Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2265-2277.doi: 10.3864/j.issn.0578-1752.2022.12.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.)

WANG Juan1(),MA XiaoMei1,ZHOU XiaoFeng1,WANG Xin1,TIAN Qin1,LI ChengQi2(),DONG ChengGuang1()   

  1. 1Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang
    2Life Science College, Yuncheng University, Yuncheng 044000, Shanxi
  • Received:2022-01-17 Accepted:2022-03-21 Online:2022-06-16 Published:2022-06-23
  • Contact: ChengQi LI,ChengGuang DONG E-mail:cottonwj@126.com;lichq2010@126.com;dcg318@163.com

Abstract:

【Objective】The loci, elite alleles and candidate genes associated with yield component traits, such as boll weight, lint percentage, number of bolls per plant and seed index, were explored using a genome-wide association analysis (GWAS), which provided a theoretical reference for the molecular breeding of cotton yield.【Method】The GWAS based on a mixed linear model was performed on 408 upland cotton accessions grown in six different environments using the Cotton SNP 80K chip for the four yield component traits, and the significant SNP loci (SNPs) and elite allele were also detected. Finally, on the basis of the gene expression levels of the transcriptome, candidate genes related to the target traits were mined within a 1 Mb genome range of the flanking sequences of the significant SNPs. 【Result】The four yield component traits showed wide phenotypic variations in different environments, with the maximum coefficient of variation for number of bolls per plant being 16.67%-22.66%. The heritability of each trait was between 48.4% and 92.2%. The correlations among traits were significant or highly significant, except between boll weight and lint percentage. A total of 23 significant SNPs distributed in seven different genomic regions associated with the four traits were identified across the 408 cotton accessions in the BLUP. The numbers of loci associated with boll weight, lint percentage, number of bolls per plant and seed index were 5, 1, 9 and 8, respectively, and three loci (TM21094, TM21102, and TM57382) were associated with multiple target traits simultaneously. Seven elite allele types, TM21099(TT), TM57382(GG), TM78920(CC), TM53448(TT), TM59015(AA), TM43412(GG) and TM69770(AA), were identified. A total of 158 candidate genes potentially related to yield formation were selected through an analysis of gene expression patterns in RNA-Seq data. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the functions and metabolic pathways of most genes were varied.【Conclusion】In this study, 23 significant SNPs associated with four yield component traits were identified across 408 cotton accessions, and 158 candidate genes were predicted using RNA-Seq.

Key words: Upland cotton, yield components, genome-wide association analysis, candidate genes

Table 1

Statistical analysis for the yield component traits"

性状
Trait
环境
Environment
最小值
Min
最大值
Max
平均数
Mean
标准差
SD
变异系数
CV (%)
G G×E 遗传率
<BOLD>H</BOLD>2 (%)
铃重
BW
SHZ13 3.10 7.60 5.57 0.56 10.05 ** 78.0
KRL13 3.90 7.90 5.54 0.56 10.11
SHZ14 3.80 7.70 5.69 0.59 10.37
KRL14 4.00 7.50 5.70 0.58 10.18
SHZ15 3.90 7.10 5.43 0.53 9.76
KRL15 4.30 8.60 6.19 0.67 10.82
BLUP 4.22 7.16 5.64 0.41 7.27
衣分
LP
SHZ13 31.90 56.10 43.86 3.26 7.43 ** ** 92.2
KRL13 31.50 50.30 41.73 3.05 7.31
SHZ14 28.70 48.80 39.99 3.31 8.28
KRL14 27.50 48.40 39.12 3.46 8.84
SHZ15 28.10 47.20 39.48 3.43 8.69
KRL15 28.00 48.20 39.56 3.68 9.30
BLUP 30.28 48.42 40.84 2.90 7.10
单株铃数
BN
SHZ13 2.30 10.90 4.28 0.94 21.96 ** * 48.8
KRL13 3.10 9.50 5.50 0.96 17.45
SHZ14 3.70 11.10 6.16 1.14 18.51
KRL14 5.10 16.30 7.92 1.56 19.70
SHZ15 3.00 10.80 5.87 1.33 22.66
KRL15 4.00 11.30 6.00 1.00 16.67
BLUP 4.82 8.04 5.95 0.50 8.40
籽指
SI
SHZ13 7.50 16.20 10.13 1.16 11.45 ** ** 85.4
KRL13 8.00 16.70 10.29 1.24 12.05
SHZ14 8.30 17.80 11.15 1.27 11.39
KRL14 8.20 18.80 11.16 1.39 12.46
SHZ15 6.50 16.40 10.53 1.20 11.40
KRL15 8.10 18.50 11.49 1.36 11.84
BLUP 8.75 16.17 10.71 1.01 9.43

Fig. 1

Correlation coefficients (r) between the yield component traits BW: Boll weight; LP: Lint percentage; BN: Boll number; SI: Seed index. *, ** indicate significant at P=0.05 and P=0.01, level, respectively. The same as below"

Table 2

Association analysis of the yield component traits"

性状 Trait SNP位点 SNP locus 染色体 Chromosome 位置 Position (bp) 等位基因 Allele -log10(<BOLD>P</BOLD>)
铃重
BW
TM21099 A07 70392221 T/C 6.07
TM21097 A07 70365245 T/C 5.92
TM21094 A07 70345913 T/C 5.60
TM58956 D06 1287377 A/G 5.11
TM21102 A07 70411236 A/G 4.90
衣分LP TM57382 D05 18043944 A/G 4.74
单株铃数
BN
TM78920 D12 42319440 A/C 6.80
TM78922 D12 42325933 T/C 6.49
TM78921 D12 42322642 T/A 6.09
TM53448 D03 1908727 T/C 5.59
TM53452 D03 1940517 T/C 5.33
TM53460 D03 1989801 T/C 5.24
TM78919 D12 42306456 T/C 5.18
TM59015 D06 1782860 A/G 5.17
TM53454 D03 1950689 T/C 5.11
籽指
SI
TM43412 A13 5005690 A/G 6.75
TM21094 A07 70345913 T/C 5.15
TM69770 D08 62547519 A/T 5.11
TM43413 A13 5012761 A/G 4.98
TM21098 A07 70381299 T/C 4.94
TM21102 A07 70411236 A/G 4.90
TM57382 D05 18043944 T/C 4.84
TM21111 A07 70492663 A/G 4.75

Fig. 2

Manhattan plots of GWAS for yield component traits"

Table 3

Summary of elite alleles and phenotypic effects"

性状 Trait SNP位点 SNP loci -log10(P) 等位基因 Allele 优异等位变异 Elite allele 表型效应值 ai
铃重BW TM21099 6.07 T/C TT 0.42
衣分LP TM57382 4.74 A/G GG 1.73
单株铃数BN TM78920 6.80 A/C CC 0.48
TM53448 5.59 T/C TT 0.31
TM59015 5.17 A/G AA 0.31
籽指SI TM43412 6.75 A/G GG 2.14
TM69770 5.11 A/T AA 1.74

Fig. 3

Expression analysis of the 367 genes in different Upland cotton tissues A: Genes within the target region for SNP associated with BW; B: Genes within the target region for SNP associated with LP; C: Genes within the target region for SNP associated with BN; D: Genes within the target region for SNP associated with SI. Values in the scale on the middle represent the range of the variation of normalized quantity of expression, in red for high level expressions and in blue for low level expressions"

Table 4

Comparison of the associated loci in this study with previous studies"

性状
Trait
SNP位点
SNP locus
染色体
Chr.
SNP位置
SNP position (bp)
目标区间
Target region (bp)
前人研究
Previous studies
铃重
BW
TM21099 A07 70392221 69892221—70892221 BW (qBW)[6], LP (qLP-1)[6], SI (qSD)[6], LP (qLP-c7-1)[12], SI (qSI-7-1)[7], SI (qSIA7-2)[14], SI (A07: 70700387)[27], SI (TM21134)[29]
衣分LP TM57382 D05 18043944 17543944—18543944 BN (qNB-D5-1)[24]
单株铃数
BN
TM78920 D12 42319440 41819440—42819440 LY (qLY-C26-1)[10], SCY (qYLD-C26-1)[10], SCY (qSCY-06A-c26-1)[12]
TM53448 D03 1908727 1408727—2408727 LP (D03: 1424880)[27]
TM59015 D06 1782860 1282860—2282860
籽指
SI
TM43412 A13 5005690 4505690—5505690 SI (A13: 4741980)[27]
TM69770 D08 62547519 62047519—63047519
[1] 中国农业科学院棉花研究所. 中国棉花遗传育种学. 济南: 山东科学技术出版社, 2003: 562.
Cotton Research Institute, the Chinese Academy of Agricultural Sciences. Genetics and Breeding of Cotton in China. Jinan: Shandong Science and Technology Press, 2003: 562. (in Chinese)
[2] 喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016, 49(18): 3465-3476.
YU S X, FAN S L, WANG H T, WEI H L, PANG C Y. Progresses in research on cotton high yield breeding in China. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476. (in Chinese)
[3] YIN J M, WU Y T, ZHANG J, ZHANG T Z, GUO W Z, ZHU X F. Tagging and mapping of QTLs controlling lint yield and yield components in upland cotton (Gossypium hirsutum L.) using SSR and RAPD markers. Chinese Journal of Biotechnology, 2002, 18: 162-166.
[4] HE D H, LIN Z X, ZHANG X L, NIE Y C, GUO X P, FENG C D, STEWART J M. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica, 2005, 144: 141-149.
doi: 10.1007/s10681-005-5297-6
[5] 王沛政, 秦利, 苏丽, 胡保民, 张天真. 新疆陆地棉主栽品种部分产量性状QTL的标记与定位. 中国农业科学, 2008, 41(10): 2947-2956.
WANG P Z, QIN L, SU L, HU B M, ZHANG T Z. QTL mapping of the partial yield components of main upland cotton cultivars planted in Xinjiang. Scientia Agricultural Sinica, 2008, 41(10): 2947-2956. (in Chinese)
[6] 陈利, 张正圣, 胡美纯, 王威, 张建, 刘大军, 郑靓, 郑风敏, 马靖. 陆地棉遗传图谱构建及产量和纤维品质性状QTL定位. 作物学报, 2008, 34(7): 1199-1205.
doi: 10.3724/SP.J.1006.2008.01199
CHEN L, ZHANG Z S, HU M C, WANG W, ZHANG J, LIU D J, ZHENG L, ZHENG F M, MA J. Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica, 2008, 34(7): 1199-1205. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01199
[7] MA X X, DING Y Z, ZHOU B L, GUO W Z, ZHANG T Z. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium. Journal of Genetics and Genomics, 2008, 35(12): 751-762.
doi: 10.1016/S1673-8527(08)60231-3
[8] 秦永生, 刘任重, 梅鸿献, 张天真, 郭旺珍. 陆地棉产量相关性状的QTL定位. 作物学报, 2009, 35(10): 1812-1821.
doi: 10.3724/SP.J.1006.2009.01812
QIN Y S, LIU R Z, MEI H X, ZHANG T Z, GUO W Z. QTL mapping for yield traits in Upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica, 2009, 35(10): 1812-1821. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01812
[9] 林忠旭, 冯常辉, 郭小平, 张献龙. 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析. 中国农业科学, 2009, 42(9): 3036-3047.
LIN Z X, FENG C H, GUO X P, ZHANG X L. Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in Upland cotton. Scientia Agricultural Sinica, 2009, 42(9): 3036-3047. (in Chinese)
[10] WU J X, GUTIERREZ O A, JENKINS J N, MCCARTY J C, ZHU J. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica, 2009, 165: 231-245.
doi: 10.1007/s10681-008-9748-8
[11] GUO X, GUO Y P, MA J, WANG F, SUN M Z, GUI L J, ZHOU J J, SONG X L, SUN X Z, ZHANG T Z. Mapping heteroticloci for yield and agronomic traits using chromosome segment introgression lines in cotton. Journal of Integrative Plant Biology, 2013, 55: 759-774.
doi: 10.1111/jipb.12054
[12] YU J W, ZHANG K, LI S Y, YU S X, ZHAI H H, WU M, LI X L, FAN S L, SONG M Z, YANG D G, LI Y H, ZHANG J F. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics, 2013, 126: 275-287.
doi: 10.1007/s00122-012-1980-x
[13] YU J W, YU S X, GORE M, WU M, ZHAI H H, LI X L, FAN S L, SONG M Z, ZHANG J F. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica, 2013, 191: 375-389.
doi: 10.1007/s10681-013-0875-5
[14] NING Z Y, ZHAO R, CHEN H, AI N J, ZHAN X, ZHAO J, MEI H X, WANG P, GUO W Z, ZHANG T Z. Molecular tagging of a major quantitative trait locus for broad-spectrum resistance to verticillium wilt in upland cotton cultivar Prema. Crop Science, 2013, 53: 2304-2312.
doi: 10.2135/cropsci2012.12.0694
[15] LIU R Z, AI N J, ZHU X X, LIU F J, GUO W Z, ZHANG T Z. Genetic analysis of plant height using two immortalized populations of “CRI12 × J8891” in Gossypium hirsutum L.. Euphytica, 2014, 196: 51-61.
doi: 10.1007/s10681-013-1013-0
[16] SHAO Q S, ZHANG F J, LIU Y, FANG X M, LIU D J, ZHANG J, TENG Z H, PATERSON A H, ZHANG Z S. Identifying QTL for fiber quality traits with three upland cotton (Gossypium hirsutum L.) populations. Euphytica, 2014, 198: 43-58.
doi: 10.1007/s10681-014-1082-8
[17] GUPTA P K, RUSTGI S, KULWAL P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 2005, 57(4): 461-485.
doi: 10.1007/s11103-005-0257-z
[18] HUANG C, NIE X H, SHEN C, YOU C Y, LI W, ZHAO W X, ZHANG X L, LIN Z X. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnology Journal, 2017, 15(11): 1374-1386.
doi: 10.1111/pbi.12722
[19] SU J J, LI L B, ZHANG C, WANG C X, GU L J, WANG H T, WEI H L, LIU Q B, HUANG L, YU S X. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theoretical and Applied Genetics, 2018, 131: 1299-1314.
doi: 10.1007/s00122-018-3079-5
[20] LI C Q, WANG Y Y, AI N J, LI Y, SONG J F. A genome-wide association study of early-maturation traits in upland cotton based on the cotton SNP 80K array. Journal of Integrative Plant Biology, 2018, 60(10): 970-985.
doi: 10.1111/jipb.12673
[21] FU Y Z, DONG C G, WANG J, WANG Y Y, LI C Q. Genome-wide association study reveals the genetic control underlying node of the first fruiting branch and its height in Upland cotton (Gossypium hirsutum L.). Euphytica, 2019, 215(35): 1-14.
doi: 10.1007/s10681-018-2319-8
[22] LI L B, ZHANG C, HUANG J Q, LIU Q B, WEI H L, WANG H T, LIU G Y, GU L J, YU S X. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal, 2021, 19(1): 109-123.
doi: 10.1111/pbi.13446
[23] 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点基因组关联分析及候选基因预测. 中国农业科学, 2022, 55(2): 248-264.
XIE X Y, WANG K H, QIN X X, WANG C X, SHI C H, NING X Z, YANG Y L, QIN J H, LI C Z, MA Q, SU J J. Restricted two-stage multi-locus genome-wide association analysis and candidate gene prediction of boll opening rate in upland cotton. Scientia Agricultura Sinica, 2022, 55(2): 248-264. (in Chinese)
[24] ZHANG T Z, QIAN N, ZHU X F, CHEN H, WANG S, MEI H X, ZHANG Y M. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS ONE, 2013, 8: e57220.
doi: 10.1371/journal.pone.0057220
[25] SU J J, FAN S L, LI L B, WEI H L, WANG C X, WANG H T, SONG M Z, ZHANG C, GU L J, ZHAO S Q, MAO G Z, WANG C S, PANG C Y, YU S X. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese Upland cotton. Frontier in Plant Science, 2016, 7: 1576.
[26] 王娟, 董承光, 刘丽, 孔宪辉, 王旭文, 余渝. 陆地棉主要产量相关性状的SSR标记关联分析. 植物遗传资源学报, 2017, 18(4): 720-727.
WANG J, DONG C G, LIU L, KONG X H, WANG X W, YU Y. Association analysis of yield-related traits with SSR markers in Upland cotton (Gossypium hirsutum L.). Journal of Plant Genetic Resources, 2017, 18(4): 720-727. (in Chinese)
[27] FANG L, WANG Q, HU Y, JIA Y H, CHEN J D, LIU B L, ZHANG Z Y, GUAN X Y, CHEN S Q, ZHOU B L, MEI G F, SUN J L, PAN Z E, HE S P, XIAO S H, SHI W J, GONG W F, LIU J G, MA J, CAI C P, ZHU X F, GUO W Z, DU X M, ZHANG T Z. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49: 1089-1098.
doi: 10.1038/ng.3887
[28] DONG C G, WANG J, CHEN Q J, YU Y, LI B C. Detection of favorable alleles for yield and yield components by association mapping in upland cotton. Genes and Genomics, 2018, 40: 725-734.
doi: 10.1007/s13258-018-0678-0
[29] WANG X L, FENG W, WANG H R, WANG Q K, WEI Z, ZHANG G H, LIU X L, LI Z Y, SONG X L, SUN X Z. Multi-environments and multi-models association mapping identified candidate genes of lint percentage and seed index in Gossypium hirsutum L.. Molecular Breeding, 2019, 39: 149.
doi: 10.1007/s11032-019-1063-7
[30] SU J J, WANG C X, MA Q, ZHANG A, SHI C H, LIU J J, ZHANG X L, YANG D L, MA X F. An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton. BMC Plant Biology, 2020, 20(1): 416-416.
doi: 10.1186/s12870-020-02613-y
[31] ZHU G Z, HOU S, SONG X H, WANG X, WANG W, CHEN Q J, GUO W Z. Genome-wide association analysis reveals quantitative trait loci and candidate genes involved in yield components under multiple field environments in cotton (Gossypium hirsutum). BMC Plant Biology, 2021, 21(1): 250-250.
doi: 10.1186/s12870-021-03009-2
[32] WANG P P, HE S P, SUN G F, PAN Z E, SUN J L, GENG X L, PENG Z, GONG W F, WANG L R, PANG B Y, JIA Y H, DU X M. Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum). Scientific Reports, 2021, 11: 15935.
doi: 10.1038/s41598-021-95629-9
[33] SUN Z W, WANG X F, LIU Z W, GU Q S, ZHANG Y, LI Z K, KE H F, YANG J, WU J H, WU L Q, ZHANG G Y, ZHANG C Y, MA Z Y. Genome-wide association study discovered genetic variation and candidate genes of fiber quality traits in Gossypium hirsutum L.. Plant Biotechnology Journal, 2017, 15: 982-996.
doi: 10.1111/pbi.12693
[34] GAPARE W, CONATY W, ZHU Q H, LIU S M, STILLER W, LLEWELLYN D, WILSON L. Genome-wide association study of yield components and fiber quality traits in a cotton germplasm diversity panel. Euphytica, 2017, 213(66): 1-22.
doi: 10.1007/s10681-016-1788-x
[35] DONG C G, WANG J, YU Y, LI B C, CHEN Q J. Association mapping and favorable QTL alleles for fiber quality traits in Upland cotton (Gossypium hirsutum L.). Journal of Genetics, 2018, 97(s1): 1-12.
[36] DONG C G, WANG J, YU Y, JU L Z, ZHOU X F, MA X M, MEI G F, HAN Z G, SI Z F, LI B C, CHEN H, ZHANG T Z. Identifying functional genes influencing Gossypium hirsutum fiber quality. Frontier in Plant Science, 2019, 9: 1968.
[37] YUAN Y C, ZHANG H J, WANG L Y, XING H X, MAO L L, TAO J C, WANG X L, FENG W, WANG Q K, WANG H R, WEI Z, ZHANG G H, SONG X L, SUN X Z. Candidate quantitative trait loci and genes for fiber quality in Gossypium hirsutum L. detected using single-and multi-locus association mapping. Industrial Crops and Products, 2019, 134: 356-369.
doi: 10.1016/j.indcrop.2019.04.010
[38] SU J J, WANG C X, YANG D L, SHI C H, ZHANG A, MA Q, LIU J J, ZHANG X L, HUANG L, MA X F. Decryption of favorable haplotypes and potential candidate genes for five fiber quality properties using a relatively novel genome-wide association study procedure in upland cotton. Industrial Crops and Products, 2020, 158: 113004.
doi: 10.1016/j.indcrop.2020.113004
[39] 张素君, 李兴河, 唐丽媛, 王海涛, 刘存敬, 蔡肖, 张香云, 张建宏. 陆地棉纤维品质性状关联分析及优异等位基因挖掘. 植物遗传资源学报, 2021, 22(1): 214-228.
ZHANG S J, LI X H, TANG L Y, WANG H T, LIU C J, CAI X, ZHANG X Y, ZHANG J H. Exploration of elite alleles related with fiber quality traits in Gossypium hirsutum L. by association analysis. Journal of Plant Genetic Resources, 2021, 22(1): 214-228. (in Chinese)
[40] ULLOA M, SANTIAGO L M D, HULSE-KEMP A M, STELLY D M, BURKE J J. Enhancing upland cotton for drought resilience, productivity, and fiber quality: Comparative evaluation and genetic dissection. Molecular Genetics and Genomics, 2020, 295: 155-176.
doi: 10.1007/s00438-019-01611-6
[41] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析. 作物学报, 2021, 47(3): 438-450.
doi: 10.3724/SP.J.1006.2021.04063
HAN B, WANG X W, LI B Q, YU Y, TIAN Q, YANG X Y. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.). Acta Agronomica Sinica, 2021, 47(3): 438-450. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04063
[42] APPIAH M K, FEIKE T, WIREDU A, MAMITIMIN Y. Cotton production, land use change and resource competition in the Aksu-Tarim River Basin, Xinjiang, China. Quarterly Journal of International Agriculture, 2014, 53(3): 243-261.
[43] 田笑明, 李雪源, 吕新, 李保成, 陈冠文. 新疆棉作理论与现代植棉技术. 北京: 科学出版社, 2016.
TIAN X M, LI X Y, LÜ X, LI B C, CHEN G W. Principles and Modern Technologies of Cotton Farming in Xinjiang. Beijing: Science Press, 2016. (in Chinese)
[44] 白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50(1): 38-50.
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017, 50(1): 38-50. (in Chinese)
[45] 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.
DU X M, ZHOU Z L. Descriptors and Data Standard for Cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005. (in Chinese)
[46] CAI C P, ZHU G Z, ZHANG T Z, GUO W Z. High-density 80K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18: 654.
doi: 10.1186/s12864-017-4062-2
[47] 钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析[D]. 南京: 南京农业大学, 2009.
QIAN N. Genetic diversity and association of gene (QTL) of breeding target traits of Upland cotton[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[48] ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z F. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
doi: 10.1038/nbt.3207
[49] SUN H, HU M L, LI J Y, CHEN L, LI M, ZHANG S Q, ZHANG X L, YANG X Y. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biology, 2018, 18: 150.
doi: 10.1186/s12870-018-1367-5
[50] ZHANG J, HUANG G Q, ZOU D, YAN J Q, LI Y, HU S, LI X B. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. The New Phytologist, 2018, 217(2): 625-640.
doi: 10.1111/nph.14864
[51] MISHRA N, SUN L, ZHU X L, SMITH J, SRIVASTAVA A P, YANG X J, PEHLIVAN N P, ESMAEILI N, LUO H, SHEN G X, JONES D, AULD D, BURKE J, PAYTON P, ZHANG H. Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant and Cell Physiology, 2017, 58(4): 735-746.
doi: 10.1093/pcp/pcx032
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[5] XIONG ShuPing,GAO Ming,ZHANG ZhiYong,QIN BuTan,XU SaiJun,FU XinLu,WANG XiaoChun,MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[6] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[9] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[10] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[11] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[12] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[13] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[14] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[15] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!