Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2249-2260.doi: 10.3864/j.issn.0578-1752.2021.11.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain

WANG JiQing1(),REN Yi1,SHI XiaoLei1,WANG LiLi1,ZHANG XinZhong2,SULITAN· GuZhaLiAYi1,XIE Lei1,GENG HongWei1()   

  1. 1College of Agriculture, Xinjiang Agricultural University/Key Laboratory of Agricultural Biological Technology, Urumqi 830052
    2Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2020-10-31 Accepted:2020-12-28 Online:2021-06-01 Published:2021-06-09
  • Contact: HongWei GENG E-mail:WANGjiqing0655@163.com;hwgeng@163.com

Abstract:

【Objective】The activity of superoxide dismutase (SOD) in wheat grains has a significant effect on the color and nutritional quality of wheat flour. Identification of associated loci and candidate genes for SOD activity in wheat grains is important for discovering the genetic mechanism of SOD activity in wheat grains and genetic improvement of wheat flour color. 【Method】The SOD activity of 212 common wheat varieties (lines) planted in 3 environments was detected by photoreduction method of nitro-blue tetrazolium (NBT), and the genome-wide association study (GWAS) of SOD activity in wheat grains was carried out by 16 705 high-quality SNP markers of 90K SNP chip, and candidate genes of significantly associated loci of stable inheritance were identified. 【Result】The phenotypic variation of SOD activity among wheat varieties (lines) was significant in different environments, with the coefficient of variation ranging from 4.34% to 5.23%, the correlation coefficient ranging from 0.60 to 0.90 (P<0.001). Polymorphic information content (PIC) ranging from 0.24 to 0.29 and the whole genome linkage disequilibrium (LD) attenuation distance of 7 Mb. The analysis of population structure showed that the tested materials could be divided into 3 subgroups. GWAS analysis showed that 29 loci (P≤0.001) were significantly associated with SOD activity, which were distributed on chromosomes 1A, 1B, 2A, 2B, 2D, 3B, 3D, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D and 7B. A single locus can explain the phenotypic variation(R2) between 5.47% and 32.43%, of which 14 loci were detected in 2 or more environments. Nine significant associated loci were detected in three environments, distributed on chromosomes 1B, 2B, 4B, 5A, 5B, 6B and 6D, with a contribution rate of 6.21%-16.62%. SOD genes of TraesCS2B01G567600, TraesCS3D01G069900, TraesCS3D01G070200, TraesCS5B01G525700, TraesCS6A01G021400 and TraesCS6D01G431500, and SOD-activity-related candidate genes of TraesCS5A01G263500 and TraesCS6B01G707800 were used to identify the candidate genes of significantly associated loci of stable inheritance. The functions of the candidate genes were mainly related to the inhibition of cell reactive oxygen species accumulation and the participation in antioxidant regeneration. 【Conclusion】Twenty-nine SNP loci associated with SOD activity in wheat grains were detected, and 7 SOD genes and 2 candidate genes related to SOD activity were screened out.

Key words: wheat grain, SOD activity, genome-wide association study, SNP, candidate genes

Table 1

Statistical analysis of SOD activity of 212 winter wheat grains in different environments"

环境
Environment
均值±标准差
Mean±SD
变幅
Range
变异系数
CV
相关系数Correlation coefficient 遗传力
h2
2016—2017 2017—2018 2018—2019
2016—2017 1784.14±73.31 1348.71—2025.14 4.34 0.79
2017—2018 1798.26±97.28 1316.83—2016.18 5.23 0.60***
2018—2019 1774.25±78.14 1348.26—2021.86 4.85 0.64*** 0.62***
均值Mean 1781.28±73.40 1407.32—1988.93 4.72 0.86*** 0.90*** 0.87***

Fig. 1

SOD activity distribution frequency of 212 winter wheat in different environments"

Table 2

SOD activity of winter wheat grains in different wheat regions"

环境
Environment
来源 Origin
北部冬麦区
Northern winter
wheat region
西南冬麦区
Southwest winter wheat region
黄淮冬麦区
Huanghuai winter wheat region
长江中下游冬麦区
Middle/lower reaches of the Yangtze River winter wheat region
国外品种
Foreign varieties
2016—2017 1795.17 1782.41 1769.27 1733.88 1789.64
2017—2018 1804.36 1772.71 1790.38 1800.16 1800.91
2018—2019 1806.25 1799.82 1761.35 1747.94 1779.12
总计Total 1801.74 1787.21 1771.19 1759.67 1788.26

Table 3

Distribution of markers, length of physical maps and polymorphism of markers"

染色体
Chromosome
标记数目
No. of markers
长度
Length (Mb)
标记密度
Density of marker
遗传多样性
Genetic diversity
多态信息含量
PIC
1A 1262 592.38 0.47 0.32 0.26
1B 1293 688.60 0.53 0.34 0.27
1D 573 495.14 0.86 0.31 0.26
2A 1151 780.46 0.68 0.29 0.24
2B 1293 799.62 0.62 0.32 0.26
2D 481 650.94 1.35 0.31 0.25
3A 894 749.46 0.84 0.31 0.26
3B 1090 829.32 0.76 0.33 0.27
3D 234 613.92 2.62 0.29 0.24
4A 705 741.73 1.05 0.30 0.25
4B 571 672.56 1.18 0.32 0.26
4D 99 508.58 5.14 0.31 0.26
5A 960 709.43 0.74 0.36 0.29
5B 1157 712.82 0.62 0.35 0.28
5D 240 563.41 2.35 0.31 0.25
6A 1007 617.40 0.61 0.34 0.27
6B 1081 720.82 0.67 0.31 0.26
6D 319 472.61 1.48 0.31 0.25
7A 1174 736.44 0.63 0.30 0.25
7B 861 750.49 0.87 0.31 0.25
7D 260 637.17 2.45 0.29 0.24
A基因组 A genome 7153 4927.29 0.69 0.32 0.26
B基因组 B genome 7346 5174.23 0.70 0.33 0.27
D基因组 D genome 2206 3941.77 1.79 0.31 0.24
总计Total 16705 14043.30 0.84 0.32 0.26

Fig.2

Population structure analysis of 212 wheat varieties (lines) A: Estimation of ?K value in population; B: Group structure diagram"

Fig. 3

Manhattan plot and Q-Q plot of SOD activity in different environments E1: 2016-2017 environmental point; E2: 2017-2018 environmental point; E3: 2018-2019 environmental point; A: Average environment"

Table 4

SOD activity related loci detected by SNP-GWAS"

标记
Marker
染色体
Chromosome
物理位置
Position (bp)
环境
Environment
P
P value
贡献率
R2 (%)
Ex_c12584_2014 1A 435061794 A 5.77E-04 5.94
BS00109991_51 1A 536439240—536614333 A 7.90E-04—8.82E-04 7.02—7.07
Ra_c5683_2584 1A 551460924 A 9.44E-04 5.38
Kukri_c8533_1398 1B 49886407 E2 9.60E-04 8.43
Ra_c11303_359 1B 379383435 E2 9.78E-04 8.46
BS00022411_51 1B 629159210 E1/E3/A 2.88E-05—2.97E-04 8.93—11.10
Tdurum_contig92425_1574 2A 779977420 E2/A 6.80E-06—2.13E-04 8.52—16.45
BS00038217_51 2B 99961034 E1 6.35E-04 8.66
RFL_Contig1987_3440 2B 555840884 E1/E3/A 7.00E-05—3.92E-04 8.83—11.28
BS00026037_51 2B 793151228 E1/E3/A 1.24E-04—5.25E-04 14.23—16.62
BS00049876_51 2D 12891888 A 7.40E-04 7.36
Kukri_c40882_76 3B 19250811—19390877 E1 4.50E-04—6.44E-04 6.04—6.38
CAP8_c9373_277 3D 21005688 E1/A 3.13E-04—5.86E-04 5.81—6.81
Tdurum_contig12116_297 4B 60543887 E1/E3/A 4.52E-05—3.71E-04 8.40—10.97
Excalibur_c29496_799 4D 475027917 E1 3.96E-04 7.68
BS00022191_51 5A 476402782 E1/E3/A 6.11E-05—3.21E-04 8.57—10.77
BS00024602_51 5A 499660243 E3/A 2.64E-04—4.51E-04 26.29—32.43
Kukri_c14889_1086 5A 540052370—540611794 E1 3.04E-04—9.20E-04 6.22—9.17
tplb0061l23_1365 5B 506768500 A 6.90E-04 7.18
BobWhite_rep_c62475_70 5B 531199416 E1/E3/A 6.96E-05—5.30E-04 7.93—11.03
RAC875_c33791_320 5B 679804074 E1/E3/A 8.46E-06—7.05E-04 6.91—10.13
RAC875_c49940_385 5D 399290149 E1/A 3.21E-04—9.48E-04 5.37—6.69
RAC875_c13610_1239 6A 1497847—2402603 E2/A 8.61E-06—6.32E-04 6.29—17.00
BS00037162_51 6A 617689729 A 8.99E-04 7.93
BS00082893_51 6B 166226—169518 E2 2.24E-04—5.29E-04 13.18—13.22
Kukri_c49331_77 6B 664266146—667884621 E1/E3/A 4.25E-05—7.81E-04 6.21—11.61
Kukri_c338_109 6B 708660893 E3 7.10E-04 9.40%
Excalibur_c57840_227 6D 456465650 E1/E3/A 7.43E-05—4.78E-04 8.21—10.83
Kukri_c16814_103 7B 700830992 E1 9.32E-04 5.69

Table 5

Screening for candidate gene information"

位点
Marker
染色体
Chr.
物理位置
Position (bp)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
BS00026037_51 Chr.2B 758592689 TraesCS2B01G567600 超氧化物歧化酶Superoxide dismutase
CAP8_c9373_277 Chr.3D 30983003 TraesCS3D01G069900 铜、锌超氧化物歧化酶Superoxide dismutase [Cu-Zn]
31432328 TraesCS3D01G070200 铜、锌超氧化物歧化酶 Superoxide dismutase [Cu-Zn]
BS00022191_51 Chr.5A 476402782 TraesCS5A01G263500 锌指应激蛋白Zinc finger stress protein
BobWhite_rep_c62475_70 Chr.5B 531620481 TraesCS5B01G525700 铜、锌超氧化物歧化酶Superoxide dismutase [Cu-Zn]
551408544 TraesCS5B01G373700 铜、锌超氧化物歧化酶Superoxide dismutase [Cu-Zn]
RAC875_c13610_1239 Chr.6A 8971283 TraesCS6A01G021400 超氧化物歧化酶Superoxide dismutase
Kukri_c49331_77 Chr.6B 664393248 TraesCS6B01G707800 谷胱甘肽转移酶Glutathione transferase
Excalibur_c57840_227 Chr.6D 430047351 TraesCS6D01G431500 铜、锌超氧化物歧化酶Superoxide dismutase [Cu-Zn]
[1] 张菊芳. 小麦面粉白度的影响因子研究[D]. 扬州: 扬州大学, 2005.
ZHANG J F. Analyses on factors affecting wheat flour whiteness[D]. Yangzhou: Yangzhou University, 2005. (in Chinese)
[2] SCHIAVON M, LEINAUER B, SERENA M, MAIER B, SALLENAVE R. Plant growth regulator and soil surfactants’ effects on saline and deficit irrigated warm-season grasses: II. Pigment content and superoxide dismutase activity. Crop Science, 2014,54:2827-2836.
doi: 10.2135/cropsci2013.10.0708
[3] BOWLER C, CAMP W V, MONTAGU M V, INZÉ D, ASADA P K. Superoxide dismutase in plants. Critical Reviews in Plant Sciences, 1994,13(3):199-209.
doi: 10.1080/07352689409701914
[4] DONG Y M, DE X S, YI Z, CHEN Y W, YUN J Z, TIAN C G. Diversity of antioxidant content and its relationship to grain color and morphological characteristics in winter wheat grains. Journal of Integrative Agriculture, 2014,13:1258-1267.
doi: 10.1016/S2095-3119(13)60573-0
[5] BEKES F, GRAS P, GUPTA R. Mixing properties as a measure of reversible reduction and oxidation of doughs. Cereal Chemistry, 1994,71:44-50.
[6] NAKAMURA M, KURATA T. Effect of L-ascorbic acid and superoxide anion radical on the rheological properties of wheat flour water dough. Cereal Chemistry, 1997,74:651-655.
doi: 10.1094/CCHEM.1997.74.5.651
[7] 李宁波, 王晓曦, 于磊, 曲艺, 雷洪. 面团流变学特性及其在食品加工中的应用. 食品科技, 2008,33(8):35-38.
LI N B, WANG X X, YU L, QU Y, LEI H. Dough rheology properties and its application in the food processing industry. Food Science and Technology, 2008,33(8):35-38. (in Chinese)
[8] BRUNEEL C, LAGRAIN B, BRIJS K, DELCOUR J A. Redox agents and N-ethylmaleimide affect the extractability of gluten proteins during fresh pasta processing(Article). Food Chemistry, 2011,127:905-911.
doi: 10.1016/j.foodchem.2011.01.048
[9] ALEJANDRA M M, ELIZABETH C, AGUSTÍN R, FRANCISCO A H, EDITH V D. Ferulated arabinoxylans and their gels: Functional properties and potential application as antioxidant and anticancer agent. Oxidative Medicine and Cellular Longevity, 2018,2018:1-22.
[10] CHENG H Y, SONG S Q. Species and organ diversity in the effects of hydrogen peroxide on superoxide dismutase activity in vitro. Journal of Integrative Plant Biology, 2006,48:672-678.
doi: 10.1111/jipb.2006.48.issue-6
[11] BHARTI K A, PANDEY N, SHANKHDHAR D, SRIVASTAVA P C, SHANKHDHAR S C. Effect of different zinc levels on activity of superoxide dismutases & acid phosphatases and organic acid exudation on wheat genotypes. Physiology and Molecular Biology of Plants, 2014,20:41-48.
doi: 10.1007/s12298-013-0201-7
[12] EYIDOĞAN F, ÖKTEM H A, YÜCEL M. Superoxide dismutase activity in salt stressed wheat seedlings. Acta Physiologiae Plantarum, 2003,25:263-269.
doi: 10.1007/s11738-003-0007-2
[13] 刘家林, 欧阳林娟, 曾嘉丽, 傅军如, 贺浩华, 朱昌兰, 彭小松, 贺晓鹏, 陈小荣, 边建民, 徐杰, 孙晓棠, 周大虎, 胡丽芳. 水稻SOD基因家族的全基因组分析及逆境胁迫下表达研究. 分子植物育种, 2018,16(9):11-18.
LIU J L, OUYANG L J, ZENG J L, FU F R, HE H H, ZHU C L, PENG X S, HE X P, CHEN X R, BIAN J M, XU J, SUN X T, ZHOU D H, HU L F. Genome-wide analysis of rice sod gene family and expression research under stress. Molecular Plant Breeding, 2018,16(9):11-18. (in Chinese)
[14] 赵艳, 生云龙, 宋亚菲, 张佳阔, 瓮巧云, 袁进成, 赵治海, 刘颖慧. 谷子超氧化物歧化酶基因家族生物信息学分析. 中国农业科技导报, 2018,20(8):1-6.
ZHAO Y, SHENG Y L, SONG Y F, ZHANG J K, WENG Q Y, YUAN J C, ZHAO Z H, LIU Y H. Genome-wide identification and bio-informatics analysis of superoxide dismutase gene family in Setaria italica. Journal of Agricultural Science and Technology, 2018,20(8):1-6. (in Chinese)
[15] WU G, WILEN R W, ROBERTSON A J, GUSTA L V. Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant physiology, 1999,120:513-520.
doi: 10.1104/pp.120.2.513
[16] BAEK K H, SKINNER D Z, LING P, CHEN X. Molecular structure and organization of the wheat genomic manganese superoxide dismutase gene. Genome, 2006,49:209-218.
doi: 10.1139/g05-102
[17] 赵永亮. 小麦微营养素相关基因的QTLs作图及克隆[D]. 北京: 中国农业科学院, 2005.
ZHAO Y L. QTLs Mapping and cloning of micronutrient-related genes in hexaploid wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2005. (in Chinese)
[18] JIANG W, YANG L, HE Y, ZHANG H, LI W, CHEN H, MA D, YIN J. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). PeerJ, 2019,7:e8062.
doi: 10.7717/peerj.8062
[19] KUMAR R R, DUBEY K, GOSWAMI S, HASIJA S, PANDEY R, SINGH P K, SINGH B, SAREEN S, RAI G K, SINGH G P, SINGH A K, CHINNUSAMY V, PRAVEEN S. Heterologous expression and characterization of novel manganese superoxide dismutase (Mn-SOD) -A potential biochemical marker for heat stress-tolerance in wheat (Triticum aestivum). International Journal of Biological Macromolecules, 2020,161:1029-1039.
doi: 10.1016/j.ijbiomac.2020.06.026
[20] GENG H W, XIA X C, ZHANG L P, QU Y Y, HE Z H. Development of functional markers for a lipoxygenase gene TaLox-B1 on chromosome 4BS in common wheat. Crop Science, 2012,52:568-576.
doi: 10.2135/cropsci2011.07.0365
[21] 时佳, 翟胜男, 刘金栋, 魏景欣, 白璐, 高文伟, 闻伟锷, 何中虎, 夏先春, 耿洪伟. 普通小麦籽粒过氧化物酶活性全基因组关联分析. 中国农业科学, 2017,50(21):164-179.
SHI J, ZHAI S N, LIU J D, WEI J X, BAI L, GAO W W, WEN W E, HE Z H, XIA X C, GENG H W. Genome-wide association study of grain peroxidase activity in common wheat. Scientia Agricultura Sinica, 2017,50(21):164-179. (in Chinese)
[22] 曲敏, 秦丽楠, 刘羽佳, 范宏臣, 朱姝, 王金凤. 两种检测SOD酶活性方法的比较. 食品安全质量检测学报, 2014,5(10):3318-3323.
QU M, QIN L N, LIU Y J, FAN H C, ZHU S, WANG J F. The comparison of two methods of testing superoxide dismutase activity. Journal of Food Safety & Quality, 2014,5(10):3318-3323. (in Chinese)
[23] MENG L, LI H, ZHANG L, WANG J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015,3:269-283.
doi: 10.1016/j.cj.2015.01.001
[24] YU J, PRESSOIR G, BRIGGS W H, BI I V, YAMASAKI M, DOEBLEY J F, MCMULLEN M D, GAUT B S, NIELSEN D M, HOLLAND J B, KRESOVICH S, BUCKLER E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006,38:203-208.
doi: 10.1038/ng1702
[25] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020,21(2):431-445.
ZHOU S Y, BI H H, CHENG X Y, ZHANG X R, RUN Y X, WANG H H, MAO P J, LI H X, XU H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. Journal of Plant Genetic Resources, 2020,21(2):431-445. (in Chinese)
[26] 赵勇, 王杰, 杨学芳, 李晓云, 张树华, 田纪春, 杨学举. 小麦籽粒多酚氧化酶活性的QTL分析. 山东农业大学学报(自然科学版), 2015,46(2):189-193.
ZHAO Y, WANG J, YANG X F, LI X Y, ZHANG S H, TIAN J C, YANG X J. QTL analysis on polyphenol oxidase activity in wheat kernel. Journal of Shandong Agricultural University (Natural Science Edition), 2015,46(2):189-193. (in Chinese)
[27] 王明道, 魏照辉, 张俊丽, 刘亮伟, 陈红歌. 小麦不同生育时期木聚糖酶活性及木聚糖酶抑制蛋白活性的变化. 麦类作物学报, 2010,30(3):544-547.
WANG M D, WEI Z H, ZHANG J L, LIU L W, CHEN H G. Changes of xylanase activity and xylanase lnhibitor activity in wheat at different growth stages. Journal of Triticeae Crops, 2010,30(3):544-547. (in Chinese)
[28] 谢洁, 陈宁春, 张斌. 真菌α-淀粉酶和葡萄糖氧化酶对全麦面粉品质的改良. 南方农业学报, 2012,43(6):843-846.
XIE J, CHEN N C, ZHANG B. Quality improvement of whole wheat flour with fungal α-amylase and glucose oxidase. Journal of Southern Agriculture, 2012,43(6):843-846. (in Chinese)
[29] 吴涛, 董彦琪, 肖艳, 王晓玲, 原连庄, 原让花, 孙玉镯, 周俊国. 大白菜主要表型性状的配合力评价及遗传力分析. 河南农业科学, 2018,47(12):102-109.
WU T, DONG Y Q, XIAO Y, WANG X L, YUAN L Z, YUAN R H, SUN Y Z, ZHOU J G. Study on the combining ability and heritability analysis of the main phenotypic traits in Chinese cabbage. Journal of Henan Agricultural Sciences, 2018,47(12):102-109. (in Chinese)
[30] 蒲光兰, 肖千文, 蔡利娟, 罗永飞, 邹雪梅. 四川核桃种质资源坚果的数量性状变异及概率分级. 湖南农业大学学报(自然科学版), 2015,60(6):647-650.
PU G L, XIAO Q W, CAI L J, LUO Y F, ZOU X M. Variation and probability grading of main quantitative traits of walnut (Juglans regia L.) germplasm resources. Journal of Hunan Agricultural University (Natural Science), 2015,60(6):647-650. (in Chinese)
[31] 曾占奎, 王征宏, 王黎明, 庞玉辉, 韩志鹏, 郭程, 王春平. 北部冬麦区小麦新品种(系)的节水生理特性与综合评判. 干旱地区农业研究, 2019,37(5):137-143.
ZENG Z K, WANG Z H, WANG L M, PANG Y H, HAN Z P, GUO C, WANG C P. Water-saving physiological characteristics and comprehensive evaluation of new wheat varieties (lines) in northern winter wheat region. Agricultural Research in the Arid Areas, 2019,37(5):137-143. (in Chinese)
[32] 孟自力, 闫向泉, 朱倩, 倪雪峰, 朱伟. 小麦栽培的特点及不同冬麦区存在的问题. 现代农业科技, 2018,47(4):44-45.
MENG Z L, YAN X Q, ZHU Q, NI X F, ZHU W. Characteristics of wheat cultivation and problems of different winter wheat areas. Modern Agricultural Science and Technology, 2018,47(4):44-45. (in Chinese)
[33] 乔媛媛. 生态环境对西南麦区小麦加工品质的影响[D]. 成都: 四川农业大学, 2016.
QIAO Y Y. Effect of genotype by environment on wheat processing quality in Southwest China[D]. Chengdu: Sichuan Agricultural University, 2016. (in Chinese)
[34] 万何平, 陈禅友, 陈高, 曹新华, 夏明. 全基因组关联分析在大豆遗传学上的研究进展. 江汉大学学报(自然科学版), 2019,47(3):197-203.
WAN H P, CHEN C Y, CHEN G, CAO X H, XIA M. Research status of genome-wide association study in soybean. Journal of Jianghan University (Natural Science Edition), 2019,47(3):197-203. (in Chinese)
[35] STICH B, MELCHINGER A E. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics, 2009,10:1-14.
doi: 10.1186/1471-2164-10-1
[36] 鞠晓影, 赵勇, 陈桂顺, 张树华, 杨学举. 小麦苗期抗氧化酶活性及丙二醛含量QTL定位. 河北农业大学学报, 2017,40(3):1-7.
JU X Y, ZHAO Y, CHEN G S, ZHANG S H, YANG X J. QTL mapping for antioxidant enzyme activity and malondialdehyde content in wheat seedling stage. Journal of Hebei Agricultural University, 2017,40(3):1-7. (in Chinese)
[37] 卫宪云, 李斯深, 蒋方山, 郭营, 李瑞军. 小麦早衰及其相关生理性状的QTL分析. 西北植物学报, 2007,28(3):485-489.
WEI X Y, LI S S, JIANG F S, GUO Y, LI R J. QTL mapping for premature senescence and related physiological traits in wheat. Acta Botanica Boreali-Occidentalia Sinica, 2007,28(3):485-489. (in Chinese)
[38] 赵新华, 张小村, 李斯深, 李立会, 范玉顶, 李瑞军. 小麦抗旱相关生理性状的QTL分析. 西北植物学报, 2005,28(4):696-699.
ZHAO X H, ZHANG X C, LI S S, LI L H, FAN Y D, LI R J. QTL mapping of physiological traits of wheat relating to drought resistance. Acta Botanica Boreali-Occidentalia Sinica, 2005,28(4):696-699. (in Chinese)
[39] 侯尧, 陈静, 伍春莲. 锌指蛋白32功能的研究进展. 生命的化学. 2020,41(9):1493-1499.
HOU Y, CHEN J, WU C L. Research progress on zinc finger protein 32 function. Chemistry of Life, 2020,41(9):1493-1499. (in Chinese)
[40] 张海萍, 常成, 肖世和. 小麦胚休眠中ABA信号转导的蛋白质组分析. 作物学报, 2006,88(5):690-697.
ZHANG H P, CHANG C, XIAO S H. Proteome analysis of ABA signal transduction in wheat embryo dormancy. Acta Agronomica Sinica, 2006,88(5):690-697. (in Chinese)
[41] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色. 中国生物工程杂志, 2017,37(3):92-98.
ZHANG X, TAO L, QIAO C, DU B H, GUO C H. Roles of glutathione s-transferase in plant tolerance to abiotic stresses. China Biotechnology, 2017,37(3):92-98. (in Chinese)
[42] 杜娟, 朱祯, 李晚忱. 外源超氧化物歧化酶基因Mn-SOD在玉米中的过量表达及抗逆性的提高. 植物生理与分子生物学学报, 2006,32(1):57-63.
DU J, ZHU Z, LI W C. Over-expression of exotic superoxide dismutase gene Mn-SOD and increase in stress resistance in maize. Journal of Plant Physiology and Molecular Biology, 2006,32(1):57-63. (in Chinese)
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[9] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[10] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[11] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[12] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[13] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[14] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[15] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!