Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4033-4047.doi: 10.3864/j.issn.0578-1752.2021.19.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat

YAN YongLiang1,2(),SHI XiaoLei2,ZHANG JinBo2,GENG HongWei3,XIAO Jing2,LU ZiFeng2,NI ZhongFu1,CONG Hua2()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
    2Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
    3College of Agriculture, Xinjiang Agricultural University/Key Laboratory of Agricultural Biological Technology, Urumqi 830052
  • Received:2021-02-01 Accepted:2021-03-17 Online:2021-10-01 Published:2021-10-12
  • Contact: Hua CONG E-mail:yanliang198279@163.com;huacong0924@126.com

Abstract:

【Objective】Identify SNPs and candidate genes that are significantly related to wheat grain quality traits, and reveal their genetic mechanism. 【Method】In this study, 298 introduced varieties (lines), Xinjiang landrace (lines) and Xinjiang bred varieties (lines) were used for an association population. Seven grain quality traits, including protein content (PRC), wet gluten content (WGC), sedimentation value (SV), starch content (STC), grain hardness (GH), flour yield (FY) and test weight (TW), were measured under five environments. Based on phenotypes of seven quality traits and genotypes of 55K SNP markers in this population, the Q+K association mixed model was used for genome-wide association analysis to obtain significantly associated SNP loci.【Result】The coefficients of variation of the seven grain quality traits of introduced varieties (lines), landraces and bred varieties (lines) under different environments were 1.3%-13.4%, 1.1%-18.6% and 1.0%-13.9%, respectively. Among them, the protein content, wet gluten content and sedimentation value of introduced varieties (lines) have the highest coefficient of variation (CV); Xinjiang bred varieties (lines) have the largest CV of starch content, grain hardness and flour yield. Whereas, for other six grain quality traits, including protein content, wet gluten content, sedimentation value, starch content, grain hardness, and the coefficients of variation of Xinjiang landraces are all between those of the introduced varieties (lines) and Xinjiang bred varieties (lines). Population structure analysis showed that 298 wheat varieties (lines) can be divided into 3 subgroups. Subgroup 1 contains 128 (43.0%) the materials mainly from landrace (lines); Subgroup 2 has 24 (8.1%) materials, mainly including introduced varieties (lines) and landraces; Subgroup 3 contains 146 (48.9%) materials, mainly introduced varieties (lines). The linkage disequilibrium analysis showed that the LD attenuation distances of the A, B and D genomes and the whole genome respectively were 10, 10, 6 and 8 Mb, according to the LD attenuation distance of the whole genome, the loci in the 8 Mb interval after the physical map were identified as a candidate loci. A total of 85 loci were simultaneously detected in two or more environments, that were significantly associated with 7 wheat grain quality traits detected by GWAS, with a contribution rate of 3.7%-10.9%. Stable SNPs associated with multiple traits were detected on chromosomes 1B, 1D, 2D, 3A, 3D, 4A, 4B, 5A, 6A, 6D, 7A and 7D. Among them, AX-109452823-AX-110545157 on chromosome 7A is related to protein content, starch content, wet gluten content, sedimentation value, flour yield and grain hardness, and was detected across four environments. Candidate genes at stable loci associated with multiple traits were searched, and 10 candidate genes that might be related to wheat grain quality were screened. Among them, TraesCS4A01G299800 (cationic amino acid transporter), TraesCS7A01G059500 (tryptophan decarboxylase), TraesCS7A01G331200, TraesCS7D01G418700 (xyloglucan endoglucosylase/hydrolase) play important roles in regulating the amino acid content in wheat grains.【Conclusion】The 85 loci were simultaneously detected in two or more environments, and 10 candidate genes related to wheat grain quality traits were predicted.

Key words: wheat, quality traits, genome-wide association analysis, SNP, candidate genes

Table 1

Phenotypic variation of quality traits of wheat in spring wheat"

性状
Trait
环境
Environment
最大值 Max 最小值 Min 平均值 Mean 标准差 SD 变异系数 CV (%)
外引种
Introduced varieties
地方种
Xinjiang landrace
育成种
Xinjiang bred varieties
外引种
Introduced varieties
地方种
Xinjiang landrace
育成种
Xinjiang bred varieties
外引种
Introduced varieties
地方种
Xinjiang landrace
育成种
Xinjiang bred varieties
外引种
Introduced varieties
地方种
Xinjiang landrace
育成种
Xinjiang bred varieties
外引种
Introduced varieties
地方种
Xinjiang landrace
育成种
Xinjiang bred varieties
蛋白质
含量
PRC
(%)
E1 22.60 22.03 19.79 13.96 13.40 14.22 18.67 16.53 16.81 1.70 1.71 1.51 9.13 10.36 8.98
E2 21.40 23.24 19.97 14.72 13.18 12.93 17.95 16.16 15.80 1.42 1.87 1.15 7.89 11.60 7.27
E3 22.02 22.79 18.84 13.92 13.24 13.48 17.61 16.17 15.45 1.38 1.48 1.14 7.84 9.12 7.40
E4 20.79 21.83 19.71 13.99 12.37 13.18 16.60 16.18 15.85 1.42 1.58 1.15 8.54 9.74 7.28
E5 23.13 22.72 18.51 15.03 15.16 14.59 18.59 17.68 16.45 1.35 1.39 0.91 7.26 7.87 5.54
湿面筋
含量
WGC
(%)
E1 51.27 50.05 45.15 31.90 29.18 31.43 42.03 36.76 37.93 3.88 4.19 3.29 9.23 11.40 8.68
E2 48.52 52.90 45.46 33.19 28.44 27.97 40.39 35.88 35.80 3.33 4.57 2.72 8.23 12.73 7.61
E3 50.05 52.44 43.09 31.76 28.97 29.88 39.90 36.09 35.35 3.21 3.58 2.66 8.05 9.93 7.52
E4 46.74 49.74 44.84 31.84 26.92 29.13 37.61 36.17 36.14 3.18 3.76 2.67 8.46 10.39 7.39
E5 52.26 51.98 40.80 34.31 33.33 32.40 41.84 39.54 37.67 3.11 3.41 2.07 7.42 8.61 5.51
沉降值
SV
(mL)
E1 62.27 63.12 51.69 31.06 26.64 30.23 46.69 39.78 39.17 6.00 6.40 4.82 12.86 16.08 12.31
E2 58.03 60.47 45.38 30.57 23.30 25.38 42.61 35.93 34.05 4.74 6.68 3.63 11.13 18.58 10.67
E3 56.52 59.74 42.38 27.60 22.37 23.75 38.62 34.86 30.38 5.19 5.90 4.22 13.44 16.93 13.88
E4 50.56 57.78 43.56 25.21 18.66 25.09 38.54 35.72 32.19 4.83 6.40 3.98 12.52 17.93 12.37
E5 56.48 64.21 47.12 26.42 29.08 28.06 38.32 39.66 35.16 4.90 5.36 3.63 12.78 13.51 10.32
淀粉
含量
STC
(%)
E1 72.62 72.24 72.87 61.06 57.76 65.01 66.35 68.71 69.51 2.46 2.35 1.51 3.71 3.42 2.17
E2 72.35 72.92 73.93 61.90 61.81 65.98 68.22 70.07 70.78 1.89 1.74 1.32 2.77 2.49 1.86
E3 71.73 71.50 72.66 60.33 62.54 66.05 67.45 68.27 70.24 1.77 1.63 1.28 2.62 2.39 1.82
E4 73.21 73.24 72.89 64.26 60.94 65.63 69.27 69.14 69.98 1.84 1.85 1.33 2.65 2.68 1.91
E5 70.07 70.25 70.54 59.80 61.63 66.97 65.90 66.75 68.69 1.75 1.75 0.93 2.65 2.62 1.36
籽粒
硬度
GH
(%)
E1 75.02 69.37 75.17 51.99 49.51 55.72 61.66 58.76 65.97 4.99 4.36 4.09 8.10 7.42 6.20
E2 76.16 72.29 73.20 53.60 51.13 53.75 66.02 59.51 67.24 5.14 5.36 4.09 7.79 9.00 6.07
E3 69.44 67.07 70.07 53.35 49.54 54.14 61.56 56.27 64.42 3.92 3.97 3.34 6.37 7.05 5.18
E4 77.10 70.26 68.89 53.03 49.70 52.78 68.67 57.63 63.44 5.38 4.57 3.57 7.83 7.92 5.62
E5 70.30 73.12 70.65 45.98 48.64 53.29 57.97 55.55 63.51 5.56 4.28 3.66 9.59 7.70 5.76
出粉率
FY (%)
E1 74.36 73.44 75.22 62.39 57.47 66.46 68.42 69.57 72.06 2.71 2.19 1.82 3.96 3.14 2.52
E2 80.24 77.06 76.73 68.37 68.37 71.28 73.09 72.46 74.78 2.00 1.55 1.27 2.73 2.14 1.70
E3 77.41 74.34 74.16 67.10 66.82 69.34 71.12 69.89 72.51 1.59 1.41 1.22 2.24 2.02 1.68
E4 76.55 75.40 76.93 68.18 67.33 69.93 72.43 70.84 73.18 1.77 1.55 1.34 2.44 2.19 1.82
E5 75.38 74.65 73.72 67.38 64.45 67.53 71.20 68.55 70.51 1.68 1.56 1.34 2.36 2.28 1.90
容重
TW (g·L-1)
E1 823.25 821.55 828.75 751.62 732.95 779.65 790.40 794.85 804.72 15.07 13.20 11.08 1.91 1.66 1.38
E2 840.12 825.69 824.17 770.63 777.00 778.85 805.11 801.52 799.75 13.32 9.81 10.82 1.65 1.22 1.35
E3 818.22 817.23 825.58 756.64 771.87 788.60 796.16 795.10 804.40 10.67 9.08 8.39 1.34 1.14 1.04
E4 839.55 817.75 818.78 763.24 758.88 758.43 812.36 793.52 783.93 14.49 9.79 11.88 1.78 1.23 1.52
E5 824.60 821.85 822.48 774.59 764.13 771.23 796.36 796.72 797.77 11.27 9.84 9.69 1.42 1.24 1.21

Table 2

Analysis of variance of quality traits of spring wheat"

性状
Trait
基因型
Genotype
环境
Environment
基因型×环境
G×E
重复
Replicate
误差
Error
遗传力
H2
蛋白质含量PRC 30.50*** 323.25*** 2.71*** 28.92*** 0.94*** 0.92
湿面筋含量WGC 173.71*** 1575.75*** 14.49*** 138.56*** 5.07*** 0.92
沉降值SV 396.29*** 5503.76*** 38.53*** 482.08*** 12.76*** 0.91
淀粉含量STC 42.33*** 1067.05*** 4.58*** 50.85*** 1.38*** 0.90
籽粒硬度GH 406.19*** 4375.56*** 20.43*** 20.52*** 3.83*** 0.95
出粉率FY 41.49*** 1793.73*** 4.76*** 5.17*** 0.91*** 0.89
容重TW 1308.20*** 7599.86*** 267.46*** 247.03*** 54.04*** 0.82

Fig. 1

Population structure analysis of 298 wheat varieties (lines) A: Estimation of ∆K value in population; B: Group structure diagram"

Fig. 2

Linkage disequilibrium plot"

Table 3

Stable locus information with significant correlation of spring wheat quality traits"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
P
P value
表型贡献率
R2 (%)
环境
Environment
沉降值
SV (mL)
AX-109923777 1B 335.51 1.25E-05—4.48E-05 6.96—7.83 E4, E5
AX-109389304 1B 445.67 6.44E-05—4.57E-04 5.49—6.79 E4, E5
AX-94935157 1D 470.73—478.86 2.57E-05—3.85E-04 5.42—7.54 E2, E5
AX-109486695 3A 725.15 1.15E-04—5.59E-04 5.11—6.23 E2, E5
AX-108986146 3B 547.59 2.89E-05—3.18E-04 5.56—7.22 E4, E5
AX-111583589 4A 121.51 5.34E-05—7.95E-04 4.95—6.94 E4, E5
AX-110417316 4A 130.42 1.05E-05—6.22E-05 6.78—7.98 E4, E5
AX-111264892 4A 241.73 1.40E-04—2.24E-04 5.79—6.17 E4, E5
AX-109608730 4A 413.76 2.96E-05—3.05E-04 5.67—7.25 E4, E5
AX-109285136 4A 594.90—598.79 9.75E-05—8.96E-04 3.82—6.39 E2, E3, E4
AX-109834040 4A 609.82 2.7E-04—6.83E-04 4.98—5.65 E4, E5
AX-110002719 4B 43.56 2.69E-04—9.30E-04 3.79—4.69 E2, E4
AX-94513518 4B 556.06 2.13E-07—5.41E-04 5.24—10.89 E2, E3
AX-110023236 5A 30.66 7.47E-04—9.28E-04 4.80—4.95 E2, E4
AX-109374128 5A 600.17 7.45E-05—4.00E-04 5.43—6.61 E4, E5
AX-110149809 5B 554.32 2.12E-04—3.56E-04 5.45—5.92 E3, E5
AX-109983932 5B 604.61 5.60E-04—5.87E-04 5.15—5.18 E2, E3
AX-109402563 5D 28.88 3.63E-05—1.86E-04 6.05—7.11 E4, E5
AX-110082918 5D 529.22 5.79E-05—3.09E-04 5.57—6.72 E4, E5
AX-109512342 6A 25.80—28.33 3.91E-05—4.89E-04 5.25—7.11 E2, E3, E4, E5
AX-94564307 6D 21.98 4.64E-05—7.11E-04 4.98—6.93 E2, E4
AX-111614875 6D 70.62 3.43E-05—1.81E-04 5.96—7.10 E4, E5
AX-109452823 7A 26.47—32.70 5.93E-05—9.46E-04 3.72—6.34 E1, E2, E4, E5
AX-109477546 7B 155.48—159.71 1.99E-05—7.71E-04 5.03—10.36 E2, E3, E4, E5
AX-94420739 7D 540.87 9.04E-04—9.43E-04 4.83—5.08 E2, E4
出粉率
FY (%)
AX-109428041 1A 22.48 4.14E-04—7.46E-04 5.02—5.24 E3, E5
AX-94802245 1D 73.73—77.36 1.14E-04—1.00E-03 4.88—6.34 E3, E4
AX-111099555 2B 18.94—24.13 5.37E-05—3.64E-04 4.42—5.72 E3, E4
AX-111040045 4A 632.76-659.66 1.51E-04—9.74E-04 3.83—5.96 E3, E5
AX-110671478 6A 3.80—6.57 3.32E-06—9.73E-04 3.78—7.77 E3, E4
AX-111534875 6A 5.51—12.28 1.44E-05—3.98E-04 5.61—7.91 E1, E3, E4
AX-111745518 6A 17.54—24.41 1.51E-04—4.85E-04 6.14—6.15 E1, E4
AX-111611885 6D 2.49—5.82 1.57E-04—7.67E-04 5.00—6.14 E3, E4
AX-111076418 7A 8.91—12.44 1.70E-04—8.12E-04 3.75—5.14 E4, E5
蛋白质含量
PRC (%)
AX-94935157 1D 470.73—478.18 8.52E-04—9.52E-04 3.85—4.77 E2, E4
AX-94694898 2B 620.64 2.57E-04—8.16E-04 4.87—5.71 E2, E4
AX-111218282 2D 523.36 3.71E-04—8.94E-04 4.82—5.47 E2, E4
AX-94589328 2D 624.10 6.02E-04—8.85E-04 5.10—5.12 E2, E4
AX-110442313 3A 510.31—510.60 2.91E-04—8.05E-04 4.88—5.62 E2, E4
AX-110002719 4B 43.56 1.20E-04—2.83E-04 4.59—5.13 E2, E4, E5
AX-111560874 5B 10.50 1.38E-04—5.85E-04 5.11—6.15 E2, E4
AX-109300733 6A 12.28—17.54 5.03E-05—8.33E-04 4.87—6.98 E2, E4
AX-95194586 6D 77.52 3.12E-04—9.12E-04 4.97—5.68 E2, E4
AX-111654743 7A 32.00—32.70 8.79E-05—8.48E-04 3.83—5.30 E1, E2, E3, E5
AX-108797850 7B 453.77 2.79E-04—7.67E-04 4.93—5.66 E2, E4
AX-108753131 7D 534.44—540.87 3.72E-04—6.37E-04 5.17—5.70 E2, E4
AX-108974357 7D 566.20—566.23 4.25E-04—8.84E-04 4.99—5.36 E2, E4
AX-110945986 7D 609.24—610.23 2.75E-04—8.28E-04 4.97—5.68 E2, E3
淀粉含量
STC (%)
AX-95180100 1D 359.67 2.12E-05—2.57E-04 5.75—7.55 E4, E5
AX-94589328 2D 624.10—629.21 8.13E-05—8.67E-04 4.86—6.63 E1,E2
AX-109934763 3D 559.16—561.01 3.24E-05—9.76E-04 4.78—7.56 E1, E2
AX-110417316 4A 130.42—136.97 4.48E-04—8.12E-04 4.93—5.59 E1, E2
AX-109332913 4A 701.53 2.32E-04—7.15E-04 5.26—5.79 E1, E2
AX-110169414 5A 575.26 2.31E-04—5.72E-04 4.07—4.90 E1, E2
AX-110046517 6A 8.09—12.28 2.58E-05—8.16E-04 5.14—7.43 E1, E3
AX-111745518 6A 17.54 5.73E-04—8.12E-04 4.90—5.42 E1, E2
AX-108888443 6D 16.23—21.98 6.92E-04—9.04E-04 4.82—5.26 E1, E2
AX-110545157 7A 32.70 2.86E-04—7.03E-04 4.14—4.54 E1, E2
AX-108974357 7D 566.20—566.23 2.60E-04—7.07E-04 5.00—5.80 E1, E2
容重
TW (g·L-1)
AX-109301633 2A 84.15 4.89E-04—9.53E-04 4.50—5.44 E1, E3
AX-110173580 2A 697.04—698.01 2.69E-04—4.71E-04 4.23—6.47 E1, E2
AX-86184511 2B 158.15—164.43 2.03E-04—9.14E-04 4.53—4.79 E1, E4
AX-110946610 4A 608.03—616.89 7.28E-04—7.84E-04 3.93—4.71 E1, E2
AX-109947431 5B 672.48—678.51 2.29E-04—6.26E-04 5.26—5.84 E3, E5
AX-110402876 7D 626.92 3.38E-04—4.10E-04 5.43—5.56 E2, E5
湿面筋含量
WCG (%)
AX-110002719 4B 43.56 1.27E-04—3.97E-04 4.32—5.06 E2, E4, E5
AX-111560874 5B 10.50 2.83E-04—9.94E-04 4.71—5.61 E2, E4
AX-111745518 6A 17.54—25.80 3.01E-04—6.74E-04 4.97—5.75 E2, E4
AX-111654743 7A 32.00—32.70 7.64E-05—7.13E-04 4.72—5.35 E1, E2
AX-94420739 7D 540.87 6.47E-04—6.52E-04 5.04—-5.22 E2, E4
籽粒硬度
GH (%)
AX-111107679 1A 476.08—483.94 1.32E-04—6.54E-04 4.92—5.01 E4, E5
AX-110918237 1A 487.48—489.18 5.71E-05—8.41E-04 4.76—6.59 E4, E5
AX-109499408 1A 496.31—500.66 1.77E-04—6.78E-04 3.94—5.91 E3, E5
AX-110369038 1B 627.15—628.51 3.72E-04—9.45E-04 3.81—4.74 E1, E2, E3
AX-94534666 1D 457.15—457.95 3.16E-06—5.85E-04 4.01—7.42 E2, E3, E5
AX-111636440 2A 505.33—507.36 1.45E-04—9.12E-04 3.92—5.34 E1, E3
AX-94447403 2D 439.44 5.38E-04—7.59E-04 4.84—5.39 E1, E3
AX-111640432 3A 728.42—731.08 1.70E-04—5.00E-04 4.12—4.76 E2, E3, E5
AX-110951756 3B 7.08 7.16E-06—8.58E-04 4.73—8.11 E2, E3
AX-111018209 3D 553.59—560.75 3.97E-04—8.39E-04 4.98—5.28 E1, E5
AX-111031457 5A 571.71—571.94 9.82E-05—1.82E-04 4.72—5.12 E3, E5
AX-108945948 6A 9.14—13.06 1.00E-04—9.09E-04 5.00—6.02 E1, E5
AX-108802871 7A 10.09—16.64 2.96E-04—8.09E-04 4.32—5.85 E1, E5
AX-111664463 7A 123.20—127.55 8.90E-05—6.93E-04 3.86—6.29 E4, E5
AX-110495496 7A 484.39—489.95 2.30E-04—9.39E-04 3.72—5.65 E3, E4, E5

Table 4

Stable loci significantly associated with multiple quality traits"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
P
P value
表型贡献率
R2 (%)
环境
Environment
沉降值,蛋白质含量
SV, PRC
AX-94935157 1D 470.73—478.86 2.57E-05—9.52E-04 3.85—7.54 E2, E4, E5
淀粉含量,蛋白质含量
STC, PRC
AX-94589328 2D 624.10—629.21 8.13E-05—8.85E-04 4.86—6.63 E1, E2, E4
籽粒硬度,沉降值
GH, PRC
AX-111640432 3A 725.15—731.08 1.15E-04—5.59E-04 4.12—6.23 E2, E3, E5
籽粒硬度,淀粉含量
GH, STC
AX-111018209 3D 553.59—561.01 3.24E-05—9.76E-04 4.78—7.56 E1, E2, E5
淀粉含量,沉降值
STC, SV
AX-110417316 4A 130.42—136.97 1.05E-05—8.12E-04 4.93—7.98 E1, E2, E4, E5
容重,沉降值
TW, SV
AX-110946610 4A 608.03—616.89 2.70E-04—7.84E-04 3.93—5.65 E1, E2, E4, E5
沉降值,蛋白质含量,湿面筋含量
SV, PRC, WGC
AX-110002719 4B 43.56 1.20E-04—9.30E-04 3.79—5.13 E2, E4, E5
籽粒硬度,淀粉含量
GH, STC
AX-111031457 5A 571.71—575.26 9.82E-05—5.72E-04 4.07—5.12 E1, E2, E3, E5
蛋白质含量,湿面筋含量
PRC, WGC
AX-111560874 5B 10.50 1.38E-04—9.94E-04 4.71—6.15 E2, E4
出粉率,淀粉含量,籽粒硬度
FY, STC, GH
AX-111534875 6A 5.51—12.28 1.44E-05—9.09E-04 5.00—7.91 E1, E3, E4, E5
淀粉含量,蛋白质含量
STC, PRC
AX-111745518 6A 12.28—17.54 5.03E-05—8.33E-04 4.87—6.98 E1, E2, E4
出粉率,湿面筋含量
FY, WGC
AX-111745518 6A 17.54—25.80 1.51E-04—6.74E-04 4.97—6.15 E1, E2, E4
淀粉含量,沉降值
STC, SV
AX-108888443 6D 16.23—21.98 4.64E-05—9.04E-04 4.82—5.69 E1, E2, E4
沉降值,蛋白质含量
SV, PRC
AX-111614875 6D 70.62—77.52 3.43E-05—9.12E-04 4.97—7.10 E2, E4, E5
籽粒硬度,出粉率
GH, FY
AX-108802871 7A 8.91—16.64 1.70E-04—8.12E-04 3.75—5.85 E1, E4, E5
沉降值,淀粉含量,蛋白质含量,湿面筋含量 SV, STC, PRC, WGC AX-109452823 7A 26.47—32.70 5.93E-05—9.46E-04 3.72—6.34 E1, E2, E3, E4, E5
沉降值,湿面筋含量,蛋白质含量
SV, WGC, PRC
AX-94420739 7D 534.44—540.87 3.72E-04—9.43E-04 4.83—5.70 E2, E4
蛋白质含量,淀粉含量
PRC, STC
AX-108974357 7D 566.20—566.23 2.60E-04—8.84E-04 4.99—5.80 E1, E2, E4

Table 5

Selection of stable sites and information of candidate genes"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
沉降值
SV
AX-109285136 4A 594.90—598.79 TraesCS4A01G299800 阳离子氨基酸转运蛋白,推定
Cationic amino acid transporter, putative
AX-109512342 6A 25.80—28.33 TraesCS6A01G054400 box家族蛋白 F-box family protein
蛋白质含量,沉降值
PRC, SV
AX-109452823 7A 26.47—32.70 TraesCS7A01G059500 色氨酸脱羧酶
Tryptophan decarboxylase
出粉率
FY
AX-111534875 6A 5.51—12.28 TraesCS6A01G012800 富含亮氨酸的重复受体样蛋白激酶家族蛋白
Leucine-rich repeat receptor-like protein kinase family protein
湿面筋含量,
蛋白质含量 WGC, PRC
AX-110002719 4B 43.56 TraesCS4B01G054200 组蛋白H2B
Histone H2B
籽粒硬度
GH
AX-94534666 1D 457.15—457.95 TraesCS1D01G382000 锌指状蛋白 Zinc finger protein-like
AX-111640432 3A 728.42—731.08 TraesCS3A01G507800 含螺旋结构域的蛋白Coiled-coil domain-containing protein
AX-110495496 7A 484.39—489.95 TraesCS7A01G331200 木葡聚糖内转葡糖基酶/水解酶
Xyloglucan endotransglucosylase/hydrolase
蛋白质含量
PRC
AX-108974357 7D 566.20—566.23 TraesCS7D01G445400 ATP依赖性Clp蛋白酶ATP结合亚基
ATP-dependent Clp protease ATP-binding subunit
AX-108753131 7D 534.44—540.87 TraesCS7D01G418700 木葡聚糖内转葡糖基酶/水解酶
Xyloglucan endotransglucosylase/hydrolase
[1] 王立祥, 廖允成. 中国粮食问题. 北京: 阳光出版社, 2012.
WANG L X, LIAO Y C. Food Issues in China. Beijing: Sunshine Press, 2012. (in Chinese)
[2] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018(4):1-7.
ZHAO G C, CHANG X H, WANG D M, TAO Z Q, WANG Y J, YANG Y S, ZHU Y J. General situation and development of wheat production. Crops, 2018(4):1-7. (in Chinese)
[3] 燕丽, 王志忠, 郑文寅, 张文明, 郭文善, 姚大年. 基因型和环境对安徽小麦品质性状的影响. 麦类作物学报, 2016, 36(11):1497-1501.
YAN L, WANG Z Z, ZHENG W Y, ZHANG W M, GUO W S, YAO D N. Effects of genotype and environment on wheat quality in Anhui province. Journal of Triticeae Crops, 2016, 36(11):1497-1501. (in Chinese)
[4] 关二旗, 魏益民, 张波, 郭进考, 张国权, 刘彦军, 罗勤贵, 班进福. 黄淮冬麦区部分区域小麦品种构成及品质性状分析. 中国农业科学, 2012, 45(6):1159-1168.
GUAN E Q, WEI Y M, ZHANG B, GUO J K, ZHANG G Q, LIU Y J, LUO Q G, BAN J F. Analysis of the variety composition and quality properties of wheat in a part of the Yellow-Huai river zone. Scientia Agricultura Sinica, 2012, 45(6):1159-1168. (in Chinese)
[5] 张爱民, 李欣, 刘冬成, 孙家柱, 阳文龙. 品质支撑农作物产业与未来发展. 中国农业科学, 2016, 49(22):4265-4266.
ZHANG A M, LI X, LIU D C, SUN J Z, YANG W L. Quality-the future of crop production. Scientia Agricultura Sinica, 2016, 49(22):4265-4266. (in Chinese)
[6] 郭利建, 王竹林, 汪世娟, 刘振华, 刘香利, 胡胜武, 赵惠贤. 基于SRAP和SSR标记的小麦品质相关性状的QTL定位. 麦类作物学报, 2016, 36(10):1275-1282.
GUO L J, WANG Z L, WANG S J, LIU Z H, LIU X L, HU S W, ZHAO H X. QTL mapping of wheat grain quality traits based on SRAP and SSR marker. Journal of Triticeae Crops, 2016, 36(10):1275-1282. (in Chinese)
[7] 刘建军, 何中虎, 赵振东, 宋建民, 刘爱峰. 小麦面条加工品质研究进展. 麦类作物学报, 2001(2):81-84.
LIU J J, HE Z H, ZHAO Z D, SONG J M, LIU A F. Review of noodle industrial quality of wheat. Journal of Triticeae Crops, 2001(2):81-84. (in Chinese)
[8] 陈锋, 何中虎, 崔党群, 赵武善, 张艳, 王德森. 利用近红外透射光谱技术测定小麦品质性状的研究. 麦类作物学报, 2003(3):1-4.
CHEN F, HE Z H, CUI D Q, ZHAO W S, ZHANG Y, WANG D S. Measurement of wheat quality traits by near infrared transmittance spectroscopy. Journal of Triticeae Crops, 2003(3):1-4. (in Chinese)
[9] 关二旗, 魏益民, 张波. 小麦籽粒品质与基因型及环境条件的关系. 麦类作物学报, 2010, 30(5):963-969.
GUAN E Q, WEI Y M, ZHANG B. Relationships between wheat kernel quality and genotype as well as environmental conditions. Journal of Triticeae Crops, 2010, 30(5):963-969. (in Chinese)
[10] 信志红, 郭建平, 谭凯炎, 刘凯文, 杨荣光, 张利华, 孙义. 冬小麦籽粒品质评价及其对气象因子的响应研究. 中国生态农业学报, 2019, 27(8):1205-1217.
XIN Z H, GUO J P, TAN K Y, LIU K W, YANG R G, ZHANG L H, SUN Y. Evaluation of grain quality of winter wheat and its response to meteorological factors. Chinese Journal of Eco-Agriculture, 2019, 27(8):1205-1217. (in Chinese)
[11] NELSON J C, ANDREESCU C, BRESEGHELLO F, FINNEY P L, GUALBERTO D G, BERGMAN C, PENA R J, PERRETANT M R, LEROY P, QUALSET C O, SORRELLS M E. Quantitative trait locus analysis of wheat quality traits. Euphytica, 2006, 149:145-159.
doi: 10.1007/s10681-005-9062-7
[12] TURUSPEKOV Y, BAIBULATOVA A, YENMEKBAYEY K, TOKHETOVA L, CHUDINOV V, SEREDA G, GANAL M, GRIFFITHS S, ABUGALIEVA S. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan. BMC Plant Biology, 2017, 17(S1):51-61.
doi: 10.1186/s12870-017-0999-1
[13] LI H M, TANG Z X, ZHANG H Q, YAN B J, REN Z L. Major quality trait analysis and QTL detection in hexaploid wheat in humid rain-fed agriculture. Genetics and Molecular Research, 2013, 12(2):1740-1751.
doi: 10.4238/2013.May.21.5
[14] ECHEVENY-SOLARTE M, KUMAR A, KIANIAN S, SIMSEK S, ALAMRI M S, MANTOVANI E E, MCCLEAN P E, DECKARD E L, ELIAS E, SCHATZ B, XU S S, MERGOUM M. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary×non-supernumerary spikelet genotypes. Theoretical and Applied Genetics, 2015, 128(5):893-912.
doi: 10.1007/s00122-015-2478-0
[15] 吴云鹏, 张业伦, 肖永贵, 阎俊, 张勇, 张晓科, 张利民, 夏先春, 何中虎. 小麦重要品质性状的QTL定位. 中国农业科学, 2008, 41(2):331-339.
WU Y P, ZHANG Y L, XIAO Y G, YAN J, ZHANG Y, ZHANG X K, ZHANG L M, XIA X C, HE Z H. QTL mapping for important quality traits in common wheat. Scientia Agricultura Sinica, 2008, 41(2):331-339. (in Chinese)
[16] 黄梦豪, 刘天相, 强琴琴, 李春莲, 王中华. 基于SNP和SSR标记的小麦品质性状的QTL定位. 分子植物育种, 2019, 17(12):3966-3973.
HUANG M H, LIU T X, QIANG Q Q, LI C L, WANG Z H. QTL mapping of wheat grain quality traits based on SNP and SSR marker. Molecular Plant Breeding, 2019, 17(12):3966-3973. (in Chinese)
[17] WURSCHUM T, LANGER S M, LONGIN C F, KORZUN V, AKHUNOV E, EBMEYER E, SCHACHSCHNEIDER R, SCHACHT J, KAZMAN E, REIF J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126(6):1477-1486.
doi: 10.1007/s00122-013-2065-1
[18] MENG L, LI H, ZHANG L, WANG J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3):269-283.
doi: 10.1016/j.cj.2015.01.001
[19] 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新. 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004, 26(4):529-531.
CHEN K S, LI F, XU C J, ZHANG S L, FU C X. Modified CTAB method for extraction of genome DNA from perennial plant tissues. Hereditas, 2004, 26(4):529-531. (in Chinese)
[20] WANG S X, ZHU Y L, ZHANG D X, SHAO H, LIU P, HU J B, ZHANG H, ZHANG H P, CHANG C, LU J, XIA X C, SUN Z L, MA C X. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE, 2017, 12(11):1-14.
[21] ZHU C S, GORE M, BUCKLER E S, BUCKLER, YU J M. Status and prospects of association mapping in plants. The Plant Genome, 2008, 1(1):5-20.
[22] YU J, PRESSOIR G, BRIGGS W H, BI I V, YAMASAKI M, DOEBIEY J F, MCMULLEN M D, GAUT B S, NIELSEN D M, HOLLAND J B, KRESOVICH S, BUCKLER E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006, 38(2):203-208.
doi: 10.1038/ng1702
[23] 翟俊鹏, 李海霞, 毕惠惠, 周思远, 罗肖艳, 陈树林, 程西永, 许海霞. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45(10):1488-1502.
ZHAI J P, LI H X, BI H H, ZHOU S Y, LUO X Y, CHEN S L, CHENG X Y, XU H X. Genome-wide association study for main agronomic traits in common wheat. Acta Agronomica Sinica, 2019, 45(10):1488-1502. (in Chinese)
[24] BRESEGHELLO F, SORRELLS M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172(2):1165-1177.
doi: 10.1534/genetics.105.044586
[25] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21(2):431-445.
ZHOU S Y, BI H H, CHENG X Y, ZHANG X R, RUN Y H, WANG H H, MAO P J, LI H X, XU H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. Journal of Plant Genetic Resources, 2020, 21(2):431-445. (in Chinese)
[26] 张金波, 严勇亮, 王小波, 路子峰, 肖菁, 彭惠茹, 丛花. 新疆春小麦育成品种遗传演变分析. 新疆农业科学, 2020, 57(3):418-426.
ZHANG J B, YAN Y L, WANG X B, LU Z F, XIAO J, PENG H R, CONG H. Analysis of the genetic evolution of cultivated spring wheat varieties in Xinjiang. Xinjiang Agricultural Sciences, 2020, 57(3):418-426. (in Chinese)
[27] 金欣欣, 姚艳荣, 贾秀领, 姚海坡, 申海平, 崔永增, 李谦. 基因型和环境对小麦产量、品质和氮素效率的影响. 作物学报, 2019, 45(4):635-644.
JIN X X, YAO Y R, JIA X R, YAO H B, SHEN H P, CUI Y Z, LI Q. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency. Acta Agronomica Sinica, 2019, 45(4):635-644. (in Chinese)
[28] 张影全, 唐娜, 张波, 景东林, 马永安, 魏益民. 冀南地区小麦籽粒品质现状及利用潜力分析. 麦类作物学报, 2018, 38(2):157-163.
ZHANG Y Q, TANG N, ZHANG B, JING D L, MA Y A, WEI Y M. Study on kernel quality property and processing potency of wheat in the south of Hebei province. Journal of Triticeae Crops, 2018, 38(2):157-163. (in Chinese)
[29] 吴新元, 芦静, 张新忠, 黄天荣, 李建疆, 周安定, 梁晓东, 曹俊梅, 高永红, 曾潮武. 新疆小麦品质生态区划研究. 新疆农业科学, 2017, 54(8):1373-1383.
WU X Y, LU J, ZHANG X Z, HUANG T R, LI J J, ZHOU A D, LIANG X D, CAO J M, GAO Y H, ZENG C W. Study of ecological division for wheat quality in Xinjiang. Xinjiang Agricultural Sciences, 2017, 54(8):1373-1383. (in Chinese)
[30] 杨林, 吴青霞, 邵慧, 冉从福, 余静, 李立群, 李学军. 小麦籽粒品质性状的QTL分析. 西北植物学报, 2013, 33(8):1574-1583.
YANG L, WU Q X, SHAO H, RAN C F, YU J, LI L Q, LI X J. QTL mapping for grain quality traits in wheat. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8):1574-1583. (in Chinese)
[31] LOU H Y, ZHANG R Q, LIU Y T, GUO D D, ZHAI S S, CHEN A Y, ZHANG Y F, XIE C J, YOU M S, PENG H R, LIANG R Q, NI Z F, SUN Q X, LI B Y. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing condition. Theoretical and Applied Genetics, 2021, 134:399-418
doi: 10.1007/s00122-020-03704-y
[32] 沈玮囡, 王竹林, 杨睿, 李美霞, 梁子英, 奚亚军, 孙风丽, 刘曙东. 波兰小麦品系XN555×普通小麦品系中13衍生重组自交系(RILs)群体中籽粒品质相关性状QTL定位. 农业生物技术学报, 2014, 22(5):561-571.
SHEN W N, WANG Z L, YANG R, LI M X, LIANG Z Y, XI Y J, SUN F L, LIU S D. QTL analysis of grain quality related traits using recombinant inbred lines (RILs) derived from the cross of Triticum polonicum L. line XN555×T. aestivum L. line Zhong 13. Journal of Agricultural Biotechnology, 2014, 22(5):561-571. (in Chinese)
[33] 贾鑫磊, 何贝轩, 郭丹丹, 郭美丽. 膨胀素和木葡聚糖内转葡糖基酶/水解酶基因的功能研究进展. 植物生理学报, 2018, 54(11):1659-1668.
JIA X L, HE B X, GUO D D, GUO M L. Research progress in the function of expansins and xyloglucan endotransglucosylase/hydrolase. Plant Physiology Journal, 2018, 54(11):1659-1668. (in Chinese)
[34] MIEDES E, ZARRA I, HOSON T, HERBERS K, SONNEWALD U, LORENCES E P. Xyloglucan endotransglucosylase and cell wall extensibility. Journal of Plant Physiology, 2011, 168(3):196-203.
doi: 10.1016/j.jplph.2010.06.029
[35] XU P, CAI X T, WANG Y, XING L, CHEN Q, XIANG C B. HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in Arabidopsis. Journal of Experimental Botany, 2014, 65(15):4285-4295.
doi: 10.1093/jxb/eru202
[36] HAN Y, HAN S, BAN Q, HE Y H, JIN M J, RAO J P. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants. Plant Cell Reports, 2017, 36:583-596.
doi: 10.1007/s00299-017-2105-4
[37] 茹京娜, 于太飞, 陈隽, 陈明, 周永斌, 马有志, 徐兆师, 闵东红. 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选. 中国农业科学, 2017, 50(13):2411-2422.
RU J N, YU T F, CHEN Y, CHEN M, ZHOU Y B, MA Y Z, XU Z S, MIN D H. TaDi19A of zinc finger transcription factors in wheat in response to low temperature. Scientia Agricultura Sinica, 2017, 50(13):2411-2422. (in Chinese)
[38] 魏春茹, 孟钰玉, 范润侨, 赵梦伊, 于秀梅, 赵伟全, 康振生, 刘大群. 小麦F-box/Kelch类基因TaFKOR23的抗逆相关表达模式及分子互作蛋白鉴定. 植物遗传资源学报, 2020, 21(3):695-705.
WEI C R, MENG Y Y, FAN R Q, ZHAO M Y, YU X M, ZHAO W Q, KANG Z S, LIU D Q. Stress-related expression profile of F-box/Kelch gene TaFKOR23 in wheat and molecular characterization of the interacting target protein. Journal of Plant Genetic Resources, 2020, 21(3):695-705. (in Chinese)
[39] 邱丽丽, 赵琪, 张玉红, 戴绍军. 植物质膜蛋白质组的逆境应答研究进展. 植物学报, 2017, 52(2):128-147.
doi: 10.11983/CBB16001
QIU L L, ZHAO Q, ZHANG Y H, DAI S J. Advances in adversity response in proteome of plant plasma membrane. Chinese Bulletin of Botany, 2017, 52(2):128-147. (in Chinese)
doi: 10.11983/CBB16001
[40] 陈雪燕, 王灿国, 程敦公, 李豪圣, 宋健民, 刘爱峰, 王利彬, 董爽爽, 赵振东, 刘建军, 曹新有. 小麦加工品质相关贮藏蛋白、基因及其遗传改良研究进展. 植物遗传资源学报, 2018, 19(1):1-9.
CHEN X Y, WANG C G, CHENG D G, LI H S, SONG J M, LIU A F, WANG L B, DONG S S, ZHAO Z D, LIU J J, CAO X Y. Research progress on wheat processing quality related storage proteins, genes and genetic improvement. Journal of Plant Genetic Resources, 2018, 19(1):1-9. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[6] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[7] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[8] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[9] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[10] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[11] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[12] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[13] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[14] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!