Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 219-232.doi: 10.3864/j.issn.0578-1752.2022.01.018
• RESEARCH NOTES • Previous Articles
CUI ChengQi1(),LIU YanYang1(),JIANG XiaoLin1,SUN ZhiYu2,DU ZhenWei1,WU Ke1,MEI HongXian1(),ZHENG YongZhan1()
[1] | ANILAKUMAR K R, PAL A, KHANUM F, BAWA A S. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds: An overview. Agriculturae Conspectus Scientificus, 2010, 75(4): 159-168. |
[2] |
DOSSA K, WEI X, NIANG M, LIU P, ZHANG Y, WANG L, LIAO B, CISSE N, ZHANG X, DIOUF D. Near-infrared reflectance spectroscopy reveals wide variation in major components of sesame seeds from Africa and Asia. The Crop Journal, 2018, 6: 202-206.
doi: 10.1016/j.cj.2017.10.003 |
[3] |
WU K, LIU H, YANG M, TAO Y, MA H, WU W, ZUO Y, ZHAO Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq technology. BMC Plant Biology, 2014, 14: 274.
doi: 10.1186/s12870-014-0274-7 |
[4] |
BIABANI A R, PAKNIYAT H. Evaluation of seed yield-related characters in sesame (Sesamum indicum L.) using factor and path analysis. Pakistan Journal of Biological Sciences, 2008, 11(8): 1157-1160.
doi: 10.3923/pjbs.2008.1157.1160 |
[5] |
WANG L, XIA Q, ZHANG Y, ZHU X, ZHU X, LI D, NI X, GAO Y, XIANG H, WEI X, YU J, QUAN Z, ZHANG X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 2016, 17(1): 31.
doi: 10.1186/s12864-015-2316-4 |
[6] |
MORRELL P L, BUCKLER E S, ROSS-IBARRA J. Crop genomics: Advances and applications. Nature Reviews Genetics, 2012, 13(2): 85-96.
doi: 10.1038/nrg3097 |
[7] |
MACKAY I, POWELL W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12(2): 57-63.
doi: 10.1016/j.tplants.2006.12.001 |
[8] |
MACKAY T F C, STONE E A, AYROLES J F. The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 2009, 10(8): 565-577.
doi: 10.1038/nrg2612 |
[9] |
FLINT-GARCIA S A, THUILET A C, YU J, PRESSOIR G, ROMERO S M, MITCHELL S E, DOEBLEY J, KRESOVICH S, GOODMAN M M, BUCKLER E S. Maize association population: A high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44(6): 1054-1064.
doi: 10.1111/tpj.2005.44.issue-6 |
[10] |
YU J, BUCKLER E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.
doi: 10.1016/j.copbio.2006.02.003 |
[11] |
LI H, PENG Z, YANG X, WANG W, FU J, WWANG J, HAN Y, CHAI Y, GUO T, YANG N, LIU J, WARBURTON ML, CHENG Y, HAO X, ZHANG P, ZHAO J, LIU Y, WANG G, LI J, YAN J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
doi: 10.1038/ng.2484 |
[12] |
HUANG X, ZHAO Y, WEI X, LI C, WWANG A, ZHAO Q, LI W, GUO Y, DENG L, ZHU C, FAN D, LU Y, WENG Q, LIU K, ZHOU T, JING Y, SI L, DONGG, HUANG T, LU T, FENG Q, QIAN Q, LI J, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2011, 44(1): 32-39.
doi: 10.1038/ng.1018 |
[13] |
LIU Y, LIN Y, GAO S, LI Z, MA J, DENG M, CHEN G, WEI Y, ZHENG Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal, 2017, 91(5): 861-873.
doi: 10.1111/tpj.2017.91.issue-5 |
[14] |
FANG L, WANG Q, HU Y, JIA Y, CHEN J, LIU B, ZHANG Z, GUAN X, CHEN S, ZHOU B, MEI G, SUN J, PAN Z, HE S, XIAO S, SHI W, GONGW, LIU J, MA J, CAI C, ZHU X, GUO W, DU X, ZHANG T. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49(7): 1089-1098.
doi: 10.1038/ng.3887 |
[15] |
ZHOU Z, JIANG Y, WANG Z, GOU Z, LYU J, LI W, YU Y, SHU L, ZHAO Y, MA Y, FANG C, SHEN Y, LIU T, LI C, LI Q, WU M, WANG M, WU Y, DONG Y, WAN W, WANG X, DING Z, GAO Y, XIANG H, ZHU B, LEE S H, WANG W, TIAN Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.
doi: 10.1038/nbt.3096 |
[16] | XU L, HU K, ZHANG Z, GUAN C, CHEN S, HUA W, LI J, WEN J, YI B, SHEN J, MA C, TU J, FU T. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research, 2016, 23(1): 43-52. |
[17] |
WEI X, LIU K, ZHANG Y, FENG Q, WANG L, ZHAO Y, LI D, ZHAO Q, ZHU X, ZHU X, LI W, FAN D, GAO Y, LU Y, ZHANG X, TANG X, ZHOU C, ZHU C, LIU L, ZHONG R, TIAN Q, WEN Z, WENG Q, HAN B, HUANG X, ZHANG X. Genetic discovery for oil production and quality in sesame. Nature Communications, 2015, 6: 8609.
doi: 10.1038/ncomms9609 |
[18] |
ZHANG Y M, JIA Z, DUNWELL J M. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science, 2019, 10: 100.
doi: 10.3389/fpls.2019.00100 |
[19] |
WANG S B, FENG J Y, REN W L, HUANG B, ZHOU L, WEN Y J, ZHANG J, DUNWELL J M, XU S, ZHANG Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6: 19444.
doi: 10.1038/srep19444 |
[20] |
CUI Y, ZHANG F, ZHOU Y. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science, 2018, 9: 1464.
doi: 10.3389/fpls.2018.01464 |
[21] |
ZHANG Y W, LWAKA TAMBA C, WEN Y J, LI P, REN W L, NI Y L, GAO J, ZHANG Y M. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. Genomics Proteomics Bioinformatics, 2020, 18(4): 481-487.
doi: 10.1016/j.gpb.2020.06.006 |
[22] |
SUN X, LIU D, ZHANG X, LI W, LIU H, HONG W, JIANG C, GUAN N, MA C, ZENG H, XU C, SONG J, HUANG L, WANG C, SHI J, WANG R, ZHENG X, LU C, WANG X, ZHENG H. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700 |
[23] |
CUI C, MEI H, LIU Y, ZHANG H, ZHENG Y. Genetic diversity, population structure, and linkage disequilibrium of an association- mapping panel revealed by genome-wide SNP markers in sesame. Frontiers in Plant Science, 2017, 8: 1189.
doi: 10.3389/fpls.2017.01189 |
[24] | 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊. 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017, 50(13): 2433-2441. |
LIU Y Y, MEI H X, DU Z W, WU K, ZHENG Y Z, CUI X H, ZHENG L. Construction of core collection of sesame based on phenotype and molecular markers. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441. (in Chinese) | |
[25] | MCKENNA S, MEYER M, GREGG C, GERBER S. CorrPlot: An Interactive scatterplot for exploring correlation. Journal of Computational & Graphical Statistics, 2015, 25(2): 445-463. |
[26] | BATES D, MÄCHLER M, BOLKER B, WALKER S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 2015, 67: 1-48. |
[27] | KALER A S, RAY J D, SCHAPAUGH W T, KING C A, PURCELL L C. Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theoretical & Applied Genetics, 2017, 130: 2203-2217. |
[28] |
LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26: 589-595.
doi: 10.1093/bioinformatics/btp698 |
[29] |
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULERl D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis toolkit: A map reduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110 |
[30] |
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R. 1000 GENOMES PROJECT ANALYSIS GROUP. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330 |
[31] |
YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.
doi: 10.1016/j.ajhg.2010.11.011 |
[32] |
BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 |
[33] | HUERTA-CEPAS J, FORSLUND K, COELHO L P, SZKLARCZYK D, JENSEN L J, VON MERING C, BORK P. eggNOG-mapper: Fast genome-wide functional annotation through orthology assignment. Molecular Biology & Evolution, 2017, 34(8): 2115-2122. |
[34] |
MEI H, LIU Y, CUI C, HU C, XIE F, ZHENG L, DU Z, WU K, JIANG X, ZHENG Y, MA Q. QTL mapping of yield-related traits in sesame. Molecular Breeding, 2021, 41: 43.
doi: 10.1007/s11032-021-01236-x |
[35] |
ZHOU R, DOSSA K, LI D, YU J, YOU J, WEI X, ZHANG X R. Genome-wide association studies of 39 seed yield-related traits in sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 2018, 19(9): 1-18.
doi: 10.3390/ijms19010001 |
[36] | TSUCHISAKA A, THEOLOGIS A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 2275-2280. |
[37] | PLETT J M, WILLIAMS M, LECLAIR G, REGAN S, BEARDMORE T. Heterologous over-expression of ACC SYNTHASE8 (ACS8) in Populus tremula × P. alba clone 717-1B4 results in elevated levels of ethylene and induces stem dwarfism and reduced leaf size through separate genetic pathways. Frontiers in Plant Science, 2014, 5: 514. |
[38] | ZHIPONOVA M K, MOROHASHI K, VANHOUTTE I, MACHEMER- NOONAN K, REVALSKA M, VAN MONTAGU M, GROTEWOLD E, RUSSINOVA E. Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop. Proceedings of the National Academy of Sciences of the United States of America, 2014, 18, 111(7): 2824-2829. |
[39] |
STASWICK P E, SERBAN B, ROWE M, TIRYAKI I, MALDONADO M T, MALDONADO M C, SUZA W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3- acetic acid. The Plant Cell, 2005, 17(2): 616-627.
doi: 10.1105/tpc.104.026690 |
[40] | NAKAZAWA M, YABE N, ICHIKAWA T, YAMAMOTO YY, YOSHIZUMI T, HASUNUMA K, MATSUI M. DFL1, an auxin- responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. The Plant Journal, 2001, 25(2): 213-221. |
[41] |
LI Y, ZHENG L, CORKE F, SMITH C, BEVAN M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes & Development, 2008, 22(10): 1331-1336.
doi: 10.1101/gad.463608 |
[42] |
XIA T, LI N, DUMENIL J, LI J, KAMENSKI A, BEVAN M W, GAO F, LI Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant Cell, 2013, 25(9): 3347-3359.
doi: 10.1105/tpc.113.115063 |
[43] |
VANHAEREN H, NAM Y J, DE MILDE L, CHAE E, STORME V, WEIGEL D, GONZALEZ N, INZÉ D. Forever Young: The role of ubiquitin receptor DA1 and E3 ligase BIG BROTHER in controlling leaf growth and development. Plant Physiology, 2017, 173(2): 1269-1282.
doi: 10.1104/pp.16.01410 |
[44] |
WANG J L, TANG M Q, CHEN S, ZHENG X F, MO H X, LI S J, WANG Z, ZHU K M, DING L N, LIU S Y, LI Y H, TAN X L. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnology Journal, 2017, 15(8): 1024-1033.
doi: 10.1111/pbi.2017.15.issue-8 |
[45] |
LIU H, LI H, HAO C, WANG K, WANG Y, QIN L, AN D, LI T, ZHANG X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2020, 18(5): 1330-1342.
doi: 10.1111/pbi.v18.5 |
[1] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[2] | ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081. |
[3] | LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768. |
[4] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[5] | LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499. |
[6] | WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277. |
[7] | ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326. |
[8] | YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047. |
[9] | SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944. |
[10] | WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260. |
[11] | XiaoShuai HAO,MengMeng FU,ZaiDong LIU,JianBo HE,YanPing WANG,HaiXiang REN,DeLiang WANG,XingYong YANG,YanXi CHENG,WeiGuang DU,JunYi GAI. Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population [J]. Scientia Agricultura Sinica, 2020, 53(9): 1717-1729. |
[12] | WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523. |
[13] | ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238. |
[14] | ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213. |
[15] | HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132. |
|