56(6): 1102-1112. |
[4] | WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820. |
[5] | ZHENG WenYan, CHANG YuanSheng, HE Ping, HE XiaoWen, WANG Sen, GAO WenSheng, LI LinGuang, WANG HaiBo. Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1 [J]. Scientia Agricultura Sinica, 2023, 56(5): 935-950. |
[6] | WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740. |
[7] | JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598. |
[8] | SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586. |
[9] | LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235. |
[10] | LIU SuNing, BIE HangLing, WANG JunXiu, CHEN XueJia, WANG XinWei, WANG LiRong, CAO Ke. Background Selection and Comparison of Marker Superiority and Inferiority of Aphid-Resistant Seedlings in an Interspecific Cross Peach Population [J]. Scientia Agricultura Sinica, 2023, 56(15): 2995-3005. |
[11] | FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019. |
[12] | GAO XinPei, ZHAO Jun, LIU BoFan, GUO Yi, KANG ZhenSheng, ZHAN GangMing. Population Genetic Analysis of Puccinia striiformis tritici in Main Winter-Increasing Areas Based on Virulent Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2023, 56(14): 2629-2642. |
[13] | TONG Xiong, LUO Wei, MIN Li, ZHANG ZhiFei, MA XinYan, LUO ChengLong, CHEN WeiDong, XU Bin, LI DaGang. Population Structure and Genetic Diversity of Lufeng Cattle and Leiqiong Cattle Based on Genome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(14): 2798-2811. |
[14] | LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573. |
[15] | YAO QiFu, CHEN HuangXin, ZHOU JieGuang, MA RuiYing, DENG Liang, TAN ChenXinYu, SONG JingHan, LÜ JiJuan, MA Jian. QTL Identification and Genetic Analysis of Plant Height in Wheat Based on 16K SNP Array [J]. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248. |
|