Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3613-3628.doi: 10.3864/j.issn.0578-1752.2022.18.011
• HORTICULTURE • Previous Articles Next Articles
BaoHua CHU(),FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN()
[1] |
寿园园, 李春敏, 赵永波, 陈东玫, 张新忠, 杨国慧. 苹果早期落 叶病的发生·防治及相关研究进展. 安徽农业科学, 2009, 37(20): 9519-9521. doi: 10.13989/j.cnki.0517-6611.2009.20.104.
doi: 10.13989/j.cnki.0517-6611.2009.20.104 |
SHOU Y Y, LI C M, ZHAO Y B, CHEN D M, ZHANG X Z, YANG G H. Occurrence, control and research development of the apple early stage leaf-cast. Journal of Anhui Agricultural Sciences, 2009, 37(20): 9519-9521. doi: 10.13989/j.cnki.0517-6611.2009.20.104. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2009.20.104 |
|
[2] |
ZHANG C X, TIAN Y, CONG P H. Proteome analysis of pathogen-responsive proteins from apple leaves induced by the Alternaria blotch Alternaria alternata. PLoS ONE, 2015, 10(6): e0122233. doi: 10.1371/journal.pone.0122233.
doi: 10.1371/journal.pone.0122233 |
[3] | 郑科. 苹果斑点落叶病的防治方法. 果农之友, 2020(5): 28. |
ZHENG K. Prevention and control method of apple speckled deciduous disease. Fruit Growers’ Friend, 2020(5): 28. (in Chinese) | |
[4] |
赵国康, 李焰, 张树武, 徐秉良, 刘佳. 5种植物源农药对苹果斑点落叶病的防效评价. 中国果树, 2020(5): 46-49. doi: 10.16626/j.cnki.issn1000-8047.2020.05.008.
doi: 10.16626/j.cnki.issn1000-8047.2020.05.008 |
ZHAO G K, LI Y, ZHANG S W, XU B L, LIU J. Evaluation the control effects of five botanical fungicides on apple Alternaria leaf spot (Alternaria mali). China Fruits, 2020(5): 46-49. doi: 10.16626/j.cnki.issn1000-8047.2020.05.008. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2020.05.008 |
|
[5] | 郝丽霞, 张黎辉, 李畅, 刘希玲, 马俊欢. 38%唑醚∙戊唑醇悬浮剂对苹果树斑点落叶病的田间药效试验. 农药科学与管理, 2020, 41(3): 48-51. |
HAO L X, ZHANG L H, LI C, LIU X L, MA J H. Study on the control effect of pyraclostrobin + tebuconazole 38% SC against Myzus persicae. Pesticide Science and Administration, 2020, 41(3): 48-51. (in Chinese) | |
[6] |
侯珲, 张恒涛, 周增强, 王丽, 阎振立, 王生荣. 苹果种质资源枝干轮纹病抗性评价. 园艺学报, 2017, 44(8): 1559-1568. doi: 10.16420/j.issn.0513-353x.2017-0286.
doi: 10.16420/j.issn.0513-353x.2017-0286 |
HOU H, ZHANG H T, ZHOU Z Q, WANG L, YAN Z L, WANG S R. Evaluation of resistance to apple ring rot in Malus germplasms. Acta Horticulturae Sinica, 2017, 44(8): 1559-1568. doi: 10.16420/j.issn.0513-353x.2017-0286. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2017-0286 |
|
[7] |
张楠, 冯浩, 宋琳琳, 伏波, 高小宁, 黄丽丽. 苹果种质资源对苹果树腐烂病的抗性评价. 中国果树, 2019(3): 74-76, 80. doi: 10.16626/j.cnki.issn1000-8047.2019.03.018.
doi: 10.16626/j.cnki.issn1000-8047.2019.03.018 |
ZHANG N, FENG H, SONG L L, FU B, GAO X N, HUANG L L. Evaluation of resistance of apple germplasm resources to apple canker (Valsa mali). China Fruits, 2019(3): 74-76, 80. doi: 10.16626/j.cnki.issn1000-8047.2019.03.018. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2019.03.018 |
|
[8] |
YIN L H, WANG P, LI M J, KE X W, LI C Y, LIANG D, WU S, MA X L, LI C, ZOU Y J, MA F W. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. Journal of Pineal Research, 2013, 54(4): 426-434. doi: 10.1111/jpi.12038.
doi: 10.1111/jpi.12038 |
[9] |
张坤, 党志国, 赵磊, 赵政阳. 富士、秦冠苹果对早期落叶病抗性的遗传分析. 西北林学院学报, 2007, 22(4): 128-130, 138. doi: 10.3969/j.issn.1001-7461.2007.04.032.
doi: 10.3969/j.issn.1001-7461.2007.04.032 |
ZHANG K, DANG Z G, ZHAO L, ZHAO Z Y. Study on inheritance tendency of the resistance to apple early defoliation diseases using ‘Qinguan’ and ‘fuji’. Journal of Northwest Forestry University, 2007, 22(4): 128-130, 138. doi: 10.3969/j.issn.1001-7461.2007.04.032. (in Chinese)
doi: 10.3969/j.issn.1001-7461.2007.04.032 |
|
[10] |
何晓燕. 苹果斑点落叶病的综合防治技术. 果农之友, 2013(9): 18. doi: 10.3969/j.issn.1671-7759.2013.09.016.
doi: 10.3969/j.issn.1671-7759.2013.09.016 |
HE X Y. Integrated control technology of apple speckled deciduous disease. Fruit Growers' Friend, 2013(9): 18. doi: 10.3969/j.issn.1671-7759.2013.09.016. (in Chinese)
doi: 10.3969/j.issn.1671-7759.2013.09.016 |
|
[11] | 任生林, 吴才文, 经艳芬, 刘家勇. 全基因组关联分析在作物中的研究进展. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/ 46.1068.S.20210929.1449.008.html. |
REN S L, WU W C, JING Y F, LIU J Y. Research progress of genome-wide association analysis in crops. Molecular Plant Breeding, 2021. http://kns.cnki.net/kcms/detail/ 46.1068.S.20210929.1449.008.html. (in Chinese) | |
[12] |
PAULINO J F C, ALMEIDA C P, BUENO C J, SONG Q, FRITSCHE- NETO R, CARBONELL S A M, CHIORATO A F, BENCHIMOL- REIS L L. Genome-wide association study reveals genomic regions associated with Fusarium wilt resistance in common bean. Genes, 2021, 12(5): 765. doi: 10.3390/genes12050765.
doi: 10.3390/genes12050765 |
[13] |
YANG Y, AMO A, WEI D, CHAI Y M, ZHENG J, QIAO P F, CUI C G, LU S, CHEN L, HU Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 2021, 134(9): 3083-3109. doi: 10.1007/s00122-021-03881-4.
doi: 10.1007/s00122-021-03881-4 |
[14] |
FARNETI B, DI GUARDO M, KHOMENKO I, CAPPELLIN L, BIASIOLI F, VELASCO R, COSTA F. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture. Journal of Experimental Botany, 2017, 68(7): 1467-1478. doi: 10.1093/jxb/erx018.
doi: 10.1093/jxb/erx018 |
[15] |
LIAO L, ZHANG W H, ZHANG B, FANG T, WANG X F, CAI Y M, OGUTU C, GAO L, CHEN G, NIE X Q, XU J S, ZHANG Q Y, REN Y R, YU J Q, WANG C K, DENG C H, MA B, ZHENG B B, YOU C X, HU D G, ESPLEY R, WANG K L, YAO J L, ALLAN A C, KHAN A, KORBAN S S, FEI Z J, MING R, HAO Y J, LI L, HAN Y P. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 2021, 14(9): 1454-1471. doi: 10.1016/j.molp.2021.05.018.
doi: 10.1016/j.molp.2021.05.018 |
[16] |
杨锋, 刘晨, 姜丽娟, 管清美. 苹果属植物抗旱性评价. 西北农林科技大学学报(自然科学版). 2020, 48(8): 119-128. doi: 10.13207/j.cnki.jnwafu.2020.08.015.
doi: 10.13207/j.cnki.jnwafu.2020.08.015 |
YANG F, LIU C, JIANG L J, GUAN Q M. Comprehensive evaluation on drought tolerance of Malus. Journal of Northwest A&F University (National Science Edition), 2020, 48(8): 119-128. doi: 10.13207/j.cnki.jnwafu.2020.08.015. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2020.08.015 |
|
[17] |
ZHANG Q L, MA C, ZHANG Y, GU Z Y, LI W, DUAN X W, WANG S N, HAO L, WANG Y H, WANG S Y, LI T Z. A single-nucleotide polymorphism in the promoter of a hairpin RNA contributes to Alternaria alternata leaf spot resistance in apple (Malus×domestica). The Plant Cell, 2018, 30(8): 1924-1942. doi: 10.1105/tpc.18.00042.
doi: 10.1105/tpc.18.00042 |
[18] |
CHEN P X, LI Z X, ZHANG D H, SHEN W Y, XIE Y P, ZHANG J, JIANG L J, LI X W, SHEN X X, GENG D L, WANG L P, NIU C D, BAO C N, YAN M J, LI H Y, LI C Y, YAN Y, ZOU Y J, MICHELETTI D, KOOT E, MA F W, GUAN Q M. Insights into the effect of human civilization on Malus evolution and domestication. Plant Biotechnology Journal, 2021, 19(11): 2206-2220. doi: 10.1111/pbi.13648.
doi: 10.1111/pbi.13648 |
[19] |
LI X W, ZHOU S X, LIU Z Y, LU L Y, DANG H, LI H M, CHU B H, CHEN P X, MA Z Q, ZHAO S, LI Z X, NOCKER S V, MA F W, GUAN Q M. Fine-tuning of SUMOylation modulates drought tolerance of apple, Plant Biotechnology Journal, 2022, 20(5): 903-919. DOI: 10.1111/pbi.13772.
doi: 10.1111/pbi.13772 |
[20] |
NEMOTO K, SETO T, TAKAHASHI H, NOZAWA A, SEKI M, SHINOZAKI K, ENDO Y, SAWASAKI T. Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. Phytochemistry, 2011, 72(10): 1136-1144. doi: 10.1016/j.phytochem.2011.02.029.
doi: 10.1016/j.phytochem.2011.02.029 |
[21] |
ASCENCIO-IBÁÑEZ J T, SOZZANI R, LEE T J, CHU T M, WOLFINGER R D, CELLA R, HANLEY-BOWDOIN L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiology, 2008, 148(1): 436-454. doi: 10.1104/pp.108.121038.
doi: 10.1104/pp.108.121038 |
[22] |
WANG D, GUO Y H, WU C G, YANG G D, LI Y Y, ZHENG C C. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics, 2008, 9 (1): 44. doi: 10.1186/1471-2164-9-44.
doi: 10.1186/1471-2164-9-44 |
[23] |
DAI H Y, LI W R, HAN G F, YANG Y, MA Y, LI H, ZHANG Z H. Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae, 2013, 164: 202-208. doi: 10.1016/j.scienta.2013.09.033.
doi: 10.1016/j.scienta.2013.09.033 |
[24] |
常亚洲, 张会龙. 苹果早期落叶病的发生与防治. 中国果菜, 2011, 31(9): 31. doi: 10.3969/j.issn.1008-1038.2011.09.023.
doi: 10.3969/j.issn.1008-1038.2011.09.023 |
CHANG Y Z, ZHANG H L. Occurrence and control of apple deciduous disease at early stage. China Fruit and Vegetable, 2011, 31(9): 31. doi: 10.3969/j.issn.1008-1038.2011.09.023. (in Chinese)
doi: 10.3969/j.issn.1008-1038.2011.09.023 |
|
[25] | 郭小侠, 陈川, 唐周怀, 石晓红, 石勇强. 苹果早期落叶病的发生规律及生物防治. 陕西农业科学, 2004, 50(1): 62-64. |
GUO X X, CHEN C, TANG Z H, SHI X H, SHI Y Q. Occurrence regularity and biological control of apple deciduous disease in early stage. Shaanxi Journal of Agricultural Sciences, 2004, 50(1): 62-64. (in Chinese) | |
[26] | 李爽, 张军科, 党伟锋. 苹果遗传连锁图谱构建及抗早期落叶病的基因定位. 北方园艺, 2011(24): 145-149. |
LI S, ZHANG J K, DANG W F. Genetic mapping and localization of the early deciduous disease resistant gene in apple. Northern Horticulture, 2011(24): 145-149. (in Chinese) | |
[27] |
GENG D L, SHEN X X, XIE Y P, YANG Y S, BIAN R L, GAO Y Q, LI P M, SUN L Y, FENG H, MA F W, GUAN Q M. Regulation of phenylpropanoid biosynthesis by MdMYB88 and MdMYB124 contributes to pathogen and drought resistance in apple. Horticulture Research, 2020, 7: 102. doi: 10.1038/s41438-020-0324-2.
doi: 10.1038/s41438-020-0324-2 |
[28] |
李鹏, 王益权, 焦彩强, 石宗琳, 梁化学. 陕西渭北地区苹果主栽品种的品质分析与评价. 西北农业学报, 2016, 25(9): 1358-1364. doi: 10.7606/j.issn.1004-1389.2016.09.012.
doi: 10.7606/j.issn.1004-1389.2016.09.012 |
LI P, WANG Y Q, JIAO C Q, SHI Z L, LIANG H X. Fruit quality evaluation of three apple cultivars in north region of Weihe River in Shaanxi Province. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(9): 1358-1364. doi: 10.7606/j.issn.1004-1389.2016.09.012. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2016.09.012 |
|
[29] |
刘振西, 韩立新, 霍振芳, 郝贝贝, 武少杰. 苹果品种“秦阳”在三门峡的引种表现. 河南农业, 2019(1): 45. doi: 10.15904/j.cnki.hnny.2019.01.037.
doi: 10.15904/j.cnki.hnny.2019.01.037 |
LIU Z X, HAN L X, HUO Z F, HAO B B, WU S J. Introduction of apple variety ‘Qinyang’ in Sanmenxia. Agriculture of Henan, 2019(1): 45. doi: 10.15904/j.cnki.hnny.2019.01.037. (in Chinese)
doi: 10.15904/j.cnki.hnny.2019.01.037 |
|
[30] |
周建林, 刘国成, 秦嗣军. ‘寒富’苹果无袋栽培主要病虫害的防控. 北方果树, 2021(3): 33-35. doi: 10.16376/j.cnki.bfgs.2021.03.011.
doi: 10.16376/j.cnki.bfgs.2021.03.011 |
ZHOU J L, LIU G C, QIN S J. Prevention and control of main diseases and insect pests in bagless cultivation of ‘Hanfu’ apple. Northern Fruits, 2021(3): 33-35. doi: 10.16376/j.cnki.bfgs.2021.03.011. (in Chinese)
doi: 10.16376/j.cnki.bfgs.2021.03.011 |
|
[31] | 张秉宇, 刘志. 不同砧穗组合对“寒富”苹果果实品质的影响. 北方园艺, 2014(7): 30-32. |
ZHANG B Y, LIU Z. Effect of different scion-sotck combinations on the quality of ‘hanfu’ apple. Northern Horticulture, 2014(7): 30-32. (in Chinese) | |
[32] | 路新创, 陈新宝, 赵上利, 赵海文. 苹果中熟品种蜜脆引种体会. 西北园艺(果树), 2018(1): 33-34. |
LU X C, CHEN X B, ZHAO S L, ZHAO H W. Introduction of apple medium ripe variety honey crisp. Northwest Horticulture, 2018(1): 33-34. (in Chinese) | |
[33] |
CHEN Q M, DONG C H, SUN X H, ZHANG Y G, DAI H Y, BAI S H. Overexpression of an apple LysM-containing protein gene, MdCERK1-2, confers improved resistance to the pathogenic fungus, Alternaria alternata, in Nicotiana benthamiana. BMC Plant Biology, 2020, 20(1): 146. doi: 10.1186/s12870-020-02361-z.
doi: 10.1186/s12870-020-02361-z |
[34] |
HOU Y J, YU X Y, CHEN W P, ZHUANG W B, WANG S H, SUN C, CAO L F, ZHOU T T, QU S C. MdWRKY75e enhances resistance to Alternaria alternata in Malus domestica. Horticulture Research, 2021, 8: 225. doi: 10.1038/s41438-021-00701-0.
doi: 10.1038/s41438-021-00701-0 |
[35] |
ZHANG Q L, XU C R, WEI H Y, FAN W Q, LI T Z. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple. Horticulture Research, 2021, 8: 219. doi: 10.1038/s41438-021-00654-4.
doi: 10.1038/s41438-021-00654-4 |
[36] |
HUANG K, ZHONG Y, LI Y, ZHENG D, CHENG Z M. Genome-wide identification and expression analysis of the apple ASR gene family in response to Alternaria alternata f.sp. Mali Genome, 2016, 59(10): 866-878. doi: 10.1139/gen-2016-0043.
doi: 10.1139/gen-2016-0043 |
[37] |
JI S D, LIU Z H, WANG Y C. Trichoderma-induced ethylene responsive factor MsERF105 mediates defense responses in Malus sieversii. Frontiers in Plant Science, 2021, 12: 708010. doi: 10.3389/fpls.2021.708010.
doi: 10.3389/fpls.2021.708010 |
[38] |
ASCENCIO-IBÁÑEZ J T, SOZZANI R, LEE T J, CHU T M, WOLFINGER R D, CELLA R, HANLEY-BOWDOIN L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiology, 2008, 148(1): 436-454. doi: 10.1104/pp.108.121038.
doi: 10.1104/pp.108.121038 |
[39] |
严勇亮, 时晓磊, 张金波, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2021, 54(19): 4033-4047. doi: 10.3864/j.issn.0578-1752.2021.19.001.
doi: 10.3864/j.issn.0578-1752.2021.19.001 |
YAN Y L, SHI X L, ZHANG J B, GENG H W, XIAO J, LU Z F, NI Z F, CONG H. Genome-wide association study of grain quality related characteristics of spring wheat. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047. doi: 10.3864/j.issn.0578-1752.2021.19.001. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.19.001 |
|
[40] |
于海飞, 杜晓宇, 殷贵鸿, 邹少奎, 李楠, 张倩, 吕永军, 王丽娜, 王雅美, 韩玉林. 普通小麦抗倒伏相关性状的全基因组关联分析. 植物遗传资源学报, 2022, 23(1): 147-159. doi: 10.13430/j.cnki.pngr.20210731001.
doi: 10.13430/j.cnki.pngr.20210731001 |
YU H F, DU X Y, YIN G H, ZOU S K, LI N, ZHANG Q, LÜ Y J, WANG L N, WANG Y M, HAN Y L. Genome-wide association mapping for lodging-resistance related traits in common wheat (Triticum aestivum L.). Journal of Plant Genetic Resources, 2022, 23(1): 147-159. doi: 10.13430/j.cnki.pngr.20210731001. (in Chinese)
doi: 10.13430/j.cnki.pngr.20210731001 |
|
[41] |
TAHERI P, TARIGHI S. A survey on basal resistance and riboflavin- induced defense responses of sugar beet against Rhizoctonia solani. Journal of Plant Physiology, 2011, 168(10): 1114-1122. doi: 10.1016/j.jplph.2011.01.001.
doi: 10.1016/j.jplph.2011.01.001 |
[42] |
DENG B L, DENG S, SUN F, ZHANG S J, DONG H S. Down-regulation of free riboflavin content induces hydrogen peroxide and a pathogen defense in Arabidopsis. Plant Molecular Biology, 2011, 77(1/2): 185-201. doi: 10.1007/s11103-011-9802-0.
doi: 10.1007/s11103-011-9802-0 |
[43] |
ZHANG S, YANG X, SUN M W, SUN F, DENG S, DONG H S. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. Journal of Integrative Plant Biology, 2009, 51(2): 167-174. doi: 10.1111/j.1744-7909.2008.00763.x.
doi: 10.1111/j.1744-7909.2008.00763.x. |
[44] |
BRAUER E K, AHSAN N, DALE R, KATO N, COLUCCIO A E, PIÑEROS M A, KOCHIAN L V, THELEN J J, POPESCU S C. The raf-like kinase ILK1 and the high affinity k+ transporter HAK5 are required for innate immunity and abiotic stress response. Plant Physiology, 2016, 171(2): 1470-1484. doi: 10.1104/pp.16.00035.
doi: 10.1104/pp.16.00035 |
[45] |
AMORIM L L B, DA FONSECA DOS SANTOS R, NETO J P B, GUIDA-SANTOS M, CROVELLA S, BENKO-ISEPPON A M. Transcription factors involved in plant resistance to pathogens. Current Protein & Peptide Science, 2017, 18(4): 335-351. doi: 10.2174/1389203717666160619185308.
doi: 10.2174/1389203717666160619185308 |
[46] |
袁岐, 张春利, 赵婷婷, 许向阳. 植物中GATA转录因子的研究进展. 分子植物育种, 2017, 15(5): 1702-1707. doi: 10.13271/j.mpb.015.001702.
doi: 10.13271/j.mpb.015.001702 |
YUAN Q, ZHANG C L, ZHAO T T, XU X Y. Research advances of GATA transcription factor in plant. Molecular Plant Breeding, 2017, 15(5): 1702-1707. doi: 10.13271/j.mpb.015.001702. (in Chinese)
doi: 10.13271/j.mpb.015.001702 |
|
[47] |
MOON S J, PARK H J, KIM T H, KANG J W, LEE J Y, CHO J H, LEE J H, PARK D S, BYUN M O, KIM B G, SHIN D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS ONE, 2018, 13(11): e0206910. doi: 10.1371/journal.pone.0206910.
doi: 10.1371/journal.pone.0206910 |
[48] |
LIM C W, BAEK W, LIM S, HAN S W, LEE S C. Expression and functional roles of the pepper pathogen-induced bZIP transcription factor CabZIP2 in enhanced disease resistance to bacterial pathogen infection. Molecular Plant-Microbe Interactions, 2015, 28(7): 825-833. doi: 10.1094/mpmi-10-14-0313-r.
doi: 10.1094/mpmi-10-14-0313-r |
[49] |
LIU X, ZHU X L, WEI X N, LU C G, SHEN F D, ZHANG X W, ZHANG Z Y. The wheat LLM-domain-containing transcription factor TaGATA1 positively modulates host immune response to Rhizoctonia cerealis. Journal of Experimental Botany, 2019, 71(1): 344-355. doi: 10.1093/jxb/erz409.
doi: 10.1093/jxb/erz409 |
[50] |
ZHANG H, ZHANG Q, ZHAI H, GAO S P, YANG L, WANG Z, XU Y T, HUO J X, REN Z T, ZHAO N, WANG X F, LI J G, LIU Q C, HE S Z. IbBBX 24 promotes the jasmonic acid pathway and enhances Fusarium wilt resistance in sweet potato. The Plant Cell, 2020, 32(4): 1102-1123. doi: 10.1105/tpc.19.00641.
doi: 10.1105/tpc.19.00641 |
[1] | GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148. |
[2] | WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240. |
[3] | ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. |
[4] | DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130. |
[5] | CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081. |
[6] | LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154. |
[7] | FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751. |
[8] | ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167. |
[9] | ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522. |
[10] | WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260. |
[11] | ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286. |
[12] | LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571. |
[13] | Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308. |
[14] | ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954. |
[15] | YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770. |
|