Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 887-900.doi: 10.3864/j.issn.0578-1752.2021.05.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy

JiaJia LI1(),HuiLong HONG2(),MingYue WAN1(),Li CHU1(),JingHui ZHAO1,MingHua WANG1,ZhiPeng XU1,Yin ZHANG1,ZhiPing HUANG3,WenMing ZHANG1(),XiaoBo WANG1(),LiJuan QIU2()   

  1. 1College of Agriculture, Anhui Agricultural University, Hefei 230036
    2Institute of Crop Science, Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Beijing 100081
    3Key Laboratory of Crop Quality Improvement of Anhui Province, Hefei 230001
  • Received:2020-07-28 Accepted:2020-09-17 Online:2021-03-01 Published:2021-03-09
  • Contact: WenMing ZHANG,XiaoBo WANG,LiJuan QIU E-mail:lijia6862@163.com;15011290378@163.com;2748001406@qq.com;chuli1206@163.com;zhangwenming_520@163.com;wxbphd@163.com;qiulijuan@caas.cn

Abstract:

【Objective】The chemical components (cellulose, hemicellulose, lignin, crude fiber, etc.) in the stem are closely/intently linked with lodging resistance of soybean. However, due to the current detection and analysis of chemical components in the stem, the traditional chemical analysis technology is adopted, and the determination procedure is complex, time-consuming, labor-consuming, expensive, and lead to environmental pollution. Thus, the current study aimed to construct a low-cost, quick, scientific and pollution-free method for detection of chemical components in soybean stems, and provide a methodological basis for the study of the distribution of stem components in soybean germplasm resources and their relationship with soybean growth habits and lodging. 【Method】 In present study, a chemical component detection model of soybean stem based on near-infrared spectroscopy was established, and the model was used to detect neutral detergent fiber (NDF), acid detergent fiber (ADF) and crude fiber (CF) of soybean germplasm resource stem. CF and other chemical components were detected and analyzed. The intrinsic relationship between CF content of soybean stem and its growth habit and lodging resistance was elucidated by analysis of variance, multiple comparisons and violin plot analysis. 【Result】 The results showed that the correction correlation coefficient (RC) of the NDF, ADF and CF components of the stem based on the rapid detection model constructed in this research was all above 0.90. The validity of the model was verified by using 16 soybean stem samples outside the model, and it was found that there was no significant difference between the results of routine chemical testing and the model testing (P > 0.05). This model was used to analyze the relationship between the CF content and growth habit of 393 soybean stems planted in 2017 and 2018. The findings showed that the CF content of soybean stems conforms to the normal distribution. Among the materials of the CF content is above 50.00%, the two-year data showed that the erect type (91.67% and 86.14%) was significantly higher than the sprawl type (8.33% and 13.86%), indicating that the CF content was significantly correlated with its growth habit of soybean stems (P < 0.01). 【Conclusion】 The Near-infrared Spectroscopy Model constructed in this study has the characteristics of low cost, fast, high efficiency and pollution-free. In addition, the plants of soybean cultivars with high CF content in the stem had stronger bending resistance, which could be used as an important index for screening lodging resistance breeding parents of soybean.

Key words: soybean, stem chemical components, near infrared spectrum detection model, growth habit, lodging resistance breeding

Table 1

Normal distribution and variance analysis results of acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude fiber (CF) of soybean stem"

成分
Component
平均值±标准差
Mean±SD (%)
95%置信区间 95% Confidence interval (%) 最小值
Min (%)
最大值
Max (%)
下限 Lower Limit 上限 Upper Limit
酸性洗涤纤维ADF 40.59±3.72 39.96 41.23 30.27 51.15
中性洗涤纤维NDF 63.12±3.84 62.46 63.77 51.91 73.08
粗纤维CF 47.08±3.86 46.42 47.74 36.98 58.31

Fig. 1

Frequency chart of acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude fiber (CF) of soybean stem"

Fig. 2

Spectrogram of test samples A: Original near infrared spectrum of test sample; B: Processing spectrogram FD+SG method"

Fig. 3

Near infrared correction model parameters of acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude fiber (CF) contents of soybean stem"

Table 2

Comparison of results between measured values by conventional method and predicted values by near infrared model"

序号
No.
测定值(常规方法)
Value (Conventional) (%)
预测值
Predicted value (%)
常规测定值与预测值差异
Difference of value
ADF NDF CF ADF NDF CF ADF NDF CF
1 35.27 62.22 43.42 36.99 59.35 43.91 -1.72 2.87 -0.50
2 34.45 59.28 42.00 36.08 59.32 43.33 -1.63 -0.04 -1.34
3 39.75 61.47 47.68 40.20 62.25 48.03 -0.45 -0.78 -0.35
4 42.97 63.45 49.03 42.66 65.21 49.73 0.31 -1.76 -0.70
5 41.56 64.47 49.47 43.07 64.96 50.14 -1.51 -0.49 -0.67
6 41.10 59.06 45.97 42.80 60.32 47.47 -1.70 -1.26 -1.51
7 42.51 61.30 45.92 40.94 61.68 44.90 1.58 -0.38 1.02
8 30.27 51.91 36.98 31.80 51.00 37.12 -1.54 0.91 -0.14
9 47.70 71.70 54.58 45.87 71.45 53.81 1.83 0.24 0.77
10 40.82 66.99 48.17 41.85 66.06 48.85 -1.03 0.94 -0.68
11 39.80 67.31 50.49 40.70 64.82 50.10 -0.90 2.50 0.38
12 35.99 62.31 44.44 37.89 62.42 46.08 -1.90 -0.11 -1.64
13 43.47 64.96 48.86 42.14 64.55 48.02 1.32 0.41 0.84
14 37.53 62.68 44.71 37.84 61.61 44.37 -0.31 1.07 0.34
15 42.25 68.34 48.15 42.62 68.30 49.84 -0.37 0.04 -1.69
16 41.19 69.23 49.84 41.81 68.95 49.79 -0.62 0.29 0.05

Table 3

Correlation coefficient between measured values by conventional method and predicted values by near infrared model"

指标
Index
相关系数
Correlation coefficient (r)
T测验
T-test(P
酸性洗涤纤维
Acid detergent fiber (ADF)
0.969 0.098
中性洗涤纤维
Neutral detergent fiber (NDF)
0.967 0.374
粗纤维Crude fiber (CF) 0.976 0.124

Fig. 4

The distribution analysis of crude fiber contents in soybean stem"

Table 4

The detection analysis results of the crude fiber in 393 soybean stems"

项目
Items
年份 Year
2017 2018
大豆品种数量(份)
Number of soybean varieties
1664 1335
打磨秸秆数(份)
Number of grinding stem
745 639
2年共有秸秆数(份)
Total number of stems in two years
393 393
粗纤维含量
Crude fiber contents (%)
最大值Max 57.39 58.63
最小值Min 27.64 37.39
均值±标准差Mean±Sd 47.60±3.53 50.30±3.60
变异系数CV (%) 7.42 7.16

Table 5

Correlation analysis of crude fiber content and growth habit of soybean stem"

年份Year 类型
Types
数量
Number
CF含量均值±标准差
Crude fiber contents Mean±Sd (%)
95%置信区间
95% Confidence interval
极小值
Min
极大值
Max
F
F value
P
P value
2017 直立型 Erect type 335 (85.24%) 47.96±3.35A 47.60 48.32 37.66 57.39 25.77 0.000
蔓生型 Sprawl type 58 (14.76%) 45.49±3.85B 44.48 46.50 27.64 53.02
总数Total 393 47.60±3.53 47.25 47.95 27.64 57.39
2018 直立型 Erect type 312 (79.39%) 50.65±3.56A 50.25 51.05 37.39 58.63 14.64 0.000
蔓生型 Sprawl type 81 (20.61%) 48.96±3.45B 48.20 49.72 39.96 58.35
总数Total 393 50.30±3.60 49.94 50.66 37.39 58.63

Fig. 5

Analysis of content distribution of crude fiber from in erect type and sprawl type of soybean stem"

Fig. 6

Correlation analysis between crude fiber content and growth habit soybean stem"

[1] 范冬梅, 杨振, 马占洲, 曾庆力, 杜翔宇, 蒋洪蔚, 刘春燕, 韩冬伟, 栾怀海, 裴宇峰, 陈庆山, 胡国华. 多环境条件下大豆倒伏性相关形态性状的QTL分析. 中国农业科学, 2012,45(15):3029-3039.
FAN D M, YANG Z, MA Z Z, ZENG Q L, DU X Y, JIANG H W, LIU C Y, HAN D W, LUAN H H, PEI Y F, CHEN Q S, HU G H. QTL analysis of lodging-related morphological traits of soybean under two eco-environments. Scientia Agricultura Sinica, 2012,45(15):3029-3039. (in Chinese)
[2] 程颖颖, 赵晋铭, 盖钧镒, 邢邯. 大豆秸秆粗纤维含量的测定及摘荚对其饲用品质的影响. 大豆科学, 2008,27(5):773-776.
CHENG Y Y, ZHAO J M, GAI J Y, XING H. Testing method for crude fiber content of soybean straw and effect of picking-pod on its feeding quality. Soybean Sciences, 2008,27(5):773-776. (in Chinese)
[3] 徐忠, 姜兆华, 汪群慧. 氨预处理对大豆秸秆纤维素酶解产糖影响的研究. 高校化学工程学报, 2004,18(6):773-776.
XU Z, JIANG Z H, WANG Q H. Effect of ammonia pretreatment on cellulose hydrolysis of soybean straw. Journal of Chemical Engineering of Chinese Universities, 2004,18(6):773-776. (in Chinese)
[4] 张建, 陈金城, 唐章林, 王瑞. 油菜茎秆理化性质与倒伏关系的研究. 西南农业大学学报(自然科学版), 2006,28(5):763-765.
ZHANG J, CHEN J C, TANG Z L, WANG R. Study on the physico-chemical properties of stem as related to lodging in rape. Journal of Southwest Agricultural University (Natural Science Edition), 2006,28(5):763-765. (in Chinese)
[5] 刘唐兴, 官春云, 肖君泽, 梁勇, 雷冬阳, 王永兴. 甘蓝型油菜主茎理化特性与倒伏的关系及抗倒性评价. 河南农业科学, 2007,12:40-42, 54.
LIU T X, GUAN C Y, XIAO J Z, LIANG Y, LEI D Y, WANG Y X. Relation between physico-chemical properties of stem and lodging and evaluation of lodging resiistance in rapeseed (Brassica napus L.). Henan Agricultural Sciences, 2007,12:40-42, 54. (in Chinese)
[6] 陈桂华, 邓化冰, 张桂莲, 唐丈帮, 黄璜. 水稻茎秆性状与抗倒性的关系及配合力分析. 中国农业科学, 2016,49(3):407-417.
CHEN G H, DENG H B, ZHANG G L, TANG Z B, HUANG H. The correlation of stem characters and lodging resistance and combining ability analysis in rice. Scientia Agricultura Sinica, 2016,49(3):407-417. (in Chinese)
[7] 薛军. 玉米冠层光分布对茎秆抗倒伏性能的影响[D]. 石河子: 石河子大学, 2016.
XUE J. Effect of light distribution within the canopy on maize (Zea mays L.) stalk lodging resistance charactistic[D]. Shihezi: Shihezi University, 2016. (in Chinese)
[8] 汪清焰. 水稻茎秆成分与其力学性能关系的研究[D]. 合肥: 中国科学技术大学, 2019.
WANG Q Y. Study on the relationship between components and mechanical properties of rice stem[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
[9] 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011,37(9):1616-1622.
CHEN X G, SHI C Y, YIN Y P, WANG Z L, SHI Y H, PENG D L, NI Y L, CAI T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agronomica Sinica, 2011,37(9):1616-1622. (in Chinese)
[10] 刘唐兴, 官春云. 油菜倒伏指数和茎秆生化成分及农艺性状的灰色关联分析. 中国油料作物学报, 2008,30(2):152-156.
LIU T X, GUAN C Y. Grey relational analysis between lodging index and biochemistry components of stem, agronomic characteristics in rapeseed (Brassica napus L.). Chinese Journal of Oil Crops, 2008,30(2):152-156. (in Chinese)
[11] MARTIN S A, DARRAH L L, HIBBARD B E. Divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn. Crop Science, 2004,44:711-717.
[12] CHEN Y, CHEN J, ZHANG Y, ZHOU D. Effect of harvest date on shearing force of maize stems. Livestock Science, 2007,111(1/2):33-44.
[13] 邹俊林. 套作大豆苗期茎秆抗倒特征及其与木质素合成的关系研究[D]. 雅安: 四川农业大学, 2015.
ZOU J L. Characteristics of stem lodging resistance of relay strip intercropping soybean and its relationship with lignin synthesis at seedling stage[D]. Yaan: Sichun Agricultural University, 2015. (in Chinese)
[14] 程颖颖. 大豆秸秆饲用品质性状的遗传研究[D]. 南京: 南京农业大学, 2008.
CHENG Y Y. Genetic research of feeding quality traits in soybean straw[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese)
[15] PRASAD K, CLAUS F. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technology, 2010,101(9):3175-3181.
doi: 10.1016/j.biortech.2009.12.008 pmid: 20056415
[16] ELVIRA L, SALVADOR Z, ANGEL G. Dietary transfatty acids in early life: A review. Early Human Development, 2001,65:31-41.
[17] CHOUINARD P Y, GIRARD V, BRISSON G J. Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. Journal of Dairy Science, 1998,81(2):471-481.
pmid: 9532502
[18] 王立琦. 基于近红外光谱分析的大豆质量检测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2011.
WANG L Q. Research on detecting methods for soybean oil quality based on near-infrared spectrum analysis[D]. Harbin: Harbin University of Science and Technology, 2011. (in Chinese)
[19] 李玉, 刘勋, 李加纳, 殷家明, 徐新福. 甘蓝型油菜粒色近红外光谱分析模型构建. 中国油料作物学报, 2012,34(5):533-536.
LI Y, LIU X, LI J N, YIN J M, XU X F. Construction of near-infrared reflectance spectroscopy model for seed color of rapeseed. Chinese Journal of Oil Crop Sciences, 2012,34(5):533-536. (in Chinese)
[20] 孔庆明. 大豆秸秆成分近红外光谱分析快速检测方法研究[D]. 哈尔滨: 东北农业大学, 2015.
KONG Q M. Study on near infrared spectrum rapid detection method of crop straw component[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[21] LIU L, YE X P, WOMAC A R, SOKHANSAN S. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydrate Polymers, 2010,81(4):820-829.
[22] SCHWAB D G, YU J M, TESSO T, DOWELL F, WANG D H. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques-A mini-review. Applied Energy, 2013,104:801-809.
[23] 赵峰, 林河通, 杨江帆, 叶乃兴, 俞金朋. 基于近红外光谱的武夷岩茶品质成分在线检测. 农业工程学报, 2014,30(2):269-277.
ZHAO F, LIN H T, YANG J F, YE N X, YU J P. Online quantitative determination of wuyi rock tea quality compounds by near infrared spectroscopy. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(2):269-277. (in Chinese)
[24] XU F, WANG D H. Rapid determination of sugar content in corn stover hydrolysates using near infrared spectroscopy. Bioresource Technology, 2013,4(2):293-298. (in Chinese)
[25] 胡枫竹. 基于近红外的氨/碱化玉米秸秆成分快速检测方法研究[D]. 哈尔滨:东北农业大学, 2018.
HU F Z. Study on rapid detection of ammonia/alkali corn stalk composition based on near infrared technology[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
[26] 王翠秀, 曹见飞, 顾振飞, 徐明雪, 吴泉源. 基于近红外光谱大豆蛋白质、脂肪快速无损检测模型的优化构建. 大豆科学, 2019,38(6):968-976.
WANG C X, CAO J F, GU Z F, XU M X, WU Q Y. Rapid nondestructive test of soybean protein and fat by near infrared spectroscopy combined with different model methods. Soybean Science, 2019,38(6):968-976. (in Chinese)
[27] 纪楠. 大豆秸秆木质素和纤维素含量与近红外光谱相关性模型研究[D]. 哈尔滨:东北农业大学, 2016.
JI N. Correlation model research in cellulose and lignin of soybean straw based on near infrared spectroscopy[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
[28] 王建波. 大豆秸秆纤维素和半纤维素含量近红外检测模型研究与建立[D]. 哈尔滨:东北农业大学, 2016.
WANG J B. The research and the establishment of near infrared detection model of soybean straw cellulose and hemicellulose content[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
[29] 邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006,5(5):59.
QIU L J, CHANG R Z. Descriptors and Data Standard for Soybean (Glycine spp.). Beijing: China Agriculture Press, 2006,5(5):59. (in Chinese)
[30] 饲料中中性洗涤纤维(NDF)的测定. GB/T20806-2006, 北京: 中国标准出版社, 2007.
Determination of neutral detergent fiber (NDF) in feed. GB/T20806- 2006, Beijing: Standards Press of China, 2007. (in Chinese)
[31] 饲料中酸性洗涤木质素(ADL)的测定. GB/T20805-2006, 北京: 中国标准出版社, 2007.
Determination of acid washing lignin (ADL) in feed. GB/T20805- 2006, Beijing: Standards Press of China, 2007. (in Chinese)
[32] 饲料中粗纤维(CF)的含量测定过滤法. GB/T6434-2006, 北京: 中国标准出版社, 2006.
Determination of crude fiber content in feed-filtration method. GB/T6434-2006, Beijing: Standards Press of China, 2006. (in Chinese)
[33] 王晶晶. 基于近红外光谱的大米水分及蛋白质含量检测方法研究[D]. 哈尔滨:东北农业大学, 2017.
WANG J J. The research of moisture and protein content of the detection method in rice based on near infrared spectroscopy[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)
[34] BAI T C, WANG T, CHEN Y Q, MERCATORIS B. Comparison of near-infrared spectrum pretreatment methods for Jujube leaf moisture content detection in the sand and dust area of southern Xinjiang. Spectroscopy and Spectral Analysis, 2019,39:1323-1328.
[35] 奚如春, 钟燕梅, 邓小梅, 陈晓阳, 莫宝盈, 易立飒. 基于近红外光谱的油茶种子含油量定标模型构建. 林业科学, 2013(4):1-6.
doi: 10.11707/j.1001-7488.20130401
XI R C, ZHONG X M, DENG X M, CHEN X Y, MO B Y, YI L S. Models for determining oil contents in Camellia oleifera seeds by using near infrared spectroscopy. Scientia Silvae Sinicae, 2013(4):1-6. (in Chinese)
doi: 10.11707/j.1001-7488.20130401
[36] 郝勇. 近红外光谱微量分析方法研究[D]. 天津: 南开大学, 2009.
HAO Y. Microanalysis methods by near infrared spectroscopy[D]. Tianjin: Nankai University, 2009. (in Chinese)
[37] 王勇生, 李洁, 王博, 张宇婷, 耿俊林. 基于近红外光谱扫描技术对高粱中粗脂肪、粗纤维、粗灰分含量的测定方法研究. 中国粮油学报, 2020,35(3):1-5.
WANG Y S, LI J, WANG B, ZAHNG Y T, GENG J L. Determination of crude fat, crude fiber and crude ash in sorghum based on near infrared spectroscopy. Journal of the Chinese Cereals and Oils Association, 2020,35(3):1-5. (in Chinese)
[38] 张月玲. 绿茶品质相关成分的近红外定标模型的初步建立[D]. 杭州: 浙江大学, 2006.
ZHANG Y L. Preliminary construction of NIR calibration model for green tea qualities[D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
[39] ASEKOVA S, HAN S I, CHOI H J, PARK S J, SHI D H, KWON C H, SHANNON J G, LEE J D. Determination of forage quality by near-infrared reflectance spectroscopy in soybean. Turkish Journal of Agriculture & Forestry, 2016,40:45-52.
[40] 宋平. 农作物秸秆开发利用研究进展. 现代牧业, 2018,2:26-30.
SONG P. Research progress of crop straw development and utilization. Modern Animal Husbandry, 2018,2:26-30. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[13] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
[14] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
[15] CHENG Bin,LIU WeiGuo,WANG Li,XU Mei,QIN SiSi,LU JunJi,GAO Yang,LI ShuXian,Ali RAZA,ZHANG Yi,Irshan AHMAD,JING ShuZhong,LIU RanJin,YANG WenYu. Effects of Planting Density on Photosynthetic Characteristics, Yield and Stem Lodging Resistance of Soybean in Maize-Soybean Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!