Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (11): 2139-2146.doi: 10.3864/j.issn.0578-1752.2012.11.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Isolation and Functional Analysis of Resistance Gene SDR1 to Phytophthora sojae in Soybean

 FAN  Su-Jie, WU  Jun-Jiang, CHEN  Chen, WANG  Xin, JIANG  Liang-Yu, WANG  Jin-Sheng, LI  Wen-Bin, XU  Peng-Fei, ZHANG  Shu-Zhen   

  1. 1.东北农业大学大豆研究所/大豆生物学教育部重点实验室,哈尔滨 150030
    2.黑龙江省农业科学院大豆研究所/博士后工作站,哈尔滨 150086
  • Received:2011-12-19 Online:2012-06-01 Published:2012-03-08

Abstract: 【Objective】 The objective of this research is to obtain resistance-related genes to Phytophthora sojae in soybean, and to provide a theoretical basis for breeding of resistant soybean cultivars.【Method】In previous study, a cDNA library was constructed from the resistant soybean cultivar Suinong 10 in order to identify resistance-related genes in response to P. sojae infection in soybean. An up-regulated EST sharing high sequence similarities with the DR1 genes in other plants was identified and selected in this study. The gene was cloned from Suinong 10 by RT-PCR and constructed to the plant expression vector pCAMBIA3301/SDR1 and transformed into susceptible soybean cultivar Dongnong 50 via Agrobacterium mediated method.【Result】The full-length of this gene was 805 bp, encoding 156 amino acids, with ORF of 471 bp, defined as SDR1 in this study. Three transgenic plants overexpressing SDR1 were obtained and confirmed by real-time PCR, with an increase of gene expression levels by more than 20-fold compared to that of non-transgenic plants, and dot blot assay of DNA of the plants showed that 3 plants had positive hybridization signals. Detached leaf inoculation assay showed significantly increased resistance in the transgenic plants to P. sojae infection. 【Conclusion】The soybean SDR1 was cloned and preliminarily confirmed to confer the resistance to P. sojae by creation and pathogenicity assays of transgenic plants overexpressing the gene.

Key words: soybean, phytophthora sojae, defense-related gene, SDR1, genetic transformation

[1]Schmitthenner A F. Problems and progress in control of phytophthora root rot of soybean. Plant Disease, 1985, 69(4):362-368.

[2]Canaday C H, Schmitthenner A F. Effects of chloride and ammonium salts on the incidence of phytophthora root and stem rot of soybean. Plant Disease, 2010, 94(6): 758-765.

[3]Wrather J A, Koenning S R. Estimates of disease effects on soybean yields in the United States 2003 to 2005. Journal of Nematology, 2006, 38(2):173-180.

[4]Wang J, Liu C Y, Zhang L W, Wang J L, Hu G H, Ding J J, Chen Q S. MicroRNAs involved in the pathogenesis of phytophthora root rot of soybean (Glycine max). Agricultural Sciences in China, 2011, 10(8): 1159-1167.

[5]Pazdernik D L, Hartman G L, Huang Y H, Hymowitz T. A greenhouse technique for assessing phytophthora root rot resistance in Glycine max and G. Soja. Plant Disease, 1997, 81(10): 1112-1114.

[6]Aboul-Soud M A M, Chen X W, Kang J G, Yun B W, Raja M U, Malik S I, Loake G J. Activation tagging of ADR2 conveys a spreading lesion phenotype and resistance to biotrophic pathogens. New Phytologist, 2009, 183: 1163-1175.

[7]Bonardi V, Tang S J, Stallmann A, Roberts M, Cherkis K, Dang J L. Expanded functions for a family of plant intracellular immune recepptors beyond specific recognition of pathogen effectors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 16463-16468.

[8]Grant J J, Chini A, Basu D, Loake G J. Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Molecular Plant-Microbe Interactions, 2003, 16: 669-680.

[9]Song W, Solimeo H, Rupert R A, Yadav N S, Zhu Q. Functional dissection of a rice Dr1/DrAp1 transcriptional repression complex. The Plant Cell, 2002, 14:181-195.

[10]Wen N, Chu Z, Wang S. Three types of defense responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Molecular Genetics and Genomics, 2003, 269: 331-339.

[11]Zhao J, Fu J, Li X H, Xu C G, Wang S P. Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theoretical and Applied Genetics, 2009, 119: 231-239.

[12]Wang G N, Ding X H, Yuan M, Qiu D Y, Li X H, Xu C G, Wang S P. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Molecular Biology, 2006, 60(3): 437-449.

[13]张淑珍, 徐鹏飞, 吴俊江, 李文滨, 陈维元, 陈  晨, 于安亮, 王金 生, 靳立梅, 李  岑. 大豆疫霉根腐病菌诱导下SSH文库构建及初步分析. 大豆科学, 2008, 27(3): 543-545.

Zhang S Z, Xu P F, Wu J J, Li W B, Chen W Y, Chen C, Yu A L, Wang J S, Jin L M, Li C. Construction and analysis of a SSH library of soybean upon infection with phytophthora sojae. Soybean Science, 2008, 27(3): 543-545.(in Chinese)

[14]左豫虎, 臧忠婧, 刘惕若. 影响大豆疫霉菌游动孢子产生的条件. 植物病理学报, 2001, 31(3): 241-245.

Zuo Y H, Zang Z J, Liu T R. Studies on production condition of zoospores of Phytophthora sojae. Acta Phytopathologica Sinica, 2001, 31(3): 241-245.(in Chinese)

[15]Ward E W B, Lazarovits G, Unwin C H, Buzzell R I. Hypocotyl reactions and glyceollin in soybeans inoculated with zoospores of Phytophthora megaspuma var. sojae. Phytopathology, 1979, 69: 95l-955.

[16]Zhang S Z, Xu P F, Wu J J, Allen Xue, Zhang J X, Li W B, Chen C, Chen W Y. Races of Phytophthora sojae and their virulences on commonly grown soybean varieties in Heilongjiang, China. Plant Disease, 2010, 94: 87-91.

[17]Sambrook J, Fristch E F, Mantiatis T. Molecular Clonging: A Laboratory Manual: 2nd ed. Beijing: Science Press, 2002.

[18]Paz M M, Shou H X, Guo Z B, Zhang Z Y, Banerjee A K, Wang K. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explants. Euphytica, 2004, 136: 167-179.

[19]窦道龙, 王冰山, 朱生伟, 唐益雄, 王志兴, 孙敬三, 李仁敬, 张振南. 转NDR1基因烟草对赤星病和晚疫病的抗性增强. 中国农业科学, 2003, 36(10): 1120-1124.

Dou D L, Wang B S, Zhu S W, Tang Y X, Wang Z X, Sun J S, Li R J, Zhang Z N. Transgenic tobacco with NDR1gene imoroved its resistance to two fungal diseases. Scientia Agricultura Sinica, 2003, 36(10): 1120-1124.(in Chinese)

[20]Hu K M, Qiu D Y, Shen X L, Li X H, Wang S P. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Molecular Plant, 2008, 1(5): 786-793.

[21]Kou Y J, Wang S P. Broad-spectrum and durability: Understanding of quantitative disease resistance. Current Opinion in Plant Biology, 2010, 13: 181-185.

[22]丁新华. 水稻抗病相关基因的分离克隆和功能鉴定. 华中农业大学学报, 2011, 30(1): 121-123.

Ding X H. Isolation and functional characterization of pathogen-induced defense-responsive genes of rice. Journal of Huazhong Agricultural University, 2011, 30(1): 121-123.(in Chinese)

[23]Delteil A, Zhang J, Lessard P, Morel J B. Potential candidate genes for improving rice disease resistance. Rice, 2010, 3: 56-71.

[24]陈孝仁, 程保平, 王新乐, 董莎萌, 王永林, 郑小波, 王源超. 利用绿色荧光蛋白研究大豆疫霉与大豆的互作. 科学通报, 2009, 54(13): 1894-1901.

Chen X R, Cheng B P, Wang X L, Dong S M, Wang Y L, Zheng X B, Wang Y C. The research of the interactions between phytophthora and soybean using green fluorescent protein. Chinese Science Bulletin, 2009, 54(13): 1894-1901.(in Chinese)

[25]Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901-1914.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[8] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[9] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[10] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[11] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[12] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[13] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[14] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!