Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1064-1081.doi: 10.3864/j.issn.0578-1752.2022.06.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage

ZHI Lei1(),ZHE Li1,SUN NanNan1,YANG Yang1,Dauren Serikbay1,2,JIA HanZhong3,HU YinGang1,CHEN Liang1()   

  1. 1College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
    2S. Seifullin Kazakh Agro Technical University, Nursultan 010011, Kazakhstan
    3College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2021-09-18 Accepted:2021-11-16 Online:2022-03-16 Published:2022-03-25
  • Contact: Liang CHEN E-mail:zl9711110@163.com;chenliang9117@qq.com

Abstract:

【Objective】With the advancement of industrialization, the pollution of arable land by heavy metals, especially lead, has become a worldwide problem. Wheat is an important food crop, and its safe cultivation is critical to maintaining food security. Screening wheat varieties with strong tolerance to lead, low lead accumulation and mining relevant regulatory genes or QTL regions would lay foundation for further elucidating the genetic mechanism of lead tolerance in wheat. 【Method】The tolerance to lead of 102 wheat varieties (advanced lines) were evaluated with a 140 mg·kg-1 lead nitrate solution at the seedling stage, by the weighted membership function value (D Value) of the lead tolerance coefficients of maximum root length, root biomass and growth rate under three replicates, combining with the 335 438 high-quality SNPs (single nucleotide polymorphism)markers by wheat 660K SNP chip, a genome-wide association study (GWAS) for lead tolerance in wheat was conducted, to mine the candidate genes for lead tolerance in wheat. 【Result】The lead among between wheat varieties (advanced lines) under different replicates showed rich variation, with the coefficient of variation of 44.8%-46.2%, and the correlation coefficient was between 0.87-0.97 (P<0.001). It was found that varieties with strong lead tolerance showed low lead accumulation characteristics. The genotyping results showed that the SNP polymorphic information content (PIC) was 0.28-0.32, the population structure analysis showed that these wheat materials could be divided into 7 subgroups; a total of 20 SNPs and 8 key chromosomal segments that were significantly associated with lead tolerance in wheat (P≤0.001) were detected by two GWAS methods respectively distributed on chromosomes 1B, 2A, 2D, 3A, 3B, 5A, and 7A. A single locus explains 15.33%-19.75% of the phenotypic variation, and 10 and 8 key chromosomal segments were detected in two and more environments. Analysis of candidate genes for significant and stable association sites and intervals revealed that the functions of the candidate genes were mainly related to transmembrane transport, protein modification and oxidative stress response, including 7 genes related to transporters, including TraesCS1B02G433800, TraesCS7A02G118800, TraesCS7A02G117900 etc. Two genes involved in ubiquitination and deubiquitination (TraesCS2A02G550900 and TraesCS7A02G477300), three genes encoding transmembrane proteins (TraesCS2D02G570500, TraesCS3B02G039900 and TraesCS3B02G466000), one gene related to peroxidase (TraesCS7A02G474200). 【Conclusion】Seven wheat materials with strong lead tolerance were screened, 20 SNPs in 8 candidate regions significantly related to lead tolerance in wheat were detected, and 13 candidate genes related to lead tolerance in wheat were finally screened.

Key words: wheat, lead tolerance, genome-wide association analysis, candidate gene analysis

Fig. 1

Phenotypic statistics of 102 wheat samples under lead stress A-C: Distribution of maximum root length, growth rate and root biomass of 102 wheat samples under normal treatment and lead stress; D: Inhibition of lead stress on wheat varieties (lines); E: Frequency distribution and correlation matrix of the weighted membership function value of the lead tolerance coefficient of the three indicators of maximum root length, root biomass, and growth rate, D1, D2, D3, average represent the average of repeat 1, repeat 2, repeat 3, and three repeats respectively. The same as below"

Table 1

Statistical analysis of D value of lead tolerance of 102 wheat varieties in 3 repeats"

重复
Repeat
均值±标准差
Mean±SD
变幅
Range
变异系数
CV
相关系数 Correlation coefficient 遗传力
H2 (%)
D1 D2 D3 D_Mean
D1 0.157±0.072 0.034—0.331 45.64 1 0.92*** 0.87*** 0.96*** 88.9
D2 0.162±0.073 0.022—0.303 44.80 1 0.90*** 0.97***
D3 0.185±0.085 0.415—0.185 46.20 1 0.96***
D_Mean 0.168±0.075 0.029—0.342 44.85 1

Table 2

Lead-tolerant germplasm screened among 102 wheat materials"

名称
Name
最大根长耐铅系数
Relative maximum root length
根生物量耐铅系数
Relative root biomass
生长速率耐铅系数
Relative growth rate
D
D value
西农794 Xinong 794 0.654 1.190 1.115 0.34
子麦603 Zimai 603 0.775 1.324 0.804 0.34
旱优98 Hanyou 98 0.406 1.280 1.464 0.33
洛旱7号Luohan 7 0.593 1.500 0.961 0.33
山农24号Shannong 24 0.499 1.809 0.861 0.32
中新78 Zhongxin 78 0.536 1.546 0.941 0.32
长6878 Chang 6878 0.648 1.676 0.541 0.30

Fig. 2

Analysis on the difference of lead content between tolerant and intolerant wheat varieties A: The lead content in the roots; B: The lead content in the above ground; a: Tolerant varieties; b: Intolerant varieties; *Indicates difference significant at the P<0.05 level"

Table 3

Distribution of SNP markers, length of physical maps and polymorphism of markers"

染色体
Chromosome
SNP数目
No. of markers
长度
Length (Mb)
SNP标记密度
Density of SNP
遗传多样性
Genetic diversity
多态信息含量
PIC
1A 17217 594.02 0.03 0.38 0.30
1B 21487 689.81 0.03 0.40 0.31
1D 8098 495.31 0.06 0.38 0.30
2A 25429 780.77 0.03 0.38 0.30
2B 24508 801.26 0.03 0.41 0.32
2D 8441 651.82 0.08 0.40 0.31
3A 14081 750.73 0.05 0.41 0.32
3B 43683 830.65 0.02 0.38 0.30
3D 5548 651.49 0.12 0.36 0.30
4A 14465 744.54 0.05 0.39 0.31
4B 12101 673.47 0.06 0.34 0.28
4D 2563 509.85 0.20 0.39 0.31
5A 19762 709.76 0.04 0.39 0.31
5B 30304 713.02 0.02 0.40 0.32
5D 5799 565.72 0.10 0.39 0.31
6A 15159 618.00 0.04 0.40 0.31
6B 21651 720.95 0.03 0.39 0.31
6D 5253 473.56 0.09 0.38 0.30
7A 18154 736.69 0.01 0.40 0.31
7B 14434 750.61 0.05 0.40 0.32
7D 7304 638.55 0.09 0.39 0.31
A基因组A genome 124264 4934.69 0.02 0.39 0.31
B基因组B genome 168168 5179.77 0.03 0.39 0.31
D基因组D genome 43006 3986.30 0.09 0.38 0.30
总计Total 335438 14100.76 0.05 0.39 0.31

Fig. 3

Population structure of 102 wheat varieties (lines) A: Estimation of ∆K value in population; B: Group structure"

Fig. 4

Cluster of the wheat varieties The numbers in the figure correspond to the test numbers of the experimental materials in the Electronic Schedule 1"

Fig. 5

Manhattan plot and Q-Q plot of Pb tolerance in difference models D-BLUE: BLUE repeat; D-BLUP: BLUP repeat"

Table 4

SNPs for lead tolerance in wheat detected by GWAS"

标记
Marker
染色体
Chromosome
物理位置
Position (bp)
环境
Environment
P
P value
贡献率
R2 (%)
AX-110941745 2A 756492456 D3 6.42E-04 19.39
AX-109277543 2A 757112239 D1/D2/BLUE 8.07E-04-8.22E-04 15.61—18.62
AX173574354 2D 635801642 D2/BLUE 9.63E-04 15.33
AX-110445716 2D 637991458 D1/D2/BLUE 5.55E-04-7.79E-04 18.76
AX-110075544 2D 638134169 D1/BLUE 7.88E-04 15.89
AX-109814994 2D 638145007 D1 9.92E-04 18.22
AX-108894641 2D 638369283 D1/D2/BLUE 3.56E-04-7.98E-04 18.69—18.75
AX-109811534 2D 639095540 D2/BLUE 8.24E-04 15.78
AX-108776369 2D 639356626 D1/D2/BLUE 3.93E-04-6.26E-04 16.36—17.57
AX-109916952 3A 516295407 D1 9.76E-04 18.26
AX-110613628 3A 516540778 D1/D2 6.61E-04-1.00E-03 18.11—19.27
AX-110631665 3B 20320827 D1/D2/D3 4.09E-04-7.54E-04 17.24—16.03
AX-174247868 3B 31796612 D1/D2 5.50E-04-8.29E-04 18.59—19.75
AX-109552715 3B 31814415 D1/D3 8.86E-04-9.51E-04 15.47—15.61
AX-109352323 3B 31815501 D1/D3 8.86E-04-9.51E-04 15.47—15.61
AX-109857484 5A 20357196 D3 2.22E-04 19.02
AX-111777618 5A 553255290 D3 7.80E-04 18.89
AX-110426494 5B 678333807 D1 8.95E-04 18.48
AX-109372076 7A 670816415 D1/D2/BLUE 3.70E-04-5.41E-04 16.71—17.72
AX-110625465 7A 671418037 D2/BLUE 8.55E-04 15.62

Table 5

Chromosomal regions for lead tolerance in wheat detected by FarmCPU"

区间
Region
染色体
Chr.
物理位置
Position (Mb)
环境
Environment
标记数目
No. of markers
P
P value
效应值
Effect
Pb_nwafu-1 1B 658.54—660.72 D1/D2/BLUP 5 4.32E-04—6.47E-04 -0.03—0.30
Pb_nwafu-2 2A 756.11—757.95 D1/D2/D3/BLUP 77 2.36E-05—9.88E-04 -0.04—0.04
Pb_nwafu-3 2D 637.99—639.36 D1/D2/D3/BLUP 29 2.36E-05—9.88E-04 -0.06—0.06
Pb_nwafu-4 3B 17.80—21.96 D1/D2/D3/BLUP 27 5.40E-05—9.40E-04 -0.06—0.06
Pb_nwafu-5 3B 708.94—717.31 D1/D2/D3/BLUP 38 2.65E-04—9.94E-04 -0.05—0.03
Pb_nwafu-6 5B 677.71—678.33 D1/D2/D3/BLUP 5 1.45E-04—8.92E-04 -0.03—0.04
Pb_nwafu-7 7A 669.73—671.42 D1/D2/D3/BLUP 15 5.81E-05—9.95E-04 -0.04—0.03
Pb_nwafu-8 7D 75.08—76.94 D1/D2/D3/BLUP 5 2.72E-04—9.09E-04 -0.04—0.04

Fig. 6

Phenotypic differences of lead tolerance D value between the two genotypes of 9 SNPs *: The difference is significant at P<0.05; **: The difference is extremely significant at P<0.01"

Table 6

Screening for candidate gene information"

位点&区间
Marker & Region
染色体
Chr.
物理位置
Position (bp)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
Pb_nwafu-1 1B 658491409 TraesCS1B02G433800 多药耐药ABC转运蛋白家族蛋白
Multidrug resistance ABC transporter family protein
Pb_nwafu-2 2A 757947993 TraesCS2A02G550900 组蛋白H2A去泛素酶Histone H2A deubiquitylase
Pb_nwafu-3 2D 637522624 TraesCS2D02G570500 跨膜蛋白Transmembrane protein
Pb_nwafu-4 3B 19263438 TraesCS3B02G039900 跨膜蛋白Transmembrane protein
Pb_nwafu-4 3B 20348050 TraesCS3B02G040900 金属耐受蛋白Metal tolerance protein
Pb_nwafu-5 3B 708516550 TraesCS3B02G466000 跨膜蛋白Transmembrane protein
Pb_nwafu-6 7A 669727531 TraesCS7A02G474200 过氧化物酶Peroxidase
Pb_nwafu-7 7A 670959602 TraesCS7A02G477300 泛素结合因子E4 Ubiquitin conjugation factor E4
Pb_nwafu-8 7A 76192150 TraesCS7A02G117900 ABC转运蛋白C家族蛋白ABC transporter C family protein
Pb_nwafu-8 7A 76486026 TraesCS7A02G118800 ABC转运因子ABC transporter
Pb_nwafu-8 7A 76498276 TraesCS7A02G118900 ABC转运因子ABC transporter
Pb_nwafu-8 7A 76938327 TraesCS7A02G119300 ABC转运因子ABC transporter
AX-108894641 2D 638143208 TraesCS2D02G572000 转运蛋白Transport protein

Fig. 7

Candidate gene analysis A: Phylogenetic tree analysis of candidate genes related to ATP binding cassette transporter and ABCC family of Arabidopsis and wheat; B: Conserved domain analysis of AtMTP3 and TraesCS3B02G040900"

[1] ZHAO F J, Ma Y B, ZHU Y G, TANG Z, McGrath S P. Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 2015,49(2):750-759.
doi: 10.1021/es5047099
[2] WILLIAMS P N, LEI M, SUN G X, HUANG Q, LU Y, DEACON C, MEHARG A A, ZHU Y G. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology, 2009,43(3):637-642.
doi: 10.1021/es802412r
[3] ZHUANG P, MCBRIDE M B, XIA H P, LI N Y, LIA Z A. Health risk from heavy metals via consumption of food crops in the vicinity of dabaoshan mine, south China. Science of the Total Environment, 2009,407(5):1551-1561.
doi: 10.1016/j.scitotenv.2008.10.061
[4] 徐长春, 熊炜, 郑戈, 林友华. “农业面源和重金属污染农田综合防治与修复技术研发”专项组织实施进展分析. 农业环境科学学报, 2017,36(7):1242-1246.
XU C C, XIONG W, ZHENG G, LIN Y H. Progress of the program for research and development on comprehensive prevention and remediation techniques for agricultural non-point source and heavy metal polluted croplands. Journal of Agro-Environment Science, 2017,36(7):1242-1246. (in Chinese)
[5] LUO S L, CALDERON U A, YU J H, LIAO W B, XIE J M, LÜ J, FENG Z, TANG Z Q. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant and Soil, 2020,449(1/2):1-10.
doi: 10.1007/s11104-020-04471-x
[6] RUFF H A, MARKOWITZ M E, BIJUR P E, ROSEN J F. Relationships among blood lead levels, iron deficiency, and cognitive development in two-year-old children. Environmental Health Perspectives, 1996,104(2):180-185.
[7] 张玉林. 资本的秩序与乡村居民铅中毒——关于河南省多个案例的分析. 江苏行政学院学报, 2017(3):67-76.
ZHANG Y L. Capital order and lead poisoning of rural residents— analysis of multiple cases in Henan province. Journal of Jiangsu Administration Institute, 2017(3):67-76. (in Chinese)
[8] 薛涛, 廖晓勇, 王凌青, 张扬珠. 镉污染农田不同水稻品种镉积累差异研究. 农业环境科学学报, 2019,38(8):1818-1826.
XUE T, LIAO X Y, WANG L Q, ZHANG Y Z. Cadmium accumulation in different rice cultivars from cadmium-polluted paddy fields. Journal of Agro-Environment Science, 2019,38(8):1818-1826. (in Chinese)
[9] 宋淑艳, 拜丽克孜·买提库尔班. 重金属镉、铅对小麦的影响及改良剂缓解效果研究进展专题综述. 天津农林科技, 2021(1):41-43.
SONG S Y, BERIKZI M. A review of the research progress on the effects of heavy metals cadmium and lead on wheat and the mitigation effects of improvers. Tianjin Agriculture and Forestry Science and Technology, 2021(1):41-43. (in Chinese)
[10] YAN A, WANG Y M, TAN S N, YUSOF M L M, GHOSH S, CHEN Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 2020,11:359.
doi: 10.3389/fpls.2020.00359
[11] JIANG L, WANG W, CHEN Z, GAO Q, XU Q, CAO H. A role for APX1 gene in lead tolerance in Arabidopsis thaliana. Plant Science, 2017,256:94-102.
doi: 10.1016/j.plantsci.2016.11.015
[12] KIM D Y, BOVET L, NOH E W, MARTINOIA E, LEE Y. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiology, 2006,140(3):922-932.
doi: 10.1104/pp.105.074146
[13] KIM D Y, BOVET L, MAESHIMA M, MARTINOIA E, LEE Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal, 2007,50(2):207-218.
doi: 10.1111/j.1365-313X.2007.03044.x
[14] XIAO S, GAO W, CHEN Q F, RAMALINGAM S, CHYE M L. Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. The Plant Journal, 2008,54(1):141-151.
doi: 10.1111/j.1365-313X.2008.03402.x
[15] ARAZI T, SUNKAR R, KAPLAN B, FROMM H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 1999,20(2):171-182.
doi: 10.1046/j.1365-313x.1999.00588.x
[16] SCHUURINK R C, SHARTZER S F, FATH A, JONES R L. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proceedings of the National Academy of Science of the United States of America, 1998,95(4):1944-1949.
[17] HINDU V, PALACIOS-ROJAS N, BABU R, SUWARNO W B, RASHID Z, USHA R, SAYKHEDKAR G R, NAIR S K. Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theoretical and Applied Genetics, 2018,131(7):1443-1457.
doi: 10.1007/s00122-018-3089-3
[18] PANG Y L, WU Y Y, LIU C X, LI W H, ST AMAND P, BERNARDO A, WANG D F, DONG L, YUAN X F, ZHANG H R, ZHAO M, LI L Z, WANG L M, HE F, LIANG Y L, YAN Q, LU Y, SU Y, JIANG H M, WU J J, LI A F, KONG L R, BAI G H, LIU S B. High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. Theoretical and Applied Genetics, 2021,134(9):2857-2873.
doi: 10.1007/s00122-021-03863-6
[19] ZHONG H, LIU S, SUN T, KONG W L, DENG X X, PENG Z H, LI Y S. Multi-locus genome-wide association studies for five yield- related traits in rice. BMC Plant Biology, 2021(21):364.
[20] PAN X W, LI Y C, LIU W Q, LIU S X, MIN J, XIONG H B, DONG Z, DUAN Y H, YU Y Y, LI X X. QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study. Scientific Reports, 2020,10:11791.
doi: 10.1038/s41598-020-68742-4
[21] QIN P, WANG L, LIU K, MAO S S, LI Z Y, GAO S, SHI H R, LIU Y X. Genome-wide association study of Aegilops tauschii traits under seedling-stage cadmium stress. Crop Journal, 2015,3(5):405-415.
doi: 10.1016/j.cj.2015.04.005
[22] ZHANG F G, XIAO X, XU K, CHENG X, XIE T, HU J H, WU X M. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics, 2020,21(1):139.
doi: 10.1186/s12864-020-6558-4
[23] 张寒, 潘香逾, 王秀华, 李家丽, 姜慧新, 赵岩. 苜蓿萌发期耐盐性综合评价与耐盐种质筛选. 草地学报, 2018,26(3):666-672.
ZHANG H, PAN X Y, WANG X H, LI J L, JIANG H X, ZHAO Y. Comprehensive evaluation of salt tolerance and screening for salt tolerance germplasm of alfalfa (medicago) at germination stage. Acta Agrestia Sinica, 2018,26(3):666-672. (in Chinese)
[24] 陈新, 吴斌, 张宗文. 燕麦种质资源重要农艺性状适应性和稳定性评价. 植物遗传资源学报, 2016,17(4):577-585.
CHEN X, WU B, ZHANG Z W. Evaluation of adaptability and stability for important agronomic traits of Oat (Avena spp.) germplasm resources. Journal of Plant Genetic Resources, 2016,17(4):577-585. (in Chinese)
[25] YANG Y, CHAI Y M, ZHANG X, LU S, ZHAO Z C, WEI D, CHEN L, HU Y G. Multi-locus GWAS of quality traits in bread wheat: Mining more candidate genes and possible regulatory network. Frontiers in Plant Science, 2020,11:1091.
doi: 10.3389/fpls.2020.01091
[26] ZHANG F G, XIAO X, XU K, CHENG X, XIE T, HU J H. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics, 2020,21(1):139.
doi: 10.1186/s12864-020-6558-4
[27] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014,47(7):1290-1300.
DAI H F, WU H, AMANGULI M, WANG L H, MAIMAITI A, ZHANG J S. Analysis of salt-tolerance and determination of salt-tolerance evaluation indicators in cotton seedlings of different genotypes. Scientia Agricultura Sinica, 2014,47(7):1290-1300. (in Chinese)
[28] THOMAS C L, ALCOCK T D, GRAHAM N S, HAYDEN R, MATTERSON S, WILSON L, YOUNG S D, DUPUY L X, WHITE P J, HAMMOND J P, DANKU JMC, SALT D E, SWEENEY A, BANCROFT I, BROADLEY M R. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biology, 2016(16):214.
[29] UTMAZIAN M N D, WIESHAMMER G, VEGA R, WENZEL W W. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 2007,148(1):155-165.
doi: 10.1016/j.envpol.2006.10.045
[30] YUN L, LARSON S R, JENSEN K B, STAUB J E, GROSSL P R. Quantitative trait loci (QTL) and candidate genes associated with trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals. Plant and Soil, 2015,396(1/2):277-296.
doi: 10.1007/s11104-015-2583-5
[31] 康吉利, 曾志军, 刘玉佩. 铅胁迫对小麦种子萌发及幼苗生长的影响. 广西农业科学, 2009,40(2):144-146.
KANG J L, ZENG Z J, LIU Y P. Effects of lead(Pb2+)stress on seed germination and seedling growth of wheat. Guangxi Agricultural Sciences, 2009,40(2):144-146. (in Chinese)
[32] 耿雷跃, 马小定, 崔迪, 张启星, 韩冰, 韩龙植. 水稻全生育期耐盐性鉴定评价方法研究. 植物遗传资源学报, 2019,20(2):267-275.
GENG L Y, MA X D, CUI D, ZHANG Q X, HAN B, HAN L Z. Identification and evaluation method for saline tolerance in rice during the whole growth stage. Journal of Plant Genetic Resources, 2019,20(2):267-275. (in Chinese)
[33] ZHANG C, DONG S S, XU J Y, HE W M, YANG T L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019,35(10):1786-1788.
doi: 10.1093/bioinformatics/bty875
[34] YU S Z, WU J H, WANG M, SHI W M, XIA G M, JIA J Z, KANG Z S, HAN D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree- based kinship analyses. Crop Journal, 2020,8(6):1011-1024.
[35] 王继庆, 任毅, 时晓磊, 王丽丽, 张新忠, 苏力坛·姑扎丽阿依, 谢磊, 耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析. 中国农业科学, 2021,54(11):2249-2265.
WANG J Q, REN Y, SHI X L, WANG L L, ZHANG X Z, SULITAN G, XIE L, GENG H W. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grain. Scientia Agricultura Sinica, 2021,54(11):2249-2265. (in Chinese)
[36] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020,21(2):431-445.
ZHOU S Y, BI H H, CHENG X Y, ZHANG X R, RUN Y X, WANG H H, MAO P J, LI H X, XU H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. Journal of Plant Genetic Resources, 2020,21(2):431-445. (in Chinese)
[37] APPELS R, EVERSOLE K, FEUILLET C, KELLER B, ROGERS J, STEIN N, POZNIAK C J, CHOULET F, DISTELFELD A, POLAND J. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018(361):661.
[38] AHMAD M S A, ASHRAF M, TABASSAM Q, HUSSAIN M, FIRDOUS H. Lead (pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research, 2011,144(1/3):1229-1239.
doi: 10.1007/s12011-011-9099-5
[39] 赵鲁, 叶琰, 刘继远, 刘安辉, 高振新, 王小龙, 李洋, 王震, 佟明恒. 添加铅对大豆和小麦生长及铅吸收特征影响的研究. 中国土壤与肥料, 2013(6):83-87.
ZHAO L, YE Y, LIU J Y, LIU A H, GAO Z X, WANG X L, LI Y, WANG Z, TONG M H. Study on the effect of lead addition on the growth and lead absorption characteristics of soybean and wheat. China Soil and Fertilizer, 2013(6):83-87. (in Chinese)
[40] 厉有为, 梁婵娟. 三种油料作物对土壤Pb污染的耐受性与积累. 环境化学, 2021,40(5):1602-1610.
LI Y W, LIANG C J. Tolerance and accumulation of lead in three oil crops to lead pollution in soil. Environmental Chemistry, 2021,40(5):1602-1610. (in Chinese)
[41] AYANGBENRO A S, BABALOLA O O. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 2017,14(1):94.
doi: 10.3390/ijerph14010094
[42] 王玲芬, 谢明. 对多起铅污染中毒事件处理的体会与思考. 中国卫生监督杂志, 2011,18(5):485-487.
WANG L F, XIE M. Experience and thinking on handling multiple lead pollution incidents. Chinese Journal of Health Inspection, 2011,18(5):485-487. (in Chinese)
[43] 郭思宇, 王海娟, 王宏镔. 重金属污染土壤间作修复的研究进展. 中国生态农业学报(中英文), 2021,29(5):890-902.
GUO S Y, WANG H J, WANG H B. Advances in the intercropping remediation of heavy metal polluted soil. Chinese Journal of Eco-Agriculture, 2021,29(5):890-902. (in Chinese)
[44] 秦丽, 湛方栋, 祖艳群, 孟婧轩, 晋磊, 李元. 土荆芥和蚕豆/玉米间作系统中Pb、Cd、Zn的累积特征研究. 云南农业大学学报(自然科学), 2017,32(1):153-160.
QIN L, ZHAN F D, ZU Y Q, MENG J X, JIN L, LI Y. Accumulation characteristics of Pb,Cd and Zn by Chenopodium ambrosioides L. Intercropping with maize and broad bean. Journal of Yunnan Agricultural University (Natural Science), 2017,32(1):153-160. (in Chinese)
[45] 陈国皓, 祖艳群, 湛方栋, 李博, 李元. 钝化剂处理对玉米与伴矿景天间作下植株生长及镉累积特征的影响. 农业环境科学学报, 2019,38(9):2103-2110.
CHEN G H, ZU Y Q, ZHAN F D, LI B, LI Y. Effects of passivators on the growth and cadmium accumulation of intercropped maize and Sedum plumbizincicola. Journal of Agro-Environment Science, 2019,38(9):2103-2110. (in Chinese)
[46] WANG S Q, WEI S H, JI D D, BAI J Y. Co-Planting Cd contaminated field using hyperaccumulator Solanum nigrum L. through interplant with low accumulation welsh onion. International Journal of Phytoremediation, 2015,17(9):879-884.
doi: 10.1080/15226514.2014.981247
[47] NIU Z X, SUN L N, SUN T H. Enrichment characteristics of Cd and Pb by four kinds of plant under hydroponic culture. Chinese Journal of Ecology, 2010,29(2):261-268.
[48] HUANG X H, ZHAO Y, WEI XH, LI C Y, WANG A, ZHAO Q, LI W J, GUO Y L, DENG L W, ZHU C R, FAN D L, LU Y Q, WENG Q J, LIU K Y, ZHOU T Y, JING Y F, SI L Z, DONG G J, HUANG T, LU T T, FENG Q, QIAN Q, LI J Y, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012,44(1):32-39.
doi: 10.1038/ng.1018
[49] STICH B, MELCHINGER A E. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics, 2009,10:94.
doi: 10.1186/1471-2164-10-94
[50] LIU X, HUANG M, FAN B. Iterative usage of fixed and random effect models for powerful and efficient Genome-Wide association studies. PLoS ONE, 2016,12:e10059573.
[51] LEE M, LEE K, LEE J, NOH E W, LEE Y. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiology, 2005,138(2):827-836.
doi: 10.1104/pp.104.058107
[52] GAILLARD S, JACQUET H, VAVASSEUR A, LEONHARDT N, FORESTIER C. AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biology, 2008,8:22.
doi: 10.1186/1471-2229-8-22
[53] THEODOULOU F L, KERR I D. ABC transporter research: going strong 40 years on. Biochemical Society Transactions, 2015,43(5):1033-1040.
doi: 10.1042/BST20150139
[54] BHATI K K, SHARMA S, AGGARWAL S, KAUR M, SHUKLA V, KAUR J, MANTRI S, PANDEY A K. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat. Frontiers in Plant Science, 2015,6:488.
[55] PARK J, SONG W Y, KO D, EOM Y, HANSEN T H, SCHILLER M, LEE T G, MARTINOIA E, LEE Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 2012,69(2):278-288.
doi: 10.1111/tpj.2011.69.issue-2
[56] OVECKA M, TAKAC T. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnology Advances, 2014,32(1SI):73-86.
doi: 10.1016/j.biotechadv.2013.11.011
[57] ARRIVAULT S, SENGER T, KRAEMER U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. The Plant Journal, 2006,46(5):861-879.
doi: 10.1111/tpj.2006.46.issue-5
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!