Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2485-2499.doi: 10.3864/j.issn.0578-1752.2022.13.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Ear Related Traits in Maize Hybrids

LI Ting(),DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan(),XU ShuTu()   

  1. College of Agronomy, Northwest A&F University/Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Yangling 712100, Shaanxi
  • Received:2022-01-23 Accepted:2022-03-07 Online:2022-07-01 Published:2022-07-08
  • Contact: JiQuan XUE,ShuTu XU E-mail:ltstime@163.com;xjq2934@163.com;shutuxu@nwafu.edu.cn

Abstract:

【Objective】Ear traits are important components of grain yield in maize. Dissecting their genetic basis and mining significant SNPs using genome-wide association study (GWAS) can provide references for cloning functional genes and breeding high-yield maize varieties. 【Method】A total of 115 superior inbred lines from Shaan A group and Shaan B group, as well as four domestic backbone lines were selected as parents. Based on NCⅡ genetic design, an association population consisting of 442 hybrids was constructed, which was planted in two different environments to collect phenotype data of ear traits. Meanwhile, all parental lines were sequenced by the tunable genotyping by sequencing (tGBS) protocols. According to the genotype of inbred lines, altogether 19 461 high-quality SNPs were inferred in the association population. Then, GWAS was performed using 19 461 SNPs and phenotype data by three models including additive, dominance and epistasis, respectively. Combining with the transcriptome data of maize ear related tissues in the public database and the annotation information of genes, candidate genes were predicted. 【Result】Phenotypic data analysis showed that eight ear traits followed a continuous distribution, and there were 3.78%-45.25% of phenotypic variation. Analysis of variance indicated that environment and genotype effects reached an extremely significant level (P<0.001), and the range of broad-sense heritability was from 54.15% to 68.89%. And there were significantly positive or negative correlations among ear traits of hybrids. In total, 16, 3, 79 significant SNPs/pairs were identified under additive, dominant, and epistatic models, respectively. The significant loci detected by the three models cumulatively explained 38.21%-60.69% of the phenotypic variation of each trait. The cumulative phenotypic variation of significant SNP detected by additive model and epistatic model was 0.00-41.26% and 15.18%-45.36%, respectively. Effect analysis of significant SNPs identified by additive and dominant models showed most SNPs with additive or partial dominance effects, and only two with over-dominance effects. Further, only seven single-SNPs and five interaction pairs explained more than 5% of the phenotypic variation, and 17 candidate genes were predicted based on the SNP locations and gene expression information. 【Conclusion】Ear traits of maize hybrids were mainly affected by additive and epistasis effects, but less by dominance effects. Multiple SNPs identified by additive and dominant models showed additive and partially dominance effects, and aggregating favorable alleles of these SNPs could improve the target traits.

Key words: maize, hybrids, ear traits, genome wide association study, genetic effect, candidate gene

Table 1

Descriptive statistics for ear traits of the association population under different environments in maize"

环境
Environment
性状
Trait
均值
Mean
最小值
Minimum
最大值
Maximum
标准差
SD
变异系数
CV (%)
偏度
Skew
峰度
Kurtosis
杨凌Yangling 穗长EL (cm) 14.46 10.85 18.78 1.27 8.81 0.22 0.34
结实长FL (cm) 12.94 9.29 18.44 1.53 11.82 0.39 0.18
穗行数ERN 15.14 12.00 18.80 1.08 7.13 0.12 0.03
行粒数KNR 27.16 18.20 36.20 2.97 10.94 0.06 -0.06
穗粗ED (cm) 4.33 3.72 4.91 0.21 4.79 0.25 -0.06
秃尖长BTL (cm) 1.52 0.02 4.42 0.69 45.25 0.63 0.86
结实率SSR (%) 89.36 70.11 99.86 4.92 5.50 -0.52 0.26
穗粒数KNE 410.73 254.80 576.92 49.85 12.14 0.11 -0.01
榆林Yulin 穗长EL (cm) 16.57 13.15 20.50 1.23 7.41 0.13 0.10
结实长FL (cm) 15.20 11.05 19.14 1.39 9.16 0.01 0.10
穗行数ERN 17.29 14.00 21.80 1.32 7.66 0.08 -0.18
行粒数KNR 33.03 24.70 41.50 2.67 8.07 0.07 0.12
穗粗ED (cm) 4.65 4.13 5.40 0.21 4.50 0.27 0.35
秃尖长BTL (cm) 1.38 0.07 3.15 0.55 39.90 0.31 0.07
结实率SSR (%) 91.66 80.39 99.56 3.47 3.78 -0.39 0.13
穗粒数KNE 570.30 420.32 748.80 58.25 10.21 0.03 -0.12
最佳线性无偏估计BLUE 穗长EL (cm) 15.52 13.00 18.78 1.06 6.84 0.29 0.06
结实长FL (cm) 14.08 10.95 18.36 1.26 8.92 0.32 -0.01
穗行数ERN 16.21 13.10 19.52 1.03 6.38 -0.07 -0.09
行粒数KNR 30.13 22.50 37.15 2.37 7.86 0.17 0.03
穗粗ED (cm) 4.49 4.05 5.05 0.17 3.88 0.23 0.25
秃尖长BTL (cm) 1.45 0.19 3.35 0.51 35.13 0.40 0.16
结实率SSR (%) 90.49 77.65 98.84 3.49 3.86 -0.40 0.07
穗粒数KNE 490.97 347.00 619.70 45.57 9.28 0.08 -0.20

Fig. 1

Correlation coefficients among ear traits ***, ** and * indicate significant at the levels of P<0.001, P<0.01 and P<0.05, respectively. The same as below"

Table 2

Analysis of variance (ANOVA) for ear traits of the hybrid population in maize"

性状 Trait 基因型×环境 Line×Environment 基因型 Line 环境 Environment 广义遗传力 H2 (%)
穗长EL (cm) 0.32*** 0.64*** 2.28*** 60.45
结实长FL (cm) 0.36*** 0.99*** 2.59*** 65.78
穗长数ERN 0.18*** 0.71*** 2.34*** 68.89
行粒数KNR 1.13*** 3.24*** 17.39*** 61.43
穗粗ED (cm) 0.01*** 0.02*** 0.05*** 57.71
秃尖长BTL (cm) 0.04* 0.13*** 0.01*** 54.15
结实率SSR (%) 0.00* 0.00*** 0.00*** 56.39
穗粒数KNE 263.80* 1280.50*** 12878.90*** 65.24

Fig. 2

The significant SNPs were identified by additive, dominant and epistatic model A: Ear length; B: Fruit length; C: Ear row number; D: Kernel number per row; E: Ear diameter; F: Barren tip length; G: Seed setting ratio; H: Kernel number per ear. The orange circle represents chromosome, the number outside the orange circle represents chromosome 1 to 10, the red circle represents the results of additive model, the blue circle represents the results of dominant model, the green points indicate significant SNPs explaining at least 1% of phenotypic variation. The line in the center of plot refers to the result of epistatic model, red indicates additive×additive, blue indicates dominance×dominance, gray indicates additive×dominance or dominance×additive"

Table 3

Significant SNPs with PVE≥1% by additive and dominant models"

编号
Number
标记
SNP
染色体
Chromosome
位置
Position (bp)
基因型
Genotype
有利等位基因
Favorable allele
性状
Trait
P
<BOLD>P</BOLD> value
模型
Model
表型解释率
PVE (%)
? SNP_1 Chr.6:142154022 6 142154022 A/T AA*** EL 3.06E-05 Add 21.69
AA*** FL 9.52E-06 Add 18.79
AA*** KNR 2.75E-06 Add 16.88
SNP_2 Chr.7:10328617 7 10328617 T/C \ EL 5.71E-05 Add 1.97
? SNP_3 Chr.7:136117199 7 136117199 C/A AA*** EL 6.55E-07 Add 2.78
AA*** FL 4.30E-05 Add 6.81
SNP_4 Chr.7:139654593 7 139654593 G/A AA*** EL 8.53E-05 Add 1.77
? SNP_5 Chr.9:103073562 9 103073562 C/T CC*** EL 4.69E-05 Add 7.29
CC*** FL 3.22E-05 Add 9.24
? SNP_6 Chr.1:31507749 1 31507749 A/T TT*** FL 9.54E-06 Add 3.92
TT*** SSR 2.20E-05 Add 3.35
SNP_7 Chr.9:103896805 9 103896805 G/A AA*** FL 1.73E-05 Add 1.17
? SNP_8 Chr.9:142603978 9 142603978 C/T CC*** FL 6.76E-05 Add 1.33
CC*** KNR 8.59E-05 Add 1.85
SNP_9 Chr.1:63127746 1 63127746 C/T \ ERN 7.29E-05 Add 5.08
SNP_10 Chr.3:140533299 3 140533299 T/G \ ERN 9.24E-05 Add 22.21
SNP_11 Chr.5:217554704 5 217554704 A/G AA*** ERN 5.95E-05 Add 3.38
SNP_12 Chr.3:24937775 3 24937775 C/T TT*** ED 4.39E-05 Add 14.61
SNP_13 Chr.4:17756435 4 17756435 T/C \ ED 5.18E-05 Add 3.52
SNP_14 Chr.6:33388399 6 33388399 C/T TT*** ED 1.33E-05 Add 4.42
SNP_15 Chr.6:71642919 6 71642919 A/G \ ED 2.15E-05 Add 1.92
SNP_16 Chr.5:77126549 5 77126549 G/C GG*** KNE 9.17E-05 Add 8.61
SNP_17 Chr.7:174762752 7 174762752 T/C CT*** ED 1.95E-05 Dom 1.48
SNP_18 Chr.1:5822204 1 5822204 C/T TT*** BTL 1.02E-04 Dom 1.46
SNP_19 Chr.4:243712772 4 243712772 T/C TT* KNE 8.85E-06 Dom 1.78

Fig. 3

The accumulation of phenotypic variation explained of significant loci and the heterosis effect of non-epistatic loci A: The accumulation of phenotypic explanation rate of significant SNPs by different models; B: The effect analysis of significant SNPs detected by additive or dominant models. Epi: Epistasis; Dom: Dominance; Add: Additive; H2: Broad-sense heritability"

Fig. 4

Superior allele analysis for significant SNPs ns: Not significant at the levels of P<0.05. The same as below"

Fig. 5

Expression profiles of candidate genes in different tissues of maize inbred B73 from ZEAMAP"

Table 4

The detail information of candidate genes"

序号
Number
标记
SNP marker
类型
Type
性状
Trait
候选基因
Candidate gene
表型解释率
PVE (%)
注释
Annotation
SNP_1 Chr.6: 142154022 外显子Exon EL,FL,KNR Zm00001d037925 21.69 ASF/SF2样pre-mRNA剪接因子SRP31
ASF/SF2-like pre-mRNA splicing factor SRP31
SNP_3 Chr.7: 136117199 内含子Intron EL,FL Zm00001d020902 6.81 推测的DUF1664结构域家族蛋白
Putative DUF1664 domain family protein
SNP_5 Chr.9: 103073562 基因间区Intergenic EL,FL Zm00001d046716 9.24 RNA结合(RRM/RBD/RNP基序)家族蛋白
RNA-binding (RRM/RBD/RNP motifs) family protein
SNP_9 Chr.1: 63127746 内含子Intron ERN Zm00001d029226 5.08 菱形蛋白19 Rhomboid-like protein 19
SNP_10 Chr.3: 140533299 基因间区Intergenic ERN Zm00001d041847 22.21 SWI/SNF复合亚单位SWI3C-like
SWI/SNF complex subunit SWI3C-like
SNP_12 Chr.3: 24937775 基因间区Intergenic ED Zm00001d040051 14.61 ARM重复超家族蛋白
ARM repeat superfamily protein
SNP_16 Chr.5: 77126549 下游Downstream KNE Zm00001d015153 8.61 BZIP转录因子160
BZIP transcription factor 160
Pair_21 Chr.1: 258346354
Chr.5: 219936403
外显子Exon
基因间区Intergenic
ERN Zm00001d033309
Zm00001d018394
7.34 蛋白质多效性调节基因座1
Protein pleiotropic regulatory locus 1
DBP转录因子2 DBP-transcription factor 2
Pair_28 Chr.1: 269687016
Chr.4: 17283434
内含子Intron
内含子Intron
KNR Zm00001d033652
Zm00001d049135
5.38 推测的LRR受体样丝氨酸/苏氨酸蛋白
Putative LRR receptor-like serine/threonine-protein kinase
推测的bZIP转录因子超家族蛋白
Putative bZIP transcription factor superfamily protein
Pair_46 Chr.1: 61044255
Chr.9: 156420734
非翻译区UTR3
外显子Exon
BTL Zm00001d029177
Zm00001d048438
6.52 核仁GTP结合蛋白2
Nucleolar GTP-binding protein 2
表皮模式因子样蛋白4
Epidermal patterning factor-like protein 4
Pair_50 Chr.1: 7694515
Chr.4: 14565656
内含子Intron
上游Upstream
BTL Zm00001d027536
Zm00001d049060
5.20 丝氨酸乙酰转移酶4
Serine acetyltransferase4
非特征蛋白质
Uncharacterized protein
Pair_63 Chr.5: 88161699
Chr.6: 153042725
上游Upstream
下游Downstream
SSR Zm00001d015395
Zm00001d038274
16.32 脲酶辅助蛋白D
Urease accessory protein D
四三肽重复序列(TPR)样超家族蛋白
Tetratricopeptide repeat (TPR) like superfamily protein
[1] 赵久然, 郭景伦, 郭强, 尉德明, 肖必祥, 卢柏山. 玉米不同品种基因型穗粒数及其构成因素相关分析的研究. 北京农业科学, 1997, 15(6): 1-2.
ZHAO J R, GUO J L, GUO Q, WEI D M, XIAO B X, LU B S. Correlation analysis of grain number per ear and its components in different genotypes of maize. Beijing Agriculture Sciences, 1997, 15(6): 1-2. (in Chinese)
[2] 何坤辉, 常立国, 李亚楠, 渠建洲, 崔婷婷, 徐淑兔, 薛吉全, 刘建超. 供氮和不供氮条件下玉米穗部性状的QTL定位. 植物营养与肥料学报, 2017, 23(1): 91-100.
HE K H, CHANG L G, LI Y N, QU J Z, CUI T T, XU S T, XUE J Q, LIU J C. QTL mapping of ear traits of maize with and without N input. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 91-100. (in Chinese)
[3] 张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40(1): 1-6.
doi: 10.3724/SP.J.1006.2014.00001
ZHANG H X, WENG J F, ZHANG X C, LIU C L, YONG H J, HAO Z F, LI X H. Genome-wide association analysis of kernel row number in maize. Acta Agronomica Sinica, 2014, 40(1): 1-6. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00001
[4] 吴律, 代力强, 董青松, 施婷婷, 王丕武. 玉米行粒数的全基因组关联分析. 作物学报, 2017, 43(10): 1559-1564.
doi: 10.3724/SP.J.1006.2017.01559
WU L, DAI L Q, DONG Q S, SHI T T, WANG P W. Genome-wide association analysis of kernel number per row in maize. Acta Agronomica Sinica, 2017, 43(10): 1559-1564. (in Chinese)
doi: 10.3724/SP.J.1006.2017.01559
[5] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析. 作物学报, 2021, 47(7): 1228-1238.
doi: 10.3724/SP.J.1006.2021.03048
MA J, CAO Y Y, LI H Y. Genome-wide association study of ear cob diameter in maize. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03048
[6] YANG L, LI T, TIAN X K, YANG B B, LAO Y H, WANG Y H, ZHANG X H, XUE J Q, XU S T. Genome-wide association study (GWAS) reveals genetic basis of ear-related traits in maize. Euphytica, 2020, 216(11): 1-13.
doi: 10.1007/s10681-019-2539-6
[7] 钱佳翼, 柳俊, 方圆, 杜勇成, 杨天天, 李鹏程, 杨泽峰, 徐辰武. 玉米穗型和粒型性状的GWAS及其关联位点驯化和改良分析. 玉米科学, 2020, 28(6): 45-51.
QIAN J Y, LIU J, FANG Y, DU Y C, YANG T T, LI P C, YANG Z F, XU C W. Genome-wide association study on ear-and kernel-related traits in maize and the analysis of domestication and improvement of the associated loci. Journal of Maize Sciences, 2020, 28(6): 45-51. (in Chinese)
[8] XIAO Y J, TONG H, YANG X H, XU S Z, PAN Q C, QIAO F, RAIHAN M S, LUO Y, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N N, WANG H, CHEN G S, CAI Y, XU G, WANG W D, ZHENG D B, YAN J B. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095-1110.
doi: 10.1111/nph.13814
[9] 殷芳冰, 王成, 龙艳, 董振营, 万向元. 玉米雌穗性状遗传分析与形成机制. 中国生物工程杂志, 2022, 41(12): 30-46.
YIN F B, WANG C, LONG Y, DONG Z Y, WAN X Y. Genetic architecture and formation mechanism of female ear traits in maize. China Biotechnology, 2022, 41(12): 30-46. (in Chinese)
[10] LI M F, ZHONG W S, YANG F, ZHANG Z X. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture. Plant and Cell Physiology, 2018, 59(3): 448-457.
doi: 10.1093/pcp/pcy022
[11] CHUCK G S, BROWN P J, MEELEY R, HAKE S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proceedings of the National Academy of Sciences of the USA, 2014, 111(52): 18775-18780.
doi: 10.1073/pnas.1407401112
[12] JIA H T, LI M F, LI W Y, LIU L, JIAN Y N, YANG Z X, SHEN X M, NING Q, DU Y F, ZHAO R, JACKSON D, YANG X H, ZHANG Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1): 1-11.
doi: 10.1038/s41467-019-13993-7
[13] NING Q, JIAN Y N, DU Y F, LI Y F, SHEN X M, JIA H T, ZHAO R, ZHAN J M, YANG F, JACKSON D, LIU L, ZHANG Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w
[14] WANG J, LIN Z L, ZHANG X, LIU H Q, ZHOU L N, ZHONG S Y, LI Y, ZHU C, LIN Z W. krn1, a major quantitative trait locus for kernel row number in maize. New Phytologist, 2019, 223(3): 1634-1646.
doi: 10.1111/nph.15890
[15] BOMMERT P, NAGASAWA N S, JACKSON D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics, 2013, 45(3): 334-337.
doi: 10.1038/ng.2534
[16] KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis 1. Crop Science, 1985, 25(1): 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x
[17] MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326.
doi: 10.1093/nar/8.19.4321
[18] LI T, QU J Z, WANG Y H, CHANG L G, HE K H, GUO D W, ZHANG X H, XU S T, XUE J Q. Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genetics, 2018, 19(1): 1-12.
doi: 10.1186/s12863-017-0594-3
[19] PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, De BAKKER P I, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
doi: 10.1086/519795
[20] BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308
[21] JIANG Y, SCHMIDT R H, ZHAO Y S, REIF J C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nature Genetics, 2017, 49(12): 1741-1746.
doi: 10.1038/ng.3974
[22] GAO X Y, STARMER J, MARTIN E R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 2008, 32(4): 361-369.
doi: 10.1002/gepi.20310
[23] HUANG X H, YANG S H, GONG J Y, ZHAO Y, FENG Q, GONG H, LI W J, ZHAN Q L, CHENG B Y, XIA J H, CHEN N, HAO Z N, LIU K Y, ZHU C R, HUANG T, ZHAO Q, ZHANG L, FAN D L, ZHOU C C, LU Y Q, WENG Q J, WANG Z X, LI J Y, HAN B. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(1): 1-9.
[24] WANG K, LI M, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164-e164.
[25] 黄远樟, 刘来福. 作物数量遗传学基础——六、配合力: 不完全双列杂交. 遗传, 1980(2): 43-46.
HUANG Y Z, LIU L F. The basis of quantitative genetics in crops: Ⅵ. Combining ability: Incomplete diallel cross. Hereditas, 1980(2): 43-46. (in Chinese)
[26] 刘文童, 监立强, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米穗部性状及其一般配合力的关联分析. 植物遗传资源学报, 2020, 21(3): 706-715.
LIU W T, JIAN L Q, GUO J J, ZHAO Y F, HUANG Y Q, CHEN J T, ZHU L Y. Association analysis of ear-related traits and their general combining ability in maize. Journal of Plant Genetic Resources, 2020, 21(3): 706-715. (in Chinese)
[27] CHEN J X, ZHOU H, XIE W B, XIA D, GAO G J, ZHANG Q L, WANG G W, LIAN X M, XIAO J H, HE Y Q. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology Journal, 2019, 17(11): 2211-2222.
doi: 10.1111/pbi.13134
[28] LI G L, DONG Y, ZHAO Y S, TIAN X K, WÜRSCHUM T, XUE J Q, CHEN S J, REIF J C, XU S T, LIU W X. Genome-wide prediction in a hybrid maize population adapted to Northwest China. The Crop Journal, 2020, 8(5): 830-842.
doi: 10.1016/j.cj.2020.04.006
[29] SHULL G H. The composition of a field of maize. Journal of Heredity, 1908(1): 296-301.
[30] 王晖. 玉米全基因组关联分析多杂种群体的构建及其杂种优势和配合力的遗传分析[D]. 北京: 中国农业科学院, 2017.
WANG H. Development of a maize multiple-hybrid population for genome-wide association studies and genetic analysis of heterosis and combining ability[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[31] LIU H J, WANG Q, CHEN M J, DING Y H, YANG X R, LIU J, LI X H, ZHOU C C, TIAN Q L, LU Y Q, FAN D L, SHI J P, ZHANG L, KANG C B, SUN M F, LI F Y, WU Y J, ZHANG Y Z, LIU B S, ZHAO X Y, FENG Q, YANG J L, HAN B, LAI J S, ZHANG X S, HUANG X H. Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal, 2020, 18(1): 185-194.
doi: 10.1111/pbi.13186
[32] LU M, XIE C X, LI X H, HAO Z F, LI M S, WENG J F, ZHANG D G, BAI L, ZHANG S H. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Molecular Breeding, 2011, 28(2): 143-152.
doi: 10.1007/s11032-010-9468-3
[33] LIU L, DU Y F, HUO D G, WANG M, SHEN X M, YUE B, QIU F Z, ZHENG Y L, YAN J B, ZHANG Z X. Genetic architecture of maize kernel row number and whole genome prediction. Theoretical and Applied Genetics, 2015, 128(11): 2243-2254.
doi: 10.1007/s00122-015-2581-2
[34] XIAO Y J, JIANG S Q, CHENG Q, WANG X Q, YAN J, ZHANG R Y, QIAO F, MA C, LUO J Y, LI W Q, LIU H J, YANG W Y, SONG W H, MENG Y J, WARBURTON M L, ZHAO J R, WANG X F, YAN J B. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1): 1-29.
doi: 10.1186/s13059-020-02207-9
[35] YAN J B, TANG H, HUANG Y Q, ZHENG Y L, LI J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149(1): 121-131.
doi: 10.1007/s10681-005-9060-9
[36] MA J, CAO Y Y. Genetic dissection of grain yield of maize and yield-related traits through association mapping and genomic prediction. Frontiers in Plant Science, 2021, 12: 1377.
[37] XUE S, BRADBURY P J, CASSTEVENS T, HOLLAND J B. Genetic architecture of domestication-related traits in maize. Genetics, 2016, 204(1): 99-113.
doi: 10.1534/genetics.116.191106
[38] LI T, QU J Z, TIAN X K, LAO Y H, WEI N N, WANG Y H, HAO Y C, ZHANG X H, XUE J Q, XU S T. Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Frontiers in Genetics, 2020, 11: 747.
doi: 10.3389/fgene.2020.00747
[39] XU C, ZHANG H, SUN J, GUO Z, ZOU C, LI W, XIE C, HUANG C, XU R, LIAO H, WANG J X, XU X J, WANG S H, XU Y B. Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131(8): 1699-1714.
doi: 10.1007/s00122-018-3108-4
[40] WANG Z J, YUAN T T, YUAN C, NIU Y Q, SUN D Y, CUI S J. LFR, which encodes a novel nuclear-localized Armadillo-repeat protein, affects multiple developmental processes in the aerial organs in Arabidopsis. Plant Molecular Biology, 2009, 69(1): 121-131.
doi: 10.1007/s11103-008-9411-8
[41] YU X M, JIANG L L, WU R, MENG X C, ZHANG A, LI N, XIA Q, QI X, PANG J S, XU Z Y, LIU B. The core subunit of a chromatin-remodeling complex, ZmCHB101, plays essential roles in maize growth and development. Scientific Reports, 2016, 6(1): 1-13.
doi: 10.1038/s41598-016-0001-8
[42] PAUTLER M, EVELAND A L, LARUE T, YANG F, WEEKS R, LUNDE C, JE B I, MEELEY R, KOMATSU M, VOLLBRECHT E, SAKAI H, JACKSON D. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. The Plant Cell, 2015, 27(1): 104-120.
doi: 10.1105/tpc.114.132506
[43] NI S, LI Z Z, YING J, ZHANG J C, CHEN H Q. Decreased Spikelets 4 encoding a novel tetratricopeptide repeat domain-containing protein is involved in DNA repair and spikelet number determination in rice. Genes, 2019, 10(3): 214.
doi: 10.3390/genes10030214
[44] GAO H R, GORDON-KAMM W J, LYZNIK L A. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced. Gene, 2004, 339: 25-37.
doi: 10.1016/j.gene.2004.06.047
[45] van BUEREN E L, BACKES G, De VRIEND H, ØSTERGÅRD H. The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica, 2010, 175(1): 51-64.
doi: 10.1007/s10681-010-0169-0
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[3] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[4] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[5] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[6] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[7] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[8] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[9] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[10] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[11] SHI DeYang, LI YanHong, WANG FeiFei, XIA DeJun, JIAO YanLin, SUN NiNa, ZHAO Jian. Regulation Effects of Line-Spacing Expansion and Row-Spacing Shrinkage on Dry Matter and Nutrient Accumulation and Transport of Summer Maize Under High Plant Density [J]. Scientia Agricultura Sinica, 2024, 57(23): 4658-4672.
[12] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
[13] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[14] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[15] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!