Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3071-3081.doi: 10.3864/j.issn.0578-1752.2022.16.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments

CHANG LiGuo(),HE KunHui,LIU JianChao()   

  1. College of Agronomy, Northwest A&F University/Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs/Maize Engineering Technology Research Centre of Shaanxi Province, Yangling 712100, Shaanxi
  • Received:2022-03-26 Accepted:2022-05-09 Online:2022-08-16 Published:2022-08-11
  • Contact: JianChao LIU E-mail:clg0601@163.com;ljcnwsuaf@nwsuaf.edu.cn

Abstract:

【Objective】 Functional stay-green is generally considered a desirable trait in major crop varieties including maize. Finding new loci and candidate genes related to stay-green, and providing new theoretical basis for the genetic research on stay-green. 【Method】Using 150 recombinant inbred lines (RIL) populations derived from the cross between Xu 178 and K12, QTL mapping of three stay-green related traits (visual stay green (VSG), green leaf number at silking stage (GLNS) and green leaf number at mature stage (GLNM) were performed by the composite interval mapping(CIM)method of Windows QTL Cartographer V2.5. Besides, an association population, which composed of 139 natural materials genotyped with 50790 high-quality SNP markers, was used to dissect genetic locus of three traits by genome-wide association study (GWAS) based on the mixed linear model MLM). 【Result】Based on CIM, three traits (GLNM, GLNS and VSG)were mapped using phenotypic values in a single environment and best linear unbiased prediction (BLUP) value. A total of 37 QTLs were detected on all chromosomes except Chromosome 10, and the LOD score ranged from 2.58-11.36, with a phenotypic variation contribution rate of 4.34%-22.40%. Among them, 14, 12 and 11 loci were detected for GLNM, GLNS and VSG traits, respectively. Four of the QTLs, qGLNS2-1, qVSG1-1, qVSG1-2 and qVSG7-1, were genetically stable and were detected simultaneously in three or more different single environments. GWAS was performed on three stay-green related traits using MLM, and a total of 44 significant SNPs above the threshold line were detected. According to the physical position of SNP markers in the B73 reference genome, a total of 15 SNP were found to fall into the QTL interval mapped by linkage analysis. 【Conclusion】Combined with the results of QTL mapping and genome-wide association study, a total of 4 genetically stable colocalization genetic regions were detected (the corresponding physical position intervals on the B73 reference genome version 4 are 6.2-8.2 Mb on chromosome 1, 209.1-221.4 Mb on chromosome 2, 96.8-102.1 Mb on chromosome 6, and 4.9-11.4 Mb on chromosome 7), and four important candidate genes (Zm00001d006119, Zm00001d018975, Zm00001d006535 and Zm00001d036763) related to photosynthesis and stress response were mined.

Key words: maize (Zea mays L.), stay-green, genome-wide association study, QTL mapping

Table 1

Descriptive statistical analysis of phenotypic value among the RIL population"

性状
Traits
环境
Env.
亲本Parents 重组自交系RIL populations
许178
Xu 178
K12 变异范围
Range
均值±标准差
Mean±SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
遗传力
H2 (%)
保绿度
VSG
E1 4.70 1.70 1.00—5.00 3.10±0.20 36.81 0.12 -0.22 76.70
E2 4.31 1.32 1.00—5.00 2.71±0.21 42.40 0.37 -0.66
E3 5.00 2.04 1.00—5.00 2.92±0.33 43.42 0.26 0.10
E4 4.71 2.03 1.00—5.00 3.00±0.21 36.80 0.23 0.61
E5 5.00 2.30 1.00—5.00 2.80±0.20 40.31 0.31 0.64
E6 4.73 2.01 1.00—5.00 3.12±0.22 30.00 -0.29 -0.24
吐丝期绿叶数
GLNS
E1 14.51 12.30 9.30—15.31 12.63±0.12 8.80 -0.33 0.69 75.60
E2 13.30 10.53 11.51—16.50 14.00±0.12 8.73 0.07 -0.65
E3 13.36 10.83 10.34—14.52 12.41±0.11 6.04 0.09 0.67
E4 13.00 12.08 7.81—14.00 11.00±0.13 9.52 -0.09 0.86
E5 15.32 12.50 11.00—15.83 13.41±0.14 7.81 -0.06 -0.22
E6 15.04 13.36 11.00—16.30 13.71±0.11 7.93 0.10 -0.41
成熟期绿叶数
GLNM
E1 7.51 3.57 0.00—10.51 5.01±0.20 45.60 -0.39 -0.35 78.40
E2 10.00 3.86 0.00—9.00 3.22±0.21 71.54 0.48 -0.54
E3 10.31 4.53 0.00—11.81 4.40±0.30 76.52 0.22 -1.18
E4 10.22 4.32 0.00—9.80 5.83±0.22 39.63 -0.78 0.29
E5 11.83 3.50 0.00—9.52 3.25±0.21 79.20 0.55 -0.64
E6 4.01 2.50 2.02—13.31 9.23±0.22 20.34 -1.18 2.94

Fig. 1

Boxplots of phenotypic values of linkage populations(A-C) and association populations(D-F) under different environments E1: Yulin in 2014; E2: Yulin in 2015; E3: Yangling in 2014; E4: Yangling in 2015; E5: Huludao in 2014; E6: Huludao in 2015. e1: Yangling in 2016, e2: Yulin in 2016. VSG: Visual stay green; GLNS: Green leaf number at silking stage; GLNM: Green leaf number at mature stage. The same as below"

Fig. 2

Schematic diagram of QTL mapping for stay-green related traits A: Schematic diagram of the QTL distribution mapped in this study (orange, green, and purple represent visual stay green, green leaf number at mature stage and green leaf number at silking stage, respectively); B: The distribution of stay-green related QTL mapped by previous researchers"

Fig. 3

Manhattan plot and QQ plot of VSG (A), GLNS (B), GLNM (C) traits in e1 and e2 environments"

Table 2

Descriptive statistical analysis of phenotypic value among the association population"

性状 Traits 环境 Environments 范围 Range 均值±标准差 Mean±SD 偏度 Skewness 峰度 Kurtosis
保绿度
VSG
e1 1.00—5.00 2.00±0.07 0.46 1.01
e2 1.00—5.00 3.66±0.09 -0.74 -0.38
吐丝期绿叶数
GLNS
e1 8.50—15.60 11.93±0.11 0.25 0.11
e2 10.75—18.20 13.78±0.11 0.24 0.17
成熟期绿叶数
GLNM
e1 0.00—11.90 2.59±0.17 1.21 1.47
e2 0.00—13.60 5.94±0.25 -0.15 -0.52
[1] THOMAS H, OUGHAM H J. The stay-green trait. Journal of Experimental Botany, 2014, 65(14): 3889-3900.
doi: 10.1093/jxb/eru037
[2] DUVICK D N. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica, 1977, 22(4): 187-196.
[3] HALLAUER A R, LAMKEY K R, RUSSELL W A. Registration of B93 and B94 inbred lines of maize. Crop Science, 1991, 31(1): 247-248.
[4] KAMAL N M, GORAFI Y S A, ABDELRAHMAN M, ABDELLATEF E, TSUJIMOTO H. Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. International Journal of Molecular Sciences, 2019, 20(23): 5837.
doi: 10.3390/ijms20235837
[5] VAN OOSTEROM E J, JAYACHANDRAN R, BIDINGER F R. Diallel analysis of the stay green trait and its components in sorghum. Crop Science, 1996, 36(3): 549-555.
doi: 10.2135/cropsci1996.0011183X003600030002x
[6] CRASTA O R, XU W W, ROSENOW D T, MULLET J, NGUYEN H T. Mapping of post-flowering drought tolerance traits in grain sorghum: Association of QTLs influencing premature senescence and maturity. Molecular Genetics and Genomics, 1999, 262(3): 579-588.
[7] ZHENG H J, WU A Z, ZHENG C C, WANG Y F, CAI R, SHEN X F, XU R R, LIU P, KONG L J, DONG S T. QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breeding, 2009, 128(1): 54-62.
doi: 10.1111/j.1439-0523.2008.01529.x
[8] WANG A Y, LI Y, ZHANG C Q. QTL mapping for stay-green in maize (Zea mays L.). Canadian Journal of Plant Science, 2012, 92(2): 249-256.
doi: 10.4141/cjps2011-108
[9] WANG Y J, XU J, DENG D X, DING H D, BIAN Y L, YIN Z T, WU Y R, ZHOU B, ZHAO Y. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta, 2016, 243(2): 459-471.
doi: 10.1007/s00425-015-2419-9
[10] BELÍCUAS P R, AGUIAR A M, BENTO D A V, CAMARA T M M, JUNIOR C L S. Inheritance of the stay-green trait in tropical maize. Euphytica, 2014, 198(2): 163-173.
doi: 10.1007/s10681-014-1106-4
[11] CHRISTOPHER M, PACCAPELO V, KELLY A, HICKEY L, RICHARD C, MACDONALD B. VERBYLA A, CHENU K, BORRELL A, AMIN A, CHRISTOPHER J. QTL identified for stay-green in a multi-reference nested association mapping population of wheat exhibit context dependent expression and parent-specific alleles. Field Crops Research, 2021, 270(8): 108181.
doi: 10.1016/j.fcr.2021.108181
[12] ZHAO Y, QIANG C G, WANG X Q, CHEN Y F, DENG J Q, JIANG C H, SUN X M, CHEN H Y, LI J, PIAO W L, ZHU X Y, ZHANG Z Y, ZHANG H L, LI Z C, LI J J. New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa). Scientific Reports, 2019, 9(1): 1-11.
doi: 10.1038/s41598-018-37186-2
[13] HENDERSON C R. General flexibility of linear model techniques for sire evaluation. Journal of Dairy Science, 1974, 57(8): 963-972.
doi: 10.3168/jds.S0022-0302(74)84993-3
[14] WYMAN E, NYQUIST, BAKER R J. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences, 1991, 10(3): 235-322.
doi: 10.1080/07352689109382313
[15] 何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔, 张兴华, 张仁和, 薛吉全, 刘建超. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49(8): 1443-1452.
HE K H, CHANG L G, CUI T T, QU J Z, GUO D W, XU S T, ZHANG X H, ZHANG R H, XUE J Q, LIU J C. Mapping QTL for plant height and ear height in maize under multi-environments. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452. (in Chinese)
[16] ZENG Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136(4): 1457-1468.
doi: 10.1093/genetics/136.4.1457
[17] WANG S, BASTEN C J, ZENG Z B. Windows QTL cartographer version 2.5. Raleigh, NC: North Carolina State University, 2007: 1-30.
[18] HE K H, XU S T, ZHANG X H, LI Y N, CHANG L G, WANG Y H, SHI Y Q, CUI T T, DONG Y, LAN T R, LIU X Y, LIU J C, XUE J Q. Mining of candidate genes for nitrogen use efficiency in maize based on genome-wide association study. Molecular Breeding, 2020, 40(9): 1-17.
doi: 10.1007/s11032-019-1080-6
[19] BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308
[20] ZHANG Z W, ERSOZ E, LAI C Q, TODHUNTER R J, TIWARI H K, GORE M A, BRADBURY P J, YU J M, ARNETT D K, ORDOVAS J M, BUCKLER E S. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010, 42(4): 355-360.
doi: 10.1038/ng.546
[21] ZHANG Y M, JIA Z, DUNWELL J M. The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science, 2019, 10: 100.
doi: 10.3389/fpls.2019.00100
[22] KLINE R B. Structural Equation Modeling. New York: Guilford Press, 1998: 15-35.
[23] BEKAVAC G, STOTAKOVIC M, PURAR B, BOCANSKI J, NASTASIC A, POPOV R. Path analysis of stay-green trait in maize. Cereal Research Communication, 1998, 26(2): 161-167.
doi: 10.1007/BF03543483
[24] EL-SODA M, MALOSETTI M, ZWAAN B J, KOORNNEEF M. Genotype × environment interaction QTL mapping in plants: Lessons from Arabidopsis. Trends in Plant Science, 2014, 19(6), 390-398.
doi: 10.1016/j.tplants.2014.01.001
[25] BEAVIS W, SMITH O, GRANT D, FINCHER R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Science, 1994, 34(4): 882-896.
doi: 10.2135/cropsci1994.0011183X003400040010x
[26] 方永丰, 李永生, 白江平, 慕平, 孟亚雄, 张金林, 王汉宁, 尚勋武. 玉米持绿相关QTL整合图谱构建及一致性QTL区域内候选基因发掘. 草业学报, 2012, 21(4): 1-11.
FANG Y F, LI Y S, BAI J P, MU P, MENG Y X, ZHANG J L, WANG H N, SHANG X W. Construction of integration QTL map and identification of candidate genes for stay-green in maize. Acta Prataculturae Sinica, 2012, 21(4): 1-11. (in Chinese)
[27] YANG Q, LI Z, LI W Q, KU L X, WANG C, YE J R, LI K, YANG N, ZHONG T, LI Y P, LI J S, CHEN Y H, YAN J B, YANG X H, XU M L. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proceedings of the National Academy of the Sciences of the United States of America, 2013, 110(42): 16969-16974.
[28] YANG Z, LI X, ZHANG N, WANG X L, ZHANG Y N, DING Y L, KUAI B K, HUANG X Q. Mapping and validation of the quantitative trait loci for leaf stay-green-associated parameters in maize. Plant Breeding, 2017, 136(2): 188-196.
doi: 10.1111/pbr.12451
[29] CUI Z H, XIA A A, ZHANG A, LUO J H, YANG X H, ZHANG L J, RUAN Y Y, HE Y. Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theoretical and Applied Genetics, 2018, 131(10): 2131-2144.
doi: 10.1007/s00122-018-3142-2
[30] ZHANG X X, GUAN Z R, LI Z L, LIU P, MA L L, ZHANG Y C, PAN L, HE S J, ZHANG Y L, LI P, GE F, ZOU CY, HE Y C, GAO S B, PAN G T, SHEN Y O. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theoretical and Applied Genetics, 2020, 133(10): 881-895.
[31] ZHANG Y C, HU Y, GUAN Z G, LIU P, HE Y C, ZOU C Y, LI P, GAO S B, PENG H, YANG C, PAN G T, SHEN Y O, MA L L. Combined linkage mapping and association analysis reveals genetic control of maize kernel moisture content. Physiologia Plantarum, 2020, 170(4): 508-518.
doi: 10.1111/ppl.13180
[32] GOSS T, HANKE G. The end of the line: Can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Current Protein and Peptide Science, 2014, 15(4): 385-393.
doi: 10.2174/1389203715666140327113733
[33] HE L, LI M, QIU Z N, CHEN D D, ZHANG G H, WANG X Q, CHEN G, HU J, GAO Z Y, DONG G J, REN D Y, SHEN L, ZHANG Q, GUO L B, QIAN Q, ZENG D L, ZHU L. Primary leaf-type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice. The Plant Journal, 2020, 104(1): 54-58.
[34] WINTER D, VINEGAR B, NAHAL H, AMMAR R, WILSON G V, PROVART N J. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE, 2007, 2(8): e718.
doi: 10.1371/journal.pone.0000718
[35] SAINTENAC C, CAMBON F, AOUINI L, VERSTAPPEN E, GHAFFAR S M T, POUCET T, MARANDE W, BERGES H, XU S, JAOUANNET M, FAVERY B, ALASSIMONE J, ROBERT O, LANGIN T. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w
[36] PANDIAN B A, SATHISHRAJ R, DJANAGUIRAMAN M, PRASAD P V V, JUGULAM M. Role of cytochrome P450 enzymes in plant stress response. Antioxidants, 2020, 9(5): 454.
doi: 10.3390/antiox9050454
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[4] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[7] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
[8] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[9] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[10] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[11] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[12] ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238.
[13] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
[14] WANG Qin,LIU ZeHou,WAN HongShen,WEI HuiTing,LONG Hai,LI Tao,DENG GuangBing,LI Jun,YANG WuYun. Identification and Pyramiding of QTLs for Traits Associated with Pre-Harvest Sprouting Resistance in Two Wheat Cultivars Chuanmai 42 and Chuannong 16 [J]. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431.
[15] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!