Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1717-1729.doi: 10.3864/j.issn.0578-1752.2020.09.003

• SPECIAL FOCUS: APPLICATIONS OF RESTRICTED TWO-STAGE MULTI-LOCUS GENOME-WIDE ASSOCIATION ANALYSIS • Previous Articles     Next Articles

Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population

XiaoShuai HAO1,MengMeng FU1,ZaiDong LIU1,JianBo HE1(),YanPing WANG2,HaiXiang REN2,DeLiang WANG3,XingYong YANG4,YanXi CHENG5,WeiGuang DU2,JunYi GAI1()   

  1. 1 Soybean Research Institute, Nanjing Agricultural University/National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture/State Key Laboratory for Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095;
    2 Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences/Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang 157041, Heilongjiang;
    3 Heilongjiang Academy of Land-reclamation Sciences, Jiamusi 154007, Heilongjiang;
    4 Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan 161606, Heilongjiang;
    5 Changchun Academy of Agricultural Sciences, Changchun 130111
  • Received:2019-09-09 Accepted:2020-01-02 Online:2020-05-01 Published:2020-05-13
  • Contact: JianBo HE,JunYi GAI E-mail:hjbxyz@gmail.com;sri@njau.edu.cn

Abstract:

【Objective】A genome-wide association study in the Northeast China soybean germplasm population was conducted for a relatively thorough detection of the QTL-allele constitution of 100-seed weight, which may provide a theoretical basis for soybean breeding for seed size improvement. 【Method】In the present study, a total of 290 soybean accessions that were frequently used for soybean breeding and production in the Northeast China were tested in 2013 and 2014 for 100-seed weight at four locations, including Keshan, Mudanjiang, Jiamusi and Changchun, which are all in the second sub-ecoregion of the Northeast China. RAD-seq (restriction site-associated DNA sequencing) was used for SNP genotyping, and 82 966 high-quality SNPs were obtained after filtering and imputation. According to the RTM-GWAS (restricted two-stage multi-locus genome-wide association analysis) method, firstly a total of 15 546 multi-allelic SNPLDBs were constructed, and then a multi-locus model was used for genome-wide association study of 100-seed weight. The genes near (within 50kb) the detected SNPLDBs were analyzed, and candidate genes for 100-seed weight were identified and annotated according to Chi-square test of independence between the SNPs within genes and the detected SNPLDBs. Finally, genetic differentiation among maturity groups were investigated based on the detected QTL-allele system of 100-seed weight. 【Result】The 100-seed weight of the present population ranged from 18.3 to 20.7 g, and the trait heritability was 92.3%. A total of 76 SNPLDBs were detected to be associated with 100-seed weight, among which there were 15 SNPLDBs with non-significant main effect and the 61 SNPLDBs with significant main effect explained 65.40% phenotypic variation. There were 68 SNPLDBs that had significant interaction effect with environment and explained 17.46% phenotypic variation. In addition, 34 out of 76 detected SNPLDBs overlapped 30 previously reported QTLs and 42 SNPLDBs were novel loci. A total of 137 candidate genes for 100-seed weight were annotated in the detected SNPLDB regions, and functional annotation showed that these genes were not only involved in regulation of 100-seed weight, but also involved in primary metabolism, translation, protein modification, material transport, stress response and signal transduction, etc. Although there was no obvious difference in the 100-seed weight among different maturity groups, genetic differentiation analysis showed varying changes of allele emergence and exclusion in QTL-allele structure of 100-seed weight among maturity groups. 【Conclusion】The RTM-GWAS method used in the present study provided a relatively thorough detection of genome-wide QTLs and their multiple alleles for 100-seed weight in the Northeast China soybean germplasm population. The 100-seed weight of the Northeast China soybean germplasm population was controlled by a large number of QTLs with large significant interaction effect with environment, and there was also abundant multiple allelic variation in these QTLs. The QTL-allele matrix established from RTM-GWAS provided an efficient tool for population genetics and evolution study.

Key words: soybean [Glycine max (L.) Merr.], 100-seed weight, RTM-GWAS, QTL-allele matrix, candidate gene

Table 1

Frequency distribution and descriptive statistics of 100-seed weight in the Northeast China soybean germplasm population"

类型
Type
百粒重100-seed weight (g) N 平均数
Mean
变幅
Range
遗传率
h2
7 9 11 12 14 16 17 19 21 23 24 26 28 29 31
环境Environment
长春CC 1 1 0 0 9 45 75 85 52 14 4 4 290 20.3 9.7-28.2 0.642
佳木斯JMS 1 2 10 3 1 1 17 57 93 68 28 4 4 0 1 290 20.7 8.1-32.0 0.780
克山KS 3 2 0 1 5 45 91 83 49 9 1 0 1 290 18.3 6.4-28.2 0.777
牡丹江MDJ 2 0 0 0 10 48 98 85 39 4 3 0 1 290 19.9 6.7-28.9 0.726
Mean 1 1 0 0 7 53 89 90 39 5 4 0 1 290 19.8 8.2-29.5 0.923
熟期组Maturity
MG0 1 2 25 55 51 16 4 1 155 19.9 13.6-25.6
MG00 1 0 0 0 6 11 15 10 2 45 20.3 9.9-24.8
MG000 3 3 5 3 1 15 20.4 18.8-21.8
MGI+II 2 9 33 25 6 75 19.7 15.6-22.7
MG0+00+000 1 0 1 2 34 69 71 29 7 1 215 20.0 9.9-25.6

Table 2

Multi-year multi-location joint analysis of variance of 100-seed weight in the Northeast China soybean germplasm population"

模型Model 变异来源Source 自由度DF 均方MS F p
基因型×年份×地点
Genotype×Year×Location
年份Year 1 835.46 81.59 <0.001
地点Location 3 3156.29 493.80 <0.001
区组(年份,地点) Block(Year, Location) 24 2.59 1.86 0.0068
基因型Genotype 289 146.47 13.74 <0.001
基因型×年份Genotype×Year 289 9.10 2.65 <0.001
基因型×地点Genotype×Location 867 5.22 1.41 <0.001
基因型×年份×地点Genotype×Year×Location 849 3.70 2.65 <0.001
误差Error 6791 1.40
基因型×环境
Genotype×Environment
环境Environment 7 1978.57 308.84 <0.001
区组(环境) Block(Environment) 24 2.59 1.86 0.0068
基因型Genotype 289 147.00 28.15 <0.001
基因型×环境Genotype×Environment 2005 5.24 3.75 <0.001
误差Error 6791 1.40

Fig. 1

Genetic dissection of 100-seed weight in the Northeast China soybean germplasm population a: Neighbor-joining tree; b: Scatter plot of top two eigenvectors of genetic similarity coefficient matrix; c: QQ plot of RTM-GWAS result. -lgP value greater than 30 were shown as 30; d: Manhattan plot of RTM-GWAS result; e: QTL-allele matrix of 100-seed weight in the Northeast China soybean germplasm population; f: GO biological process distribution of 100-seed weight candidate genes"

Table 3

SNPLDBs significantly associated with 100-seed weight in soybean"

QTL AN 主效QTL QTL×Env. a QTL AN 主效QTL QTL×Env. a
-lgP R2 (%) -lgP R2 (%) -lgP R2 (%) -lgP R2 (%)
q-SW-1-1 2 - - 6.07 0.10 q-SW-12-1 2 7.95 0.08 6.99 0.11
q-SW-1-2 2 - - 3.47 0.06 q-SW-12-2 8 4.34 0.07 4.63 0.24
q-SW-1-3 2 - - 2.55 0.05 q-SW-12-3 4 5.30 0.06 20.46 0.35
q-SW-2-1 5 2.87 0.04 7.60 0.21 q-SW-12-4 2 2.27 0.02 3.83 0.07
q-SW-2-2 3 - - 2.85 0.06 q-SW-12-5 2 - - 3.50 0.06
q-SW-2-3 5 203.54 2.40 11.07 0.26 q-SW-13-1 6 150.15 1.76 20.04 0.42
q-SW-2-4 2 - - 2.29 0.05 q-SW-13-2 7 76.04 0.90 46.13 0.80
q-SW-2-5 2 13.60 0.14 - - q-SW-13-3 5 28.30 0.33 14.53 0.31
q-SW-2-6 2 3.00 0.03 - - q-SW-13-4 4 102.12 1.16 10.74 0.23
q-SW-3-1 3 5.73 0.06 - - q-SW-14-1 7 - - 7.12 0.26
q-SW-3-2 6 3.19 0.05 12.21 0.31 q-SW-14-2 6 192.85 2.28 19.05 0.41
q-SW-3-3 5 307.65 4.26 18.50 0.37 q-SW-14-3 2 63.12 0.69 - -
q-SW-3-4 4 - - 4.81 0.14 q-SW-14-4 2 - - 2.26 0.05
q-SW-4-1 6 19.08 0.24 5.81 0.21 q-SW-15-1 6 34.07 0.41 7.51 0.24
q-SW-4-2 5 14.91 0.18 10.54 0.26 q-SW-15-2 6 40.33 0.48 15.05 0.35
q-SW-4-3 2 307.65 10.56 - - q-SW-16-1 3 213.17 2.49 3.98 0.10
q-SW-4-4 6 59.53 0.70 12.31 0.31 q-SW-16-2 4 - - 11.03 0.23
q-SW-6-1 2 35.63 0.38 3.29 0.06 q-SW-16-3 2 2.74 0.02 2.41 0.05
q-SW-6-2 6 8.46 0.11 8.63 0.26 q-SW-16-4 5 20.46 0.24 14.44 0.31
q-SW-6-3 2 2.61 0.02 2.41 0.05 q-SW-16-5 7 29.99 0.37 19.95 0.45
q-SW-6-4 7 29.03 0.36 23.57 0.50 q-SW-17-1 5 53.76 0.62 7.77 0.21
q-SW-6-5 8 7.57 0.12 6.58 0.27 q-SW-17-2 5 2.98 0.04 26.98 0.48
q-SW-6-6 3 35.92 0.40 3.54 0.09 q-SW-18-1 5 145.14 1.69 4.18 0.16
q-SW-6-7 4 49.75 0.56 8.91 0.20 q-SW-18-2 2 - - 2.29 0.05
q-SW-7-1 5 12.92 0.16 15.52 0.33 q-SW-18-3 6 262.05 3.16 31.38 0.57
q-SW-7-2 2 147.28 1.66 2.36 0.05 q-SW-18-4 7 17.23 0.22 13.01 0.35
q-SW-7-3 6 11.66 0.15 10.25 0.28 q-SW-18-5 2 - - 5.50 0.09
q-SW-8-1 2 - - 4.40 0.08 q-SW-18-6 4 200.62 2.35 10.23 0.22
q-SW-8-2 3 90.82 1.02 4.07 0.10 q-SW-18-7 5 228.35 2.71 88.81 1.24
q-SW-8-3 2 - - - - q-SW-19-1 8 15.85 0.21 10.59 0.32
q-SW-8-4 2 45.35 0.49 - - q-SW-19-2 7 178.86 2.12 14.09 0.37
q-SW-8-5 4 114.44 1.31 8.39 0.19 q-SW-19-3 7 54.88 0.64 16.95 0.38
q-SW-9-1 2 - - 2.12 0.05 q-SW-19-4 6 74.96 0.87 11.80 0.30
q-SW-9-2 6 8.40 0.11 10.50 0.28 q-SW-19-5 5 23.13 0.27 5.86 0.18
q-SW-9-3 2 24.99 0.26 4.68 0.08 q-SW-20-1 8 307.65 5.77 55.70 0.97
q-SW-9-4 6 59.00 0.69 17.45 0.39 q-SW-20-2 5 34.46 0.40 13.88 0.30
q-SW-9-5 6 95.80 1.11 14.16 0.34 LC-QTL 83 18 52.15
q-SW-10-1 5 6.28 0.08 3.34 0.14 SC-QTL 205 43 13.25
q-SW-10-2 2 307.65 4.35 7.36 0.11 总Total 328 61 65.40 68 17.46
q-SW-10-3 2 89.96 0.99 - -

Table 4

Large contribution QTLs and candidate genes for 100-seed weight"

QTL R2 (%) 候选基因
Candidate gene
基因本体生物学过程
Gene ontology biological process
q-SW-3-3 4.43 Glyma03g31790 囊泡介导的运输Vesicle-mediated transport
Glyma03g31810 线粒体mRNA修饰Mitochondrial mRNA modification
Glyma03g31820 微管细胞骨架组织Microtubule cytoskeleton organization
Glyma03g31940 甲壳素响应Response to chitin
Glyma03g32040 高尔基体内囊泡介导转运Intra-Golgi vesicle-mediated transport
q-SW-4-3 10.93 Glyma04g38830 细胞分裂素代谢Cytokinin metabolic
Glyma04g38870 甲基转移酶活性Methyltransferase activity
Glyma04g38955 糖介导的信号通路Sugar mediated signaling pathway
q-SW-8-5 1.36 Glyma08g44800 RRNA加工RRNA processing
Glyma08g44820 蛋白水解Proteolysis
Glyma08g44960 未知Unknown
Glyma08g44921 跨膜运输Transmembrane transport
q-SW-9-5 1.16 Glyma09g41070 液泡运输Vacuolar transport
Glyma09g41140 肌醇六磷酸磷酸酯的生物合成过程Myo-inositol hexakisphosphate biosynthetic process
Glyma09g41150 胚胎发育以种子休眠结束Embryo development ending in seed dormancy
Glyma09g41260 氧化应激响应Response to oxidative stress
Glyma09g41320 鸟嘌呤运输Guanine transport
Glyma09g41121 未知Unknown
q-SW-13-1 1.83 Glyma13g08170 翻译调控Regulation of translation
q-SW-13-4 1.21 Glyma13g29011 种子萌发Seed germination
q-SW-14-2 2.37 Glyma14g08040 嘧啶核糖核苷酸生物合成Pyrimidine ribonucleotide biosynthetic
Glyma14g08050 缺氧响应Response to hypoxia
Glyma14g08070 种子萌发正调控Positive regulation of seed germination
Glyma14g08220 脱落酸应激响应Response to abscisic acid stimulus
Glyma14g08075 未知Unknown
Glyma14g08145 未知Unknown
q-SW-16-1 2.58 Glyma16g06320 未知Unknown
q-SW-18-1 1.75 Glyma18g10460 新陈代谢Metabolic
Glyma18g10470 防御反应Defense response
q-SW-18-3 3.28 Glyma18g16720 蛋白质折叠Protein folding
Glyma18g16761 蛋白水解Proteolysis
q-SW-18-6 2.44 Glyma18g36455 未知Unknown
q-SW-18-7 2.81 Glyma18g52250 盐胁迫响应Response to salt stress
Glyma18g52260 转录调控Regulation of transcription
Glyma18g52290 碳水化合物代谢Carbohydrate metabolic
Glyma18g52350 Basipetal生长素运输Basipetal auxin transport

Table 5

The 100-seed weight QTL-allele changes among maturity groups"

QTL a1 a2 a3 a4 a5 a6 a7 a8 QTL a1 a2 a3 a4 a5 a6 a7 a8 QTL a1 a2 a3 a4 a5 a6 a7 a8
1-1 yz 7-3 X yz 14-4 yz
1-2 y 8-1 z 15-1 X
1-3 yz 8-2 z 15-2 z z
2-1 z z 8-3 XYZ yz XZ 16-1
2-2 z yz 8-4 xyz XYZ XYZ XYZ XYZ xyz 16-2 XY yz
2-3 X XY z 8-5 xyz xyz xyz xyz 16-3
2-4 XZ 9-1 z 16-4 yz
2-5 z 9-2 xy z 16-5 yz z
2-6 yz 9-3 XY 17-1 XY z
3-1 XY XYZ Y 9-4 XYZ y z 17-2 z y
3-2 X XZ 9-5 yz 18-1 XYZ y z
3-3 yz yz 10-1 X XY 18-2 z
3-4 z y 10-2 X 18-3 y z z yz
4-1 yz yz yz z 10-3 z 18-4 yz yz yz XY
4-2 z yz yz 12-1 18-5 yz
4-3 z 12-2 z XZ yz z z yz 18-6 yz yz y
4-4 YZ yz xz z z 12-3 yz z 18-7 z
6-1 12-4 yz 19-1 X
6-2 z X 12-5 z 19-2 z xyz z
6-3 XZ 13-1 z yz z 19-3 XY XY
6-4 z yz z 13-2 z yz XZ z 19-4 yz yz z YZ
6-5 yz y yz y yz 13-3 z XYZ z 19-5 z
6-6 yz yz 13-4 z yz 20-1 XZ X z y yz XY X
6-7 xyz 14-1 yz z z 20-2 y y
7-1 XYZ z 14-2 XYZ XY yz
7-2 14-3 xy
熟期组
Maturity group
等位变异总数
Total allele
继承等位变异
Inherent allele
变化等位变异
Changed allele
新生等位变异
Emerged allele
汰除等位变异
Excluded allele
Allele no. QTL no. Allele no. QTL no. Allele no. QTL no. Allele no. QTL no. Allele no. QTL no.
Ⅰ+Ⅱ 292 (147, 145) 76
0 vs.Ⅰ+Ⅱ 321 (162, 159) 76 287 (144, 143) 76 39 (21,18) 30 34 (18,16) 25 5 (3,2) 5
00 vs. 0 250 (125,125) 76 247 (123, 124) 76 77(41,36) 49 3 (2,1) 2 74 (39,35) 49
000 vs. 00 208 (105,103) 76 189 (96,93) 76 80(38,42) 52 19 (9,10) 17 61(29,32) 44
0+00+000 vs.Ⅰ+Ⅱ 324 (163, 161) 76 288 (144, 144) 76 40 (22,18) 31 36 (19,17) 27 4(3,1) 4
[1] 陈强, 闫龙, 冯燕, 邓莹莹, 侯文焕, 刘青, 刘兵强, 杨春燕, 张孟臣 . 大豆百粒重QTL定位及多样性评价. 中国农业科学, 2016,49(9):1646-1656.
doi: 10.3864/j.issn.0578-1752.2016.09.002
CHEN Q, YAN L, FENG Y, DENG Y Y, HOU W H, LIU Q, LIU B Q, YANG C Y, ZHANG M C . QTL Mapping and diversity evaluation of soybean 100-seed weight. Scientia Agricultura Sinica, 2016,49(9):1646-1656. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.09.002
[2] LU X, XIONG Q, CHENG T, LI Q T, LIU X L, BI Y D, LI W, ZHANG W K, MA B, LAI Y C, DU W G, MAN W Q, CHEN S Y, ZHANG J S . A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 2017,10(5):670-684.
doi: 10.1016/j.molp.2017.03.006 pmid: 28363587
[3] 汪霞, 李广军, 李河南, 艮文全, 章元明 . 大豆百粒重QTL定位. 作物学报, 2010,36(10):1674-1682.
WANG X, LI G J, LI H N, GEN W Q, ZHANG Y M . QTL mapping for soybean 100-seed weight. The Crop Journal, 2010,36(10):1674-1682. (in Chinese)
[4] 齐照明, 孙亚男, 陈立君, 郭强, 刘春燕, 胡国华, 陈庆山 . 基于Meta分析的大豆百粒重的QTLs定位. 中国农业科学, 2009,42(11):3795-3803.
QI Z M, SUN Y N, CHEN L J, GUO Q, LIU C Y, HU G H, CHEN Q S . Meta-analysis of 100-seed weight QTLs in soybean. Scientia Agricultura Sinica, 2009,42(11):3795-3803. (in Chinese)
[5] MIAN M A R, BAILEY M A, TAMULONIS J P, SHIPE E R, CARTER T E, PARROTT W A, ASHLEY D A, HUSSEY R S, BOERMA H R . Molecular markers associated with seed weight in two soybean populations. Theoretical and Applied Genetics, 1996,93:1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474
[6] 傅蒙蒙, 王燕平, 任海祥, 王德亮, 包荣军, 杨兴勇, 田忠艳, 曹景举, 傅连舜, 程延喜, 苏江顺, 孙宾成, 杜维广, 赵团结, 盖钧镒 . 东北春大豆熟期组的划分与地理分布. 大豆科学, 2016,35(2):181-192.
FU M M, WANG Y P, REN H X, WANG D L, BAO R J, YANG X Y, TIAN Z Y, CAO J J, FU L S, CHENG Y X, SU J S, SUN B C, DU W G, ZHAO T J, GAI J Y . A study on criterion, identification and distribution of maturity groups for spring-sowing soybeans in Northeast China. Soybean Science, 2016,35(2):181-192. (in Chinese)
[7] MANSUR L M, ORF J H, CHASE K, JARVIK T, CREGAN P B, LARK K G . Genetic mapping of agronomic traits using recombi-nant inbred lines of soybean. Crop Science, 1996,36:1327-1336.
[8] CSANÁDI G, VOLLMANN J, STIFT G, LELLEY T . Seed quality QTLs identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics, 2001,103:912-919.
doi: 10.1007/s001220100621
[9] 宛煜嵩 . 大豆遗传图谱的构建及若干农艺性状的 QTL 定位分析[D]. 北京: 中国农业科学院, 2002.
WAN Y S . Construction of soybean genetie map and QTL analysis of some agronomic traits[D]. Beijing: Chinese Academy of Agrieultural Sciences, 2002. (in Chinese)
[10] 孙亚男, 仕相林, 蒋洪蔚, 孙殿军, 辛大伟, 刘春燕, 胡国华, 陈庆山 . 大豆百粒重QTL的上位效应和基因型×环境互作效应. 中国油料作物学报, 2012,34(6):598-603.
SUN Y N, SHI X L, JIANG H W, SUN D J, XIN D W, LIU C Y, HU G H, CHEN Q S . Epistatic effects and qE interaction effects of QTLs for 100-seed weight in soybean. Chinese Journal of Oil Crop Sciences, 2012,34(6):598-603. (in Chinese)
[11] SUN Y N, PANN J B, SHI X L, DU X Y, LIU Q, QI Z M, JIANG H W, XIN D W, LIU C Y, HU G H, CHEN Q S . Multi-environment mapping and meta-analysis of 100-seed weight in soybase. Molecular Biology Report, 2012,39(10):9435-9443.
doi: 10.1007/s11033-012-1808-4 pmid: 22740134
[12] KASTOORI R R, JEDLICKA J, GRAEF G L, WATERS B M . Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. Molecular Breeding, 2014,34(2):431-445.
[13] KATO S, SAYAMA T, FUJII K, YUMOTO S, KONO Y, HWANG T Y, KIKUCHI A, TAKADA Y, TANAKA Y, SHIRAIWA T, ISHIMOTO M . A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theoretical and Applied Genetics, 2014,127(6):1365-1374.
doi: 10.1007/s00122-014-2304-0 pmid: 24718925
[14] HAO D R, CHENG H, YIN Z T, CUI S Y, ZHANG D, WANG H, YU D Y . Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine Max) landraces across multiple environments. Theoretical Applied Genetics, 2012,124(3):447-458.
doi: 10.1007/s00122-011-1719-0 pmid: 21997761
[15] ZHOU Z, JIANG Y, WANG Z . Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015,33:408.
doi: 10.1038/nbt.3096 pmid: 25643055
[16] SONAH H, O’DONOUGHUE L, COBER E, RAJCAN I, BELZILE B . BIdentification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soyabean. Plant Biotechnology Journal, 2015,13(2):211-221.
doi: 10.1111/pbi.12249 pmid: 25213593
[17] GUPTA P K, ROY J K, PRASAD M . Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Science, 2010,80(4):524-535.
[18] NACHMAN M W . Single nucleotide polymorphisms and recombination rate in humans. Trends in Genetics, 2001,17(9):481-485.
doi: 10.1016/s0168-9525(01)02409-x pmid: 11525814
[19] ZENG Z B . Precision mapping of quantitative trait loci. Genetics, 1994,136(4):1457-1468.
pmid: 8013918
[20] AUDIC S, CLAVERIE J M . The significance of digital gene expression profiles. Genome Research, 1997,7(10):986-995.
doi: 10.1101/gr.7.10.986 pmid: 9331369
[21] BENJAMINI Y, DANIEL Y . The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 2001,4(29):1165-1188.
doi: 10.1186/1471-2105-9-114 pmid: 18298808
[22] HE J B, MENG S, ZHAO T J, XING G N, YANG S P, LI Y, GUAN R Z, LU J J, WANG Y F, XIA Q J, YANG B, GAI J Y . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 2017,130(11):2327-2343.
doi: 10.1007/s00122-017-2962-9 pmid: 28828506
[23] ZHANG Y H, HE J B, WANG Y F, XING G N, ZHAO J M, LI Y, YANG S P, PALMER R G, ZHAO T J, GAI J Y . Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. Journal of Experimental Botany, 2015,66(20):6311-6325.
doi: 10.1093/jxb/erv342 pmid: 26163701
[24] LI S G, CAO Y C, HE J B, ZHAO T J, GAI J Y . Detecting the QTL‑allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theoretical and Applied Genetics, 2017,130(11):2297-2314.
doi: 10.1007/s00122-017-2960-y pmid: 28799029
[25] PAN L Y, HE J B, ZHAO T J, XING G N, WANG Y F, YU D Y, CHEN S Y, GAI J Y . The novel restricted two-stage multi-locus GWAS procedure efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two‑stage multi‑locus GWAS procedure. Theoretical and Applied Genetics, 2018,131(12):2581-2599.
doi: 10.1007/s00122-018-3174-7 pmid: 30167759
[26] 熊冬金 . 中国大豆育成品种(1923-2005)基于系谱和SSR标记的遗传基础研究[D]. 南京: 南京农工业大学, 2009.
XIONG D J . Studies on the genetic bases of Chinese soybean cultivars released durling 1923-2005 based on pedigree and SSR marker analysis[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[27] ANDOLFATTO P, DAVISON D, EREZYILMAZ D, HU T T, MAST J, SUNAYAMA-MORITA T, STERN D L . Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Research, 2011,21(4):610-617.
doi: 10.1101/gr.115402.110 pmid: 21233398
[28] LI R, YU C, LI Y, LAM T W, YIU S M, KRISTIANSEN K, WANG J . SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 2009,25(15):1966-1967.
doi: 10.1093/bioinformatics/btp336 pmid: 19497933
[29] JEREMY S, STEVEN B. C, JESSICA S, JIAN X M, THERESE M, WILLIAM N, DAVID L. H, QI J S, JAY J. T, IANLIN C, DONG X, UFFE H, GREGORY D. M, YEISOO Y, TETSUYA S, TAISHI U, MADAN K. B, DEVINDER S, BABU V, ERIKA L, MYRON P, DAVID G, SHU S Q, DAVID G, KERRIE B, MONTONA F, BRIAN A, DU J C, TIAN Z X, ZHU L C, NAVDEEP G, TRUPTI J, MARC L, ANAND S, ZHANG X C, KAZUO S, HENRY T. N, ROD A. W, PERRY C, JAMES S, JANE G, DAN R, GARY S, RANDY C. S, SCOTT A. J . Genome sequence of the palaeopolyploid soybean. Nature, 2010,463(14):178-183.
[30] YI X, LIANG Y, HUERTA-SANCHEZ E, JIN X, CUO Z X, POOL J E, XU X, JIANG H, VINCKENBOSCH N, KORNELIUSSEN T S, ZHENG H, LIU T, HE W, LI K, LUO R, NIE X, WU H, ZHAO M, CAO H, ZOU J, SHAN Y, LI S, YANG Q, ASAN, NI P, TIAN G, XU J, LIU X, JIANG T, WU R, ZHOU G, TANG M, QIN J, WANG T, FENG S, LI G, HUASANG, LUOSANG J, WANG W, CHEN F, WANG Y, ZHENG X, LI Z, BIANBA Z, YANG G, WANG X, TANG S, GAO G, CHEN Y, LUO Z, GUSANG L, CAO Z, ZHANG Q, OUYANG W, REN X, LIANG H, ZHENG H, HUANG Y, LI J, BOLUND L, KRISTIANSEN K, LI Y, ZHANG Y, ZHANG X, LI R, LI S, YANG H, NIELSEN R, WANG J . Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 2010,329(5987):75-78.
doi: 10.1126/science.1190371 pmid: 20595611
[31] SCHEET P, STEPHENS M . A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics, 2006,78(4):629-644.
doi: 10.1086/502802 pmid: 16532393
[32] KUMAR S, DUDLEY J, NEI M, TAMURA K . MEGA: A biologist- centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 2008,9:299-306.
doi: 10.1093/bib/bbn017 pmid: 18417537
[33] 盖钧镒, 汪越胜, 张孟臣, 王继安, 常汝镇 . 中国大豆品种熟期组划分的研究. 作物学报, 2001,27(3):286-292.
doi: 10.32687/0869-866X-2019-27-3-286-289 pmid: 31251864
GAI J Y, WANG Y S, ZHANG M C, WANG J A, CHANG R Z . Studies on the classification of maturity groups of soybean in China. Acta Agronomica Sinia, 2001,27(3):286-292. (in Chinese)
doi: 10.32687/0869-866X-2019-27-3-286-289 pmid: 31251864
[34] COPLEY T R, DUCEPPE M O, O’DONOUGHUE L . SIdentification of novel loci associated with maturity and yield traits in early maturity soybean plant introduction lines. BMC Genomics, 2018,19(1):167.
doi: 10.1186/s12864-018-4558-4 pmid: 29490606
[35] WANG J, CHU S, ZHANG H, ZHU Y, CHENG H, YU D Y . Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Scientific Reports, 2016,6:20728.
doi: 10.1038/srep20728 pmid: 26856884
[36] CONTRERAS-SOTO R I, MORA F, OLIVEIRA M A R, HIGASHI W, SCAPIM C A, SCHUSTER I . A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis. PLoS ONE, 2017,12(2):e0171105.
doi: 10.1371/journal.pone.0171105 pmid: 28152092
[37] ZHANG J, SONG Q, CREGAN P B, JIANG J L . Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max) Theoretical and Applied Genetics, 2016,129:117.
doi: 10.1007/s00122-015-2614-x pmid: 26518570
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[5] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[9] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[10] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[11] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[12] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[13] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[14] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[15] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!