Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2273-2286.doi: 10.3864/j.issn.0578-1752.2021.11.003
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG LinLin(),ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing(
),DIAO XianMin(
)
[1] | TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):20260-20264. |
[2] | BARTON L, NEWSOME S D, CHEN F H, WANG H, GUILDERSON T P, BETTINGER R L. Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(14):5523-5528. |
[3] |
JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B G, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013,45(8):957-961.
doi: 10.1038/ng.2673 |
[4] |
BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JENKINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X W, WU X M, MITROS T, TRIPLETT J, YANG X H, YE C Y, MAURO-HERRERA M, WANG L, LI P H, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30(6):555-561.
doi: 10.1038/nbt.2196 |
[5] |
ZHANG G Y, LIU X, QUAN Z W, CHENG S F, XU X, PAN S K, XIE M, ZENG P, YUE Z, WANG W L, TAO Y, BIAN C, HAN C L, XIA Q J, PENG X H, CAO R, YANG X H, ZHAN D L, HU J C, ZHANG Y X, LI H N, LI H, LI N, WANG J Y, WANG C C, WANG R Y, GUO T, CAI Y J, LIU C Z, XIANG H T, SHI Q X, HUANG P, CHEN Q C, LI Y R, WANG J, ZHAO Z H, WANG J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012,30(6):549-554.
doi: 10.1038/nbt.2195 |
[6] |
YANG Z R, ZHANG H S, LI X K, SHEN H M, GAO J H, HOU S Y, ZHANG B, MAYES S, BENNETT M, MA J X, WU C Y, SUI Y, HAN Y H, WANG X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants, 2020,6(9):1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[7] |
COLASANTI J, CONEVA V. Mechanisms of floral induction in grasses: Something borrowed, something new. Plant Physiology, 2009,149(1):56-62.
doi: 10.1104/pp.108.130500 |
[8] |
ANDRÉS F, COUPLAND G. The genetic basis of flowering responses to seasonal cues. Nature Review Genetics, 2012,13(9):627-639.
doi: 10.1038/nrg3291 |
[9] |
RIESEBERG L H, WILLIS J H. Plant speciation. Science, 2007,317(5840):910-914.
doi: 10.1126/science.1137729 |
[10] |
STRAYER C, OYAMA T, SCHULTZ T F, RAMAN R, SOMERS D E, MÁS P, PANDA S, KREPS J A, KAY S A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 2000,289(5480):768-771.
doi: 10.1126/science.289.5480.768 |
[11] |
COCKRAM J, THIEL T, STEUERNAGEL B, STEIN N, TAUDIEN S, BAILEY P C, O'SULLIVAN D M. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLoS ONE, 2012,7(9):e45307.
doi: 10.1371/journal.pone.0045307 |
[12] |
WENKEL S, TURCK F, SINGER K, GISSOT L, LE GOURRIEREC J L, SAMACH A, COUPLAND G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. The Plant Cell, 2006,18(11):2971-2984.
doi: 10.1105/tpc.106.043299 |
[13] | GENDRON J M, PRUNEDA-PAZ J L, DOHERTY C J, GROSS A M, KANG S E, KAY S A. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(8):3167-3172. |
[14] |
MAKINO S, MATSUSHIKA A, KOJIMA M, YAMASHINO T, MIZUNO T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1- overexpressing plants. Plant Cell Physiology, 2002,43(1):58-69.
doi: 10.1093/pcp/pcf005 |
[15] |
SHIM J S, KUBOTA A, IMAIZUMI T. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology, 2017,173(1):5-15.
doi: 10.1104/pp.16.01327 |
[16] |
KOO B H, YOO S C, PARK J W, KWON C T, LEE B D, AN G, ZHANG Z, LI J, LI Z, PAEK N C. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Molecular Plant, 2013,6(6):1877-1888.
doi: 10.1093/mp/sst088 |
[17] |
SALOMÉP A, MCCLUNG C R. The Arabidopsis thaliana clock. Journal of Biological Rhythms, 2004,19(5):425-435.
doi: 10.1177/0748730404268112 |
[18] |
MÁS P. Circadian clock signaling in Arabidopsis thaliana: From gene expression to physiology and development. The International Journal of Developmental Biology, 2005,49(5/6):491-500.
doi: 10.1387/ijdb.041968pm |
[19] |
GARDNER M J, HUBBARD K E, HOTTA C T, DODD A N, WEBB A A. How plants tell the time. Biochemical Journal, 2006,397(1):15-24.
doi: 10.1042/BJ20060484 |
[20] |
ALABADÍ D, OYAMA T, YANOVSKY M J, HARMON F G, MÁS P, KAY S A. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 2001,293(5531):880-883.
doi: 10.1126/science.1061320 |
[21] |
PRUNEDA-PAZ J L, BRETON G, PARA A, KAY S A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science, 2009,323(5920):1481-1485.
doi: 10.1126/science.1167206 |
[22] | 陆平. 谷子种质资源描述规范和数据标准2-9. 北京: 中国农业出版社, 2006. |
LU P. Description Specification and Data Standard of Foxtail Millet Germplasm Resources 2-9. Beijing: China Agriculture Press, 2006. (in Chinese) | |
[23] | TURNER S D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv, 2014, https://doi.org/10.1101/005165. |
[24] |
YANG A, DAI X Y, ZHANG W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012,63(7):2541-2556.
doi: 10.1093/jxb/err431 |
[25] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 |
[26] | DOYLE J. DNA protocols for plants-CTAB total DNA isolation. Molecular Techniques in Taxonomy, 1991: 283-293. |
[27] |
LIBRADO P, ROZAS J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009,25(11):1451-1452.
doi: 10.1093/bioinformatics/btp187 |
[28] | 刁现民, 程汝宏. 十五年区试数据分析展示谷子糜子育种现状. 中国农业科学, 2017,50(23):4469-4474. |
DIAO X M, CHENG R H. Fifteen-year regional trial data analysis shows the current situation of millet and millet breeding. Scientia Agricultura Sinica, 2017,50(23):4469-4474. (in Chinese) | |
[29] |
YANO M, KATAYOSE Y, ASHIKARI M, YAMANOUCHI U, MONNA L, FUSE T, BABA T, YAMAMOTO K, UMEHARA Y, NAGAMURA Y, SASAKI T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000,12(12):2473-2484.
doi: 10.1105/tpc.12.12.2473 |
[30] |
HAYAMA R, YOKOI S, TAMAKI S, YANO M, SHIMAMOTO K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003,422(6933):719-722.
doi: 10.1038/nature01549 |
[31] |
XUE W Y, XING Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008,40(6):761-767.
doi: 10.1038/ng.143 |
[32] |
NEMOTO Y, NONOUE Y, YANO M, IZAWA T. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. The Plant Journal, 2016,86(3):221-233.
doi: 10.1111/tpj.2016.86.issue-3 |
[33] |
DU A, TIAN W, WEI M H, YAN W, HE H, ZHOU D, HUANG X, LI S G, OUYANG X H. The DTH8-Hd1 module mediates day-length- dependent regulation of rice flowering. Molecular Plant, 2017,10(7):948-961.
doi: 10.1016/j.molp.2017.05.006 |
[34] |
FUJINO K, YAMANOUCHI U, NONOUE Y, OBARA M, YANO M. Switching genetic effects of the flowering time gene Hd1 in LD conditions by Ghd7 and OsPRR37 in rice. Breeding Science, 2019,69(1):127-132.
doi: 10.1270/jsbbs.18060 |
[35] |
ZHANG Z Y, ZHANG B, QI F X, WU H, LI Z X, XING Y Z. Hd1 function conversion in regulating heading is dependent on gene combinations of Ghd7, Ghd8, and Ghd7.1 under long-day conditions in rice. Molecular Breeding, 2019,39(92):1-12.
doi: 10.1007/s11032-018-0907-x |
[1] | HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538. |
[2] | LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483. |
[3] | BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628. |
[4] | CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081. |
[5] | LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256. |
[6] | MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25. |
[7] | ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964. |
[8] | WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260. |
[9] | YaFei ZHANG,Jie PENG,YanSong ZHU,ShengNan YANG,Xu WANG,WanTong ZHAO,Dong JIANG. Genome Wide Identification of CCD Gene Family in Citrus and Effect of CcCCD4a on the Color of Citrus Flesh [J]. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889. |
[10] | GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526. |
[11] | ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213. |
[12] | CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293. |
[13] | XU Yunbi,YANG QuanNü,ZHENG HongJian,XU YanFen,SANG ZhiQin,GUO ZiFeng,PENG Hai,ZHANG Cong,LAN HaoFa,WANG YunBo,WU KunSheng,TAO JiaJun,ZHANG JiaNan. Genotyping by Target Sequencing (GBTS) and Its Applications [J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. |
[14] | QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218. |
[15] | HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132. |
|