Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 219-232.doi: 10.3864/j.issn.0578-1752.2022.01.018

• RESEARCH NOTES • Previous Articles    

Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.)

CUI ChengQi1(),LIU YanYang1(),JIANG XiaoLin1,SUN ZhiYu2,DU ZhenWei1,WU Ke1,MEI HongXian1(),ZHENG YongZhan1()   

  1. 1Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008
    2College of Life Sciences, South China Normal University, Guangzhou 510631
  • Received:2021-06-23 Accepted:2021-09-18 Online:2022-01-01 Published:2022-01-07
  • Contact: HongXian MEI,YongZhan ZHENG E-mail:chengqicui_1986@126.com;liuyanyang001@163.com;meihx2003@126.com;sesame168@163.com

Abstract:

【Objective】 Genome-wide association studies (GWAS) were performed using multi-locus random-SNP-effect mixed linear (mrMLM) model to identify the significantly associated SNPs and candidate genes with yield traits, and lay a foundation for molecular marker-assisted selection breeding for sesame high yield.【Method】 In this study, 363 diverse sesame lines were assembled into an association-mapping panel. Eight yield-related traits, including seed yield per plant, capsule number per plant, seed number per capsule, 1000-seed weight, plant height, capsule axis length, first capsule height and apparent harvest index, were investigated. Genome-wide association studies were performed using mrMLM to detect significantly associated SNPs and predict important candidate genes related to yield traits.【Result】 Eight yield-related traits measured in four environments exhibited extensive phenotypic variation with 1.63%-17.29% of phenotypic variation coefficients. The seed yield per plant was positively correlated with capsule number per plant, plant height, capsule axis length, and apparent harvest index respectively. Analysis of variance indicated that significant variations were observed across environment, genotype, and the genotype × environment interaction. GWAS were performed and a total of 210 SNPs were detected for yield traits. Among these SNPs, 47, 35, 35, 53, and 75 SNPs were detected in 2018NY, 2019NY, 2018PY, 2019PY and BLUP, explaining 1.63%-17.29%, 1.94%-11.90%, 2.15%-15.90%, 1.25%-11.13% and 1.44%-13.58% of phenotypic variation, respectively. These 210 SNPs corresponded to 175 loci, and 10 loci were detected in more than 3 environments. A total of 214 candidate genes were identified, including 156 genes involved in metabolism, biological regulation, and developmental and growth process. Among these genes, 4 genes were selected as important candidate genes. SIN_1006338, encoding 1-aminocyclopropane-1-carboxylate synthase 3-like protein, was involved in ethylene biosynthesis. SIN_1024330, encoding transcription factor IBH1-like 1, was involved in regulating cell and organ elongation. SIN_1014512, encoding indole-3-acetic acid-amido synthetase GH3.6, was involved in shoot and hypocotyl cell elongation. SIN_1011473, encoding protein DA1-like, was involved in restricting the period of cell proliferation.【Conclusion】 One hundred and seventy-five loci were identified by mrMLM, and 4 important genes related to yield traits were selected.

Key words: Sesamum indicum L., yield-related traits, genome-wide association studies, function annotation, candidate gene

Table 1

Descriptive statistics for yield-related traits of the association population"

环境
Environment
性状
Traits
变异范围
Range
均值
Mean
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
2018年平舆
2018PY
单株产量SY 3.00–17.36 8.30 2.52 30.33 0.50 0.04
单株蒴数CN 31.65–108.05 62.27 14.69 23.60 0.52 0.13
蒴粒数SN 36.07–112.98 64.64 8.53 13.20 0.74 3.46
千粒重SW 2.04–3.77 3.00 0.32 10.49 -0.30 -0.15
株高PH 100.00–183.50 138.41 13.16 9.51 -0.01 0.01
主茎果轴长CAL 32.15–94.50 60.50 11.49 18.99 0.06 -0.23
始蒴高度FCH 49.50–102.50 72.82 9.72 13.35 0.21 0.22
表观收获指数HI 0.18–0.44 0.31 0.05 16.13. -0.16 -0.25
2018年南阳
2018NY
单株产量SY 2.50–17.80 7.63 2.17 28.46 0.54 1.03
单株蒴数CN 56.00–166.20 103.16 20.56 19.93 0.28 -0.07
蒴粒数SN 43.71–106.07 64.31 8.36 12.99 0.85 2.74
千粒重SW 2.29–3.86 3.07 0.31 10.02 0.18 -0.38
株高PH 137.60–240.00 183.19 15.96 8.71 -0.10 0.40
主茎果轴长 CAL 74.80–151.00 113.57 12.44 10.96 -0.08 0.11
始蒴高度FCH 36.50–102.80 60.98 10.16 16.66 0.36 1.26
表观收获指数HI 0.10–0.42 0.21 0.04 19.05 0.71 3.73
2019年平舆
2019PY
单株产量SY 3.01–20.09 9.12 3.06 33.57 0.59 0.63
单株蒴数CN 21.20–152.90 82.29 21.87 26.58 0.28 0.18
蒴粒数SN 30.68–102.49 64.71 9.86 15.24 0.91 2.83
千粒重SW 1.63–3.93 2.98 0.41 13.78 -0.33 -0.20
株高PH 80.60–200.60 141.81 17.36 12.24 0.09 1.01
主茎果轴长 CAL 22.00–123.70 78.10 15.05 19.27 -0.06 0.46
始蒴高度FCH 22.40–146.50 60.57 14.55 24.03 0.55 2.78
表观收获指数HI 0.08–0.39 0.22 0.05 22.73 -0.31 0.45
2019年南阳
2019NY
单株产量SY 4.88–17.54 11.17 2.41 21.56 0.05 -0.48
单株蒴数CN 35.95–124.20 75.59 15.29 20.22 0.22 0.03
蒴粒数SN 52.83–120.25 69.18 9.41 13.60 1.74 4.69
千粒重SW 2.25–4.20 3.08 0.35 11.20 0.09 -0.49
株高PH 113.65–207.65 150.65 16.17 10.73 0.37 0.14
主茎果轴长CAL 55.93–116.40 84.61 12.49 14.76 0.19 -0.47
始蒴高度FCH 29.65–99.60 59.18 10.89 18.40 0.57 0.67
表观收获指数HI 0.11–0.35 0.23 0.05 21.74 -0.10 -0.62
综合
BLUP
单株蒴数CN 53.05–89.01 71.69 7.03 9.79 0 -0.31
蒴粒数 SN 54.96–91.76 66.26 5.86 8.85 1.46 3.02
千粒重 SW 2.48–3.60 3.06 0.20 6.51 -0.14 -0.39
单株产量SY 6.82–11.05 8.55 0.77 9.01 0.53 0.21
株高PH 121.4–169.0 145.7 9.70 6.66 0.04 -0.46
主茎果轴长CAL 50.95–85.69 69.33 7.61 10.98 -0.15 -0.75
始蒴高度FCH 47.10–90.10 64.78 7.55 11.65 0.34 0.14
表观收获指数 HI 0.17–0.27 0.22 0.02 9.10 -0.11 -0.35

Fig. 1

Frequency distribution of BLUP values of eight yield-related traits SY: Seed yield per plant; CN: Capsule number per plant; SN: Seed number per capsule; SW: 1000-seed weight; PH: Plant height; CAL: Capsule axis length; FCH: First capsule height; HI: Apparent harvest index. The same as below"

Table 2

Correlation coefficients among yield-related traits in the association mapping population"

环境
Environment
性状
Trait
单株产量
SY
单株蒴数
CN
蒴粒数
SN
千粒重
SW
株高
PH
主茎果轴长
CAL
始蒴高度
FCH
2018年平舆
2018PY
单株蒴数 CN 0.53**
蒴粒数 SN 0.10 -0.12*
千粒重 SW 0.10 0.03 -0.15**
株高 PH 0.35** 0.31** 0.03 0.16**
主茎果轴长 CAL 0.46** 0.40** 0.04 0.18** 0.74**
始蒴高度 FCH 0.01 -0.02 0.02 0.08 0.62** -0.25**
表观收获指数 HI 0.60** 0.28** 0.08 -0.21** -0.02 0.17** -0.23**
2018年南阳
2018NY
单株蒴数 CN 0.80**
蒴粒数 SN 0.17** 0.01
千粒重 SW 0.08 -0.04 -0.36**
株高 PH 0.45** 0.348** 0.08 0.14**
主茎果轴长 CAL 0.40** 0.32** -0.09 0.20** 0.76**
始蒴高度 FCH 0.126* 0.10 0.258** -0.05 0.43** -0.25**
表观收获指数 HI 0.55** 0.29** 0.15** -0.06 0.05 0.14** -0.12*
2019年平舆
2019PY
单株蒴数 CN 0.56**
蒴粒数 SN 0.01 -0.13*
千粒重 SW 0.28** 0.00 -0.26**
株高 PH 0.44** 0.32** 0.07 0.18**
主茎果轴长 CAL 0.43** 0.29** -0.07 0.36** 0.58**
始蒴高度 FCH 0.07 0.07 0.157** -0.140** 0.551** -0.36**
表观收获指数 HI 0.63** 0.21** -0.03 0.22** 0.10 0.63** -0.18**
2019年南阳
2019NY
单株蒴数 CN 0.56**
蒴粒数 SN 0.03 -0.22**
千粒重 SW 0.01 -0.08 -0.18**
株高 PH 0.32** 0.45** 0.09 0.26**
主茎果轴长 CAL 0.44** 0.52** -0.08 0.18** 0.77**
始蒴高度 FCH -0.09 -0.04 0.236** 0.25** 0.50** -0.15**
表观收获指数 HI 0.30** 0.28** -0.12* -0.13* 0.06 0.32** -0.34**
综合BLUP 单株蒴数 CN 0.68**
蒴粒数 SN -0.03 -0.26 **
千粒重 SW 0.12* -0.15** -0.30**
株高 PH 0.38** 0.27** 0.09 0.21**
主茎果轴长 CAL 0.51** 0.35** -0.08 0.25** 0.65**
始蒴高度 FCH -0.02 -0.02 0.23** 0.03 0.59** -0.21**
表观收获指数 HI 0.57** 0.39** -0.03 -0.10 -0.04 0.35** -0.40**

Table 3

Analysis of variance (ANOVA) for yield traits in four environments"

性状Trait 变异来源Source 离均差平方和 Type sum of squares 自由度 Df 均方 Mean square FF value
单株产量
SY
基因型G 7277.22 362 20.10 3.00**
环境E 12743.45 3 4247.82 633.22**
基因型×环境 G×E 12598.92 1086 11.60 1.73**
误差 Error 9740.36 1452 6.71
总变异Total 250355.40 2904
单株蒴数
CN
基因型G 362349.02 362 1000.96 4.05**
环境E 353079.52 3 117693.17 476.59**
基因型×环境 G×E 422589.91 1086 389.13 1.58**
误差Error 358570.49 1452 246.95
总变异Total 15197261.65 2904
蒴粒数
SN
基因型G 154208.88 362 425.99 6.27**
环境E 8841.06 3 2947.02 43.36**
基因型×环境 G×E 130872.51 1086 120.51 1.77**
误差Error 98692.38 1452 67.97
总变异Total 13566244.22 2904
千粒重
SW
基因型G 207.75 362 0.57 9.27**
环境E 25.70 3 8.57 138.44**
基因型×环境G×E 114.06 1086 0.11 1.70**
误差Error 89.84 1452 0.06
总变异Total 28640.90 2904
株高
PH
基因型G 380243.82 362 1050.40 8.44**
环境E 520433.78 3 173477.93 1393.93**
基因型×环境 G×E 239288.84 1086 220.34 1.77**
误差Error 180705.09 1452 124.45
总变异Total 60234518.86 2904
主茎果轴长
CAL
基因型G 249490.48 362 689.20 5.94**
环境E 223064.77 3 74354.92 640.81**
基因型×环境 G×E 205442.35 1086 189.17 1.63**
误差Error 168479.54 1452 116.03
总变异Total 16679958.27 2904
始蒴高度
FCH
基因型 G 239089.39 362 660.47 9.20**
环境E 163719.63 3 54573.21 759.93**
基因型×环境G×E 122236.79 1086 112.56 1.57**
误差Error 104273.55 1452 71.81
总变异Total 12056126.18 2904
表观收获指数
HI
基因型G 30750.48 362 84.95 3.42**
环境E 125145.68 3 41715.23 1679.68**
基因型×环境 G×E 44030.95 1086 40.54 1.63**
误差Error 36035.85 1451 24.84
总变异Total 1743682.01 2903

Fig. 2

Manhattan plots for GWAS of BLUP values The gray horizontal dashed lines indicate the genome-wide significance threshold (LOD=3). The red dots indicate significant associated SNPs"

Table 4

Ten significantly associated loci that could be detected in more than 3 environments"

位点
Loci
连锁群
LG
环境
Environments
性状
Traits
标记
SNP
物理位置
Position (bp)
LOD值
LOD
贡献率
R2 (%)
1 4 2018年南阳2018NY 单株蒴数 CN S4_12077666 12077666 4.88 4.52
1 4 2018年平舆2018PY 单株蒴数 CN S4_12175895 12175895 4.74 5.34
1 4 2019年平舆2019PY 单株蒴数 CN S4_12175895 12175895 7.23 5.75
1 4 综合 BLUP 单株蒴数 CN S4_12175895 12175895 8.84 7.38
2 4 2018年南阳2018NY 蒴粒数 SN S4_12175895 12175895 7.45 4.65
2 4 2018年平舆2018PY 蒴粒数 SN S4_12175895 12175895 14.19 12.89
2 4 2019年南阳2019NY 蒴粒数 SN S4_12175895 12175895 8.97 6.60
2 4 2019年平舆2019PY 蒴粒数 SN S4_12175895 12175895 8.41 8.16
2 4 综合 BLUP 蒴粒数 SN S4_12175895 12175895 11.97 7.34
3 6 2018年平舆2018PY 千粒重 SW S6_20401909 20401909 3.91 3.88
3 6 2019年南阳2019NY 千粒重 SW S6_20401885 20401885 3.14 2.60
3 6 2019年平舆2019PY 千粒重 SW S6_20401885 20401885 4.05 3.31
3 6 综合 BLUP 千粒重 SW S6_20401885 20401885 3.21 2.39
4 4 2018年平舆2018PY 株高 PH S4_2965202 2965202 11.61 9.70
4 4 2019南阳2019NY 株高 PH S4_2999295 2999295 5.60 7.45
4 4 2019年平舆2019PY 株高 PH S4_2965202 2965202 3.13 2.87
5 6 2018年南阳2018NY 株高 PH S6_3944096 3944096 3.29 10.37
5 6 2018年平舆2018PY 株高 PH S6_3944096 3944096 4.66 4.21
5 6 综合 BLUP 株高 PH S6_3944096 3944096 3.41 4.22
6 1 2018年南阳2018NY 始蒴高度 FCH S1_5656292 5656292 6.11 5.46
6 1 2019年平舆2019PY 始蒴高度 FCH S1_5656292 5656292 8.20 6.52
6 1 综合 BLUP 始蒴高度 FCH S1_5656292 5656292 5.78 6.25
7 4 2018年南阳2018NY 始蒴高度 FCH S4_12175895 12175895 6.54 4.12
7 4 2018年平舆2018PY 始蒴高度 FCH S4_12175895 12175895 3.23 2.15
7 4 2019年南阳2019NY 始蒴高度 FCH S4_12175895 12175895 9.00 4.91
7 4 2019年平舆2019PY 始蒴高度 FCH S4_12175895 12175895 3.10 2.03
7 4 综合 BLUP 始蒴高度 FCH S4_12175895 12175895 10.01 6.95
8 10 2018年南阳2018NY 始蒴高度 FCH S10_3435751 3435751 6.30 17.29
8 10 2019年平舆2019PY 始蒴高度 FCH S10_3389829 3389829 3.38 2.17
8 10 2019年南阳2019NY 始蒴高度 FCH S10_3441972 3441972 3.28 6.68
9 12 2018年南阳2018NY 始蒴高度 FCH S12_7500712 7500712 7.67 8.91
9 12 2019年南阳2019NY 始蒴高度 FCH S12_7510215 7510215 6.97 2.68
9 12 综合 BLUP 始蒴高度 FCH S12_7500712 7500712 3.36 3.48
10 5 2018年南阳2018NY 表观收获指数 HI S5_1942861 1942861 3.13 3.87
10 5 2019年平舆2019PY 表观收获指数 HI S5_1861592 1861592 3.21 8.11
10 5 综合 BLUP 表观收获指数 HI S5_1942861 1942861 4.25 2.14

Fig. 3

Functional analysis of candidate genes"

[1] ANILAKUMAR K R, PAL A, KHANUM F, BAWA A S. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds: An overview. Agriculturae Conspectus Scientificus, 2010, 75(4): 159-168.
[2] DOSSA K, WEI X, NIANG M, LIU P, ZHANG Y, WANG L, LIAO B, CISSE N, ZHANG X, DIOUF D. Near-infrared reflectance spectroscopy reveals wide variation in major components of sesame seeds from Africa and Asia. The Crop Journal, 2018, 6: 202-206.
doi: 10.1016/j.cj.2017.10.003
[3] WU K, LIU H, YANG M, TAO Y, MA H, WU W, ZUO Y, ZHAO Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq technology. BMC Plant Biology, 2014, 14: 274.
doi: 10.1186/s12870-014-0274-7
[4] BIABANI A R, PAKNIYAT H. Evaluation of seed yield-related characters in sesame (Sesamum indicum L.) using factor and path analysis. Pakistan Journal of Biological Sciences, 2008, 11(8): 1157-1160.
doi: 10.3923/pjbs.2008.1157.1160
[5] WANG L, XIA Q, ZHANG Y, ZHU X, ZHU X, LI D, NI X, GAO Y, XIANG H, WEI X, YU J, QUAN Z, ZHANG X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 2016, 17(1): 31.
doi: 10.1186/s12864-015-2316-4
[6] MORRELL P L, BUCKLER E S, ROSS-IBARRA J. Crop genomics: Advances and applications. Nature Reviews Genetics, 2012, 13(2): 85-96.
doi: 10.1038/nrg3097
[7] MACKAY I, POWELL W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12(2): 57-63.
doi: 10.1016/j.tplants.2006.12.001
[8] MACKAY T F C, STONE E A, AYROLES J F. The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 2009, 10(8): 565-577.
doi: 10.1038/nrg2612
[9] FLINT-GARCIA S A, THUILET A C, YU J, PRESSOIR G, ROMERO S M, MITCHELL S E, DOEBLEY J, KRESOVICH S, GOODMAN M M, BUCKLER E S. Maize association population: A high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44(6): 1054-1064.
doi: 10.1111/tpj.2005.44.issue-6
[10] YU J, BUCKLER E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.
doi: 10.1016/j.copbio.2006.02.003
[11] LI H, PENG Z, YANG X, WANG W, FU J, WWANG J, HAN Y, CHAI Y, GUO T, YANG N, LIU J, WARBURTON ML, CHENG Y, HAO X, ZHANG P, ZHAO J, LIU Y, WANG G, LI J, YAN J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
doi: 10.1038/ng.2484
[12] HUANG X, ZHAO Y, WEI X, LI C, WWANG A, ZHAO Q, LI W, GUO Y, DENG L, ZHU C, FAN D, LU Y, WENG Q, LIU K, ZHOU T, JING Y, SI L, DONGG, HUANG T, LU T, FENG Q, QIAN Q, LI J, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2011, 44(1): 32-39.
doi: 10.1038/ng.1018
[13] LIU Y, LIN Y, GAO S, LI Z, MA J, DENG M, CHEN G, WEI Y, ZHENG Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal, 2017, 91(5): 861-873.
doi: 10.1111/tpj.2017.91.issue-5
[14] FANG L, WANG Q, HU Y, JIA Y, CHEN J, LIU B, ZHANG Z, GUAN X, CHEN S, ZHOU B, MEI G, SUN J, PAN Z, HE S, XIAO S, SHI W, GONGW, LIU J, MA J, CAI C, ZHU X, GUO W, DU X, ZHANG T. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49(7): 1089-1098.
doi: 10.1038/ng.3887
[15] ZHOU Z, JIANG Y, WANG Z, GOU Z, LYU J, LI W, YU Y, SHU L, ZHAO Y, MA Y, FANG C, SHEN Y, LIU T, LI C, LI Q, WU M, WANG M, WU Y, DONG Y, WAN W, WANG X, DING Z, GAO Y, XIANG H, ZHU B, LEE S H, WANG W, TIAN Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.
doi: 10.1038/nbt.3096
[16] XU L, HU K, ZHANG Z, GUAN C, CHEN S, HUA W, LI J, WEN J, YI B, SHEN J, MA C, TU J, FU T. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research, 2016, 23(1): 43-52.
[17] WEI X, LIU K, ZHANG Y, FENG Q, WANG L, ZHAO Y, LI D, ZHAO Q, ZHU X, ZHU X, LI W, FAN D, GAO Y, LU Y, ZHANG X, TANG X, ZHOU C, ZHU C, LIU L, ZHONG R, TIAN Q, WEN Z, WENG Q, HAN B, HUANG X, ZHANG X. Genetic discovery for oil production and quality in sesame. Nature Communications, 2015, 6: 8609.
doi: 10.1038/ncomms9609
[18] ZHANG Y M, JIA Z, DUNWELL J M. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science, 2019, 10: 100.
doi: 10.3389/fpls.2019.00100
[19] WANG S B, FENG J Y, REN W L, HUANG B, ZHOU L, WEN Y J, ZHANG J, DUNWELL J M, XU S, ZHANG Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6: 19444.
doi: 10.1038/srep19444
[20] CUI Y, ZHANG F, ZHOU Y. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science, 2018, 9: 1464.
doi: 10.3389/fpls.2018.01464
[21] ZHANG Y W, LWAKA TAMBA C, WEN Y J, LI P, REN W L, NI Y L, GAO J, ZHANG Y M. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. Genomics Proteomics Bioinformatics, 2020, 18(4): 481-487.
doi: 10.1016/j.gpb.2020.06.006
[22] SUN X, LIU D, ZHANG X, LI W, LIU H, HONG W, JIANG C, GUAN N, MA C, ZENG H, XU C, SONG J, HUANG L, WANG C, SHI J, WANG R, ZHENG X, LU C, WANG X, ZHENG H. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700
[23] CUI C, MEI H, LIU Y, ZHANG H, ZHENG Y. Genetic diversity, population structure, and linkage disequilibrium of an association- mapping panel revealed by genome-wide SNP markers in sesame. Frontiers in Plant Science, 2017, 8: 1189.
doi: 10.3389/fpls.2017.01189
[24] 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊. 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017, 50(13): 2433-2441.
LIU Y Y, MEI H X, DU Z W, WU K, ZHENG Y Z, CUI X H, ZHENG L. Construction of core collection of sesame based on phenotype and molecular markers. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441. (in Chinese)
[25] MCKENNA S, MEYER M, GREGG C, GERBER S. CorrPlot: An Interactive scatterplot for exploring correlation. Journal of Computational & Graphical Statistics, 2015, 25(2): 445-463.
[26] BATES D, MÄCHLER M, BOLKER B, WALKER S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 2015, 67: 1-48.
[27] KALER A S, RAY J D, SCHAPAUGH W T, KING C A, PURCELL L C. Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theoretical & Applied Genetics, 2017, 130: 2203-2217.
[28] LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26: 589-595.
doi: 10.1093/bioinformatics/btp698
[29] MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULERl D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis toolkit: A map reduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110
[30] DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R. 1000 GENOMES PROJECT ANALYSIS GROUP. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330
[31] YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.
doi: 10.1016/j.ajhg.2010.11.011
[32] BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308
[33] HUERTA-CEPAS J, FORSLUND K, COELHO L P, SZKLARCZYK D, JENSEN L J, VON MERING C, BORK P. eggNOG-mapper: Fast genome-wide functional annotation through orthology assignment. Molecular Biology & Evolution, 2017, 34(8): 2115-2122.
[34] MEI H, LIU Y, CUI C, HU C, XIE F, ZHENG L, DU Z, WU K, JIANG X, ZHENG Y, MA Q. QTL mapping of yield-related traits in sesame. Molecular Breeding, 2021, 41: 43.
doi: 10.1007/s11032-021-01236-x
[35] ZHOU R, DOSSA K, LI D, YU J, YOU J, WEI X, ZHANG X R. Genome-wide association studies of 39 seed yield-related traits in sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 2018, 19(9): 1-18.
doi: 10.3390/ijms19010001
[36] TSUCHISAKA A, THEOLOGIS A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 2275-2280.
[37] PLETT J M, WILLIAMS M, LECLAIR G, REGAN S, BEARDMORE T. Heterologous over-expression of ACC SYNTHASE8 (ACS8) in Populus tremula × P. alba clone 717-1B4 results in elevated levels of ethylene and induces stem dwarfism and reduced leaf size through separate genetic pathways. Frontiers in Plant Science, 2014, 5: 514.
[38] ZHIPONOVA M K, MOROHASHI K, VANHOUTTE I, MACHEMER- NOONAN K, REVALSKA M, VAN MONTAGU M, GROTEWOLD E, RUSSINOVA E. Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop. Proceedings of the National Academy of Sciences of the United States of America, 2014, 18, 111(7): 2824-2829.
[39] STASWICK P E, SERBAN B, ROWE M, TIRYAKI I, MALDONADO M T, MALDONADO M C, SUZA W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3- acetic acid. The Plant Cell, 2005, 17(2): 616-627.
doi: 10.1105/tpc.104.026690
[40] NAKAZAWA M, YABE N, ICHIKAWA T, YAMAMOTO YY, YOSHIZUMI T, HASUNUMA K, MATSUI M. DFL1, an auxin- responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. The Plant Journal, 2001, 25(2): 213-221.
[41] LI Y, ZHENG L, CORKE F, SMITH C, BEVAN M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes & Development, 2008, 22(10): 1331-1336.
doi: 10.1101/gad.463608
[42] XIA T, LI N, DUMENIL J, LI J, KAMENSKI A, BEVAN M W, GAO F, LI Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant Cell, 2013, 25(9): 3347-3359.
doi: 10.1105/tpc.113.115063
[43] VANHAEREN H, NAM Y J, DE MILDE L, CHAE E, STORME V, WEIGEL D, GONZALEZ N, INZÉ D. Forever Young: The role of ubiquitin receptor DA1 and E3 ligase BIG BROTHER in controlling leaf growth and development. Plant Physiology, 2017, 173(2): 1269-1282.
doi: 10.1104/pp.16.01410
[44] WANG J L, TANG M Q, CHEN S, ZHENG X F, MO H X, LI S J, WANG Z, ZHU K M, DING L N, LIU S Y, LI Y H, TAN X L. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnology Journal, 2017, 15(8): 1024-1033.
doi: 10.1111/pbi.2017.15.issue-8
[45] LIU H, LI H, HAO C, WANG K, WANG Y, QIN L, AN D, LI T, ZHANG X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2020, 18(5): 1330-1342.
doi: 10.1111/pbi.v18.5
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[8] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[9] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[10] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[11] XiaoShuai HAO,MengMeng FU,ZaiDong LIU,JianBo HE,YanPing WANG,HaiXiang REN,DeLiang WANG,XingYong YANG,YanXi CHENG,WeiGuang DU,JunYi GAI. Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population [J]. Scientia Agricultura Sinica, 2020, 53(9): 1717-1729.
[12] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[13] ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238.
[14] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[15] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!