Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (2): 271-285.doi: 10.3864/j.issn.0578-1752.2021.02.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole

WANG ShiYa1,2(),ZHENG DianFeng1,2,*(),XIANG HongTao3,FENG NaiJie1,2,*(),LIU Ya2,LIU MeiLing2,JIN Dan2,MOU BaoMin2   

  1. 1College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong
    2College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
    3Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086
  • Received:2020-03-14 Accepted:2020-05-12 Online:2021-01-16 Published:2021-02-03
  • Contact: DianFeng ZHENG,NaiJie FENG E-mail:wsy1106ok@126.com;zdffnj@163.com;byndfnj@126.com

Abstract:

【Objective】 The aim of this study was to investigate effects of waterlogging stress on the ascorbate-glutathione (AsA-GSH) cycle of soybean leaves and the regulating effect of uniconazole (S3307) during initial flowering stage (R1), so as to provide a theoretical basis for improving soybean waterlogging resistance and the application of uniconazole.【Method】 This study was conducted in the pot plant of the National Coarse Grain Engineering Technology Research Center of Bayi Agricultural University in Heilongjiang in 2019. The water-tolerant variety KenFeng 14 and the waterlogging-sensitive variety KenFeng 16 were used as test materials for pot planting experiments. The leaves were sprayed with S3307 (concentration 50 mg·L-1, appropriate spray amount 225 L·hm-2). After spraying S3307 for 5 days, the waterlogging stress treatment was started after 0 d (R1+5) and 5 d (R1+10) and normal water treatment for 5 days (R1+15) after sampling, respectively, and the various physiological indicators were measured by using spectrophotometer to study the degree of membrane lipid peroxidation (MDA) of soybean leaves under waterlogging stress. The effects of reactive oxygen species (ROS) and non-enzymatic antioxidants (AsA, DHA, GSH, and GSSG) and key enzymes (APX, GR, MDHAR, and DHAR) in the AsA-GSH circulatory system and the mitigating effects of S3307 were analyzed. 【Result】 In the R1 stage after R1+5 of waterlogging stress, compared with CK, the S3307 treatment reduced the MDA, $\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$ production rate and H2O2 content, and also increased the content of non-enzyme antioxidants and key enzymes in the AsA-GSH cycle to maintain ROS balance, thus promoted the growth and development of two soybean varieties. At R1+10, W treatment significantly increased the MDA content in the leaves of the two soybean varieties, which were significantly increased by 40.02% and 37.53% higher than that of CK, respectively, and accelerated ROS ($\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$ and H2O2); the $\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$ production rate of the two varieties under waterlogging stress was significantly increased by 60.29% and 27.77%, compared with CK, respectively; The H2O2 content was significantly increased by 49.45% and 43.40% compared with CK, respectively; The waterlogging sensitive variety KenFeng 16 suffered more damage than the waterlogging resistant variety KenFeng 14, and at the same time, under the waterlogging stress, the antioxidant substances and key enzyme activities in the leaves of both soybean varieties were increased to adapt to the waterlogging stress response from stress. After S3307 treatment, W+S treatment could further increase antioxidant substances (AsA, GSH), redox substances (DHA, GSSG), total ascorbic acid (AsA + DHA) and total glutathione (GSH +GSSG) content under waterlogging stress.content, and increase the activity of antioxidant enzymes (APX, GR, MDHAR, DHAR), reduce the MDA content of the leaves, inhibit the accumulation of ROS, and reduce the damage caused by waterlogging stress to the membrane system. After returning to normal water treatment for 5d (R1 + 15), the above indexes of two soybean varieties W treatment were reduced, but W+S treatment could maintain the two soybean leaves. The higher antioxidant enzyme activity and antioxidant substance content accelerated the removal of excessive accumulation of MDA and ROS, promoted the AsA-GSH cycle operation in soybean leaves under waterlogging stress, and then promoted the return of the two soybean varieties to normal state.【Conclusion】 Waterlogging stress had different degrees of influence on membrane lipid peroxidation, ROS accumulation, and key enzyme activities and non-enzyme antioxidants in the AsA-GSH cycle of soybean leaves. Spraying S3307 could improve key enzyme activity at some extent to promote oxidation ability, so as to reduce the harm caused by waterlogging stress.

Key words: soybean, waterlogging stress, AsA-GSH cycle, leaves, uniconazole

Table 1

Experimental design"

品种 Cultivar 处理编号 Treatment code 药剂处理 Pesticide treatment 水分处理 Water treatment
垦丰14
Kenfeng 14
CK 清水喷施 Spray water 正常水分 Normal water
W 清水喷施 Spray water 淹水胁迫 Waterlogging stress
W+S S3307喷施 Spray S3307 淹水胁迫 Waterlogging stress
垦丰16
Kenfeng 16
CK 清水喷施 Spray water 正常水分 Normal water
W 清水喷施 Spray water 淹水胁迫 Waterlogging stress
W+S S3307喷施 Spray S3307 淹水胁迫 Waterlogging stress

Fig. 1

Effects of S3307 on MDA content in leaf of soybean under waterlogging stress at R1 stage Different small letters indicate significantly different at 0.05 probability level. The same as below"

Fig. 2

Effects of S3307 on $\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$ production rate and H2O2 content in leaf of soybean under waterlogging stress at R1 stage"

Fig. 3

Effects of S3307 on AsA, DHA and AsA+DHA content in leaf of soybean under waterlogging stress at R1 stage"

Fig. 4

Effects of S3307 on GSH and GSSG and GSH+GSSG content in leaf of soybean under waterlogging stress at R1 stage"

Fig. 5

Effects of S3307 on APX activity in leaf of soybean under waterlogging stress at R1 stage"

Fig. 6

Effects of S3307 on GR activity in leaf of soybean under waterlogging stress at R1 stage"

Fig. 7

Effects of S3307 on MDHAR activity in leaf of soybean under waterlogging stress at R1 stage"

Fig. 8

Effects of S3307 on DHAR activity in leaf of soybean under waterlogging stress at R1 stage"

Fig. 9

Damage of AsA-GSH cycle of soybean leaves under waterlogging stress at R1 stage and the mitigation effect of S3307 The red arrow indicates the impact of R1 waterlogging stress on each indicator (increase or decrease); The green arrow indicates the impact of S3307 treatment on each index under R1 waterlogging stress (increase or decrease)"

[1] SAKAMOTO K, OGIWARA N, KAJI T, SUGIMOTO Y, UENO M, SONODA M, MATSUL, ISHIDA J, TANAKA M, TOTOKI Y, SHINOZAKI K, SEKI M. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. Journal of Plant Research, 2019,132(4):1-28.
[2] 王红蕾. 黑龙江省大豆产业振兴发展路径分析. 黑龙江农业科学, 2019(10):103-106.
WANG H L. Analysis on the development path of soybean industry revitalization in Heilongjiang province. Heilongjiang Agricultural Sciences, 2019(10):103-106. (in Chinese)
[3] 姜丽霞, 朱海霞, 闫敏慧, 闫平, 王晾晾, 韩俊杰, 高明, 吕佳佳, 纪仰慧, 王萍. 黑龙江省主汛期异常降水变化及其与洪涝的关系研究. 灾害学, 2019,34(2):1-6.
JIANG L X, ZHU H X, YAN M H, YAN P, WANG L L, HAN J J, GAO M, LÜ J J, JI Y H, WANG P. Changes of abnormal rainfall and relationship between precipitation and flood during main flood seasons of Heilongjiang province. Journal of Catastrophology, 2019,34(2):1-6. (in Chinese)
[4] 李秀芬, 郭昭滨, 朱海霞, 王萍, 宫丽娟, 姜丽霞, 赵慧颖. 黑龙江省大豆生长季旱涝时序特征及其对产量的影响. 应用生态学报, 2020,31(4):1223-1232.
doi: 10.13287/j.1001-9332.202004.016 pmid: 32530197
LI X F, GUO Z B, ZHU H X, WANG P, GONG L J, JIANG L X, ZHAO H Y. Time series characteristics of drought and flood in soybean growing season in Heilongjiang province and its effect on yield. Chinese Journal of Applied Ecology, 2020,31(4):1223-1232. (in Chinese)
doi: 10.13287/j.1001-9332.202004.016 pmid: 32530197
[5] 张洪鹏. 不同时期淹水胁迫对大豆生长和产量的影响及烯效唑调控效应[D]. 大庆: 黑龙江八一农垦大学, 2017.
ZHANG H P. Effect of waterlogging stress on growth and yield in different of periods and the regulation effect of uniconazole[D]. Daqing: HeiLongjiang Bayi Agricultural University, 2017. (in Chinese)
[6] SHAW R E, MEYER W S, MCNEILL A, TYERMAN S D. Waterlogging in Australian agricultural landscapes: A review of plant responses and crop models. Crop and Pasture Science, 2013,64(6):549.
[7] 吴奇峰, 何桂红, 董志新, 李广华. 植物生长调节剂在我国大豆种植上的研究与应用. 作物杂志, 2005(1):12-15.
WU Q F, HE G H, DONG Z X, LI G H. Research and application of plant growth regulator in soybean planting in China. Crops, 2005(1):12-15. (in Chinese)
[8] ANTONIO D S J C, NANNI M R, SHAKIR M, TEODORO P E, OLIVEIRA-JUNIOR J F, CEZAR E, GOIS G D, LIMA M G, WOJCIECHOWSKI J, SHIRATSUCHI L. Soybean varieties discrimination using non-imaging hyperspectral sensor. Infrared Physics & Technology, 2018(89):338-350.
[9] GECHEV T S, HILLE J. Hydrogen peroxide as a signal controlling plant programmed cell death. The Journal of Cell Biology, 2005,168(1):17-20.
doi: 10.1083/jcb.200409170 pmid: 15631987
[10] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology & Biochemistry, 2010,48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416
[11] 山溪, 秦文斌, 张振超, 姚悦梅, 肖燕, 戴忠良. 低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响. 南方农业学报, 2018,49(11):2230-2235.
SHAN X, QIN W B, ZHANG Z C, YAO Y M, XIAO Y, DAI Z L. Effects of low temperature stress on leaf AsA-GSH cycle metabolism in different varieties Brassica oleracea L. Journal of Southern Agriculture, 2018,49(11):2230-2235. (in Chinese)
[12] HASANUZZAMAN M, NAHAR K, ANEE T, FUJITA M. Exogenous silicon attenuates cadmium induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Frontiers in Plant Science, 2017,8:1061.
doi: 10.3389/fpls.2017.01061 pmid: 28674552
[13] KHAN N A, UMAR S, ANJUM N A, IQBAL M. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism. Russian Journal of Plant Physiology, 2011,58(1):92-99.
[14] ZHANG S L, OU X Q, SHAN C J. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma, 2018,255(4):1257-1262.
doi: 10.1007/s00709-018-1213-5 pmid: 29372337
[15] HUANG G Y, SHAN C J. Lanthanum improves the antioxidant capacity in chloroplast of tomato seedlings through ascorbate- glutathione cycle under salt stress. Scientia Horticulturae, 2018,232:264-268.
[16] 郑春芳, 刘伟成, 魏龙, 陈继浓, 张呈念, 仇建标, 丁文勇, 郑青松. 外施褪黑素对低温胁迫下红树植物秋茄光合作用和抗坏血酸-谷胱甘肽循环的调控. 植物生理学报, 2019,55(8):1211-1221.
ZHANG C F, LIU W C, WEI L, CHEN J N, ZHANG C N, QIU J B, DING W Y, ZHENG Q S. Regulation of photosynthesis and ascorbic acid-glutathione circulation in mangrove plants under low temperature stress by external application of melatonin. Plant Physiology Journal, 2019,55(8):1211-1221. (in Chinese)
[17] RAMBURAN S, GREENFIELD P L. The effects of chlormequat chloride and ethephon on agronomic and quality characteristics of south African irrigated wheat. South African Journal of Plant and Soil, 2007,24(2):106-113.
[18] 刘春娟, 宋双伟, 冯乃杰, 郑殿峰, 宫香伟, 孙秋霞, 邢豹, 高杰, 吕金莹. 干旱胁迫及复水条件下烯效唑对大豆幼苗形态和生理特性的影响. 干旱地区农业研究, 2016,34(6):222-227, 256.
LIU C J, SONG S W, FENG N J, ZHENG D F, GONG X W, SUN Q X, XING B, GAO J, LÜ J Y. Effects of plant growth regulator S3307 on morphological and physiological characteristics of soybean seedling under drought stress and rewater treatment. Agricultural Research in the Arid Areas, 2016,34(6):222-227, 256. (in Chinese)
[19] 张伟, 刘冰, 李茂盛, 白子裕, 张治安. 烯效唑对绿豆产量及叶片某些生理指标的影响. 吉林农业, 2017(22):60-61.
ZHANG W, LIU B, LI M S, BAI Z Y, ZHANG Z A. Effects of alfenidazole on yield of mung bean and some physiological indexes of leaf. Jilin Agriculture, 2017(22):60-61. (in Chinese)
[20] 王景伟, 黄玉兰, 金喜军, 张玉先. 干旱胁迫下烯效唑拌种对芸豆保护酶活性及渗透调节物质的影响. 江苏农业科学, 2017,45(12):59-61.
WANG J W, HUANG Y L, JIN X J, ZHANG Y X. Effects of aldoxazole seed mixing on the activity of protective enzymes and osmotic regulators in kidney beans under drought stress. Jiangsu Agricultural Sciences, 2017,45(12):59-61. (in Chinese)
[21] 张巫军, 段秀建, 姚雄, 唐永群, 杨小艳, 刘强明, 肖人鹏, 张现伟, 李经勇. 烯效唑对遮阴下重穗型水稻渝香203茎秆形态结构和抗倒伏性的影响. 四川农业大学学报, 2019,37(6):755-761.
ZHANG W J, DUAN X J, YAO X, TANG Y Q, YANG X Y, LIU Q M, XIAO R P, ZHANG X W, LI J Y. Effects of enfuzole on stem morphology and lodging resistance of heavy panicle rice yuxiang 203 under shade. Journal of Sichuan Agricultural University, 2019,37(6):755-761. (in Chinese)
[22] 崔洪秋, 冯乃杰, 孙福东, 刘春娟, 何天明, 赵晶晶, 刘洋, 龚屾, 师臣, 郑殿峰. DTA-6和S3307对大豆存留荚和脱落荚生理调控的效应. 中国农业科学, 2016,49(15):2921-2931.
CUI H Q, FENG N J, SUN F D, LIU C J, HE T M, ZHAO J J, LIU Y, GONG S, SHI C, ZHENG D F. Effects of DTA-6 and S3307 on physiological regulation in normal and abscission pods of soybean. Scientia Agricultura Sinica, 2016,49(15):2921-2931. (in Chinese)
[23] 陈文杰, 汤复跃, 韦清源, 郭小红, 梁江, 陈渊. 不同浓度烯效唑拌种对套作夏大豆农艺性状及产量的影响. 南方农业学报, 2019,50(09):1960-1966.
CHEN W J, TANG F Y, WEI Q Y, GUO X H, LIANG J, CHEN Y. Effects of seeds dressing with uniconazole in different concentrations before sowing on the intercropping summer soybean agronomic characters and yield. Journal of Southern Agriculture, 2019,50(9):1960-1966. (in Chinese)
[24] LLEWELLYN D J, CHRISTIANSON J A, WILSON I W, DENNIS E S. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of arabidopsis seeds following low-oxygen treatment. Plant physiology, 2009,149(4):1724-1738.
pmid: 19176720
[25] BOOKER H M, GILLESPIE T J, HOFSTRA G, FLTCHER R A. Uniconazole-induced thermotolerance in wheat seedlings is mediated by transpirational cooling. Physiologia Plantarum, 1991,81(3):335-342.
[26] BAKHETA M A, HUSSEIN M M. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare) under salinity stress (NaCl). Nusantara Bioscience, 2014,6(1):39-44.
[27] ZHANG M C, HE Z P, LI Z H, TIAN X L, WANG B M, DUAN L S, LI J M. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of Plant Physiology, 2007,164(6):709-717.
pmid: 16769153
[28] 项洪涛, 李琬, 何宁, 王雪扬, 郑殿峰, 王彤彤, 梁晓艳, 唐晓东, 李一丹. 苗期低温胁迫下烯效唑对红小豆根系抗寒生理及产量的影响. 草业学报, 2019,28(7):92-102.
XIANG H T, LI W, HE N, WANG X Y, ZHENG D F, WANG T T, LIANG X Y, TANG X D, LI Y D. Effects of S3307 on physiology of chilling resistance in root and on yield of adzuki bean under low temperature stress during seedling stage. Acta Prataculturae Sinica, 2019,28(7):92-102. (in Chinese)
[29] AHMED S, NAWATA E, HOSOKAWA M, DOMASE Y, SAKURATANI T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science, 2002,163(1):117-123.
[30] 孟娜, 魏胜华. 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害. 生态学杂志, 2018,37(12):3605-3609.
MENG N, WEI S H. Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots. Chinese Journal of Ecology, 2018,37(12):3605-3609. (in Chinese)
[31] 宋晓慧, 张智杰, 李春光, 张代平, 韩英鹏, 李冬梅, 李文滨. 淹水时间对不同耐涝性大豆品种苗期根部形态和叶部生理指标的影响. 大豆科学, 2014,33(1):70-72, 102.
SONG X H, ZHANG Z J, LI C G, ZHANG D P, HAN Y P, LI D M, LI W B. Effect of waterlogging time on root morphology and foliar physiological indexes of soybean varieties. Soybean Science, 2014,33(1):70-72, 102. (in Chinese)
[32] 唐章程. 现代植物生理学实验指南. 北京: 科学出版社, 1999: 127.
TANG Z C. Guide to Experiments in Modern Plant Physiology. Beijing: Science Press, 1999: 127. (in Chinese)
[33] 王爱国, 罗广华. 植物的超氧物自由基与羟胺的反应. 植物生理学通讯, 1990(6):55-57.
WANG A G, LUO G H. Reaction of plant superoxide radical with hydroxylamine. Plant Physiology Communications, 1990(6):55-57. (in Chinese)
[34] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 221-223.
GAO J F. Experimental Instruction in Plant Physiology. Beijing: Higher Education Press, 2006: 221-224. (in Chinese)
[35] CHAKRABARTY D, DATTA S K. Micropropagation of gerbera: Lipid peroxidation and antioxidant enzyme activities during acclimatization process. Physiology Plant, 2008(30):325-331.
[36] ZHANG J, KIRKHAM M B. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist, 1996(132):361-373.
[37] 李玲. 植物生理学模块实验指导. 北京: 科学出版社, 2009.
LI L. Plant Physiology Module Experimental Guidance. Beijing: Science Press, 2009. (in Chinese)
[38] ZHU H, CAO Z X, ZHANG L, TRUSH M A, LI Y B. Glutathione and glutathione-linked enzymes in normal human aortic smooth muscle cells: Chemical inducibility and protection against reactive oxygen and nitrogen species-induced injury. Molecular and Cellular Biochemistry, 2007(301):47-59.
[39] WHEELER C R, SALZMAN J A, ELSAYED N M, OMAYE S T, KORTE D W. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Analytical Biochemistry, 1990(184):193-199.
[40] MURSHED R, LOPEZ-LAURI F, SALLANON H. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersiconL, cv. Micro-tom). Physiology and Molecular Biology of Plants, 2013,19(3):363-378.
pmid: 24431505
[41] 邢兴华, 徐泽俊, 齐玉军, 孙东雷, 卞能飞, 王晓军, 王幸. 外源二乙基二硫代氨基甲酸钠对花期淹水大豆碳代谢的影响. 中国油料作物学报, 2019,41(1):64-74.
XING X H, XU Z J, QI Y J, SUN D L, BIAN N F, WANG X J, WANG X. Effect of exogenous sodium diethyldithiocarbamate on carbon metabolism of soybean under waterlogging at flowering stage. Chinese Journal of Oil Crop Sciences, 2019,41(1):64-74. (in Chinese)
[42] 李青苗, 杨文钰, 韩惠芳, 关华. 烯效唑浸种对玉米幼苗生长和内源激素含量的影响. 植物生理学报, 2005,41(6):752-754.
LI Q M, YANG W Y, HAN H F, GUAN H. Effects of seed soaking with uniconazole on endogenous hormone content and growth of maize (Zea mays L.) seedling, Plant Physiology Journal, 2005,41(6):752-754. (in Chinese)
[43] 黄玉兰, 赵蕊, 向君亮, 蔡森, 曾伟光. 外源烯效唑对低温胁迫下薏苡幼苗的缓解效应的研究. 中国中药杂志, 2019,44(11):2213-2218.
doi: 10.19540/j.cnki.cjcmm.20190325.101 pmid: 31359644
HUANG Y L, ZHAO R, XIANG J L, CAI S, ZENG W G. Study of exogenous uniconazole on alleviating low-temperature stress of coix seedlings. China Journal of Chinese Materia Medica, 2019,44(11):2213-2218. (in Chinese)
doi: 10.19540/j.cnki.cjcmm.20190325.101 pmid: 31359644
[44] 孟娜, 徐航, 魏明, 魏胜华. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响. 西北植物学报, 2017,37(10):1988-1995.
MENG N, XU H, WEI M, WEI S H. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(10):1988-1995. (in Chinese)
[45] 刘丽琴, 张永清, 李鑫, 王姣. 烯效唑浸种对干旱胁迫下红小豆生长及其根系生理特性的影响. 西北植物学报, 2017,37(1):144-153.
LI L Q, ZHANG Y Q, LI X, WANG J. Influence of seed soaking with uniconazole on growth and root physiological characteristics of adzuki bean under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(1):144-153. (in Chinese)
[46] 刘会芳, 何晓玲, 马展, 徐巍, 刘苗苗, 刘慧英. 外源GSH对NaCl胁迫下番茄幼苗生长及AsA-GSH循环的影响. 石河子大学学报(自然科学版), 2014,32(3):265-271.
LIU H F, HE X L, MA Z, XU W, LIU M M, LIU H Y. Effects of exogenous GSH on the growth and AsA-GSH cycle in tamato seedlings under NaCl stress. Journal of Shihezi University (Natural Science), 2014,32(3):265-271. (in Chinese)
[47] 韩亮亮. 淹水胁迫对大豆生长和生理特性的影响[D]. 南京: 南京农业大学, 2011.
HAN L L. Effects of waterlogging stress on soybean growth and physiological characteristics[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[48] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰. 烯效唑对淹水胁迫下大豆农艺性状及生理生化指标的影响. 中国油料作物学报, 2017,39(5):655-663.
ZHANG H P, ZHANG P P, LI B, LI D, LIU W B, FENG N J, ZHANG D F. Effects of uniconazole on alleviation of waterlogging stress in soybean. Chinese Journal of Oil Crop Sciences, 2017,39(5):655-663. (in Chinese)
[49] 于奇, 冯乃杰, 王诗雅, 左官强, 郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响. 作物学报, 2019,45(7):1080-1089.
YU Q, FENG N J, WANG S Y, ZUO G Q, ZHENG D F. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress. Acta Agronomica Sinica, 2019,45(7):1080-1089. (in Chinese)
[50] 郭欣欣, 李晓锋, 朱红芳, 朱玉英, 刘金平. 淹水胁迫对不结球白菜抗坏血酸-谷胱甘肽循环的影响. 植物生理学报, 2015,51(12):2181-2187.
GUO X X, LI X F, ZHU H F, ZHU Y Y, LIU J P. Effects of waterlogging stress on ascorbate-glutathione cycle in Brassica campestris ssp. chinensis. Plant Physiology Journal, 2015,51(12):2181-2187. (in Chinese)
[51] 孙军利, 赵宝龙, 郁松林. SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响. 核农学报, 2015,29(4):799-804.
SUN J L, ZHAO B L, YU S L. Effects of exogenous salicylic acid (SA) on ascorbate glutathione cycle (AsA-GSH) circulation metabolism in grape seedlings under high temperature stress. Journal of Nuclear Agricultural Sciences, 2015,29(4):799-804. (in Chinese)
[52] 吴秀, 陆晓民. 油菜素内酯对亚适宜温光盐环境下黄瓜幼苗根系生长及其AsA-GSH循环的影响. 生态学杂志, 2015,34(8):2149-2154.
WU X, LU X M. Effects of brassinolide on the growth and ascorbate-glutathione cycle of cucumber seedling roots under suboptimal temperature, light and salt environment. Chinese Journal of Ecology, 2015,34(8):2149-2154. (in Chinese)
[53] 郁敏, 任亚萍, 米银法, 崔瑞红. 根际低氧对不同抗性牡丹植株AsA-GSH循环代谢的影响. 北方园艺, 2016(16):69-75.
YU M, REN Y P, MI Y F, CUI R H. Effect of root zone hypoxia stress on AsA-GSH between two peony varieties. Northern Horticulture, 2016(16):69-75. (in Chinese)
[54] DU Y J, HAO Z Q, TE J, ZHOU Y B, TAO D L, LIU H L, JIN Y H. Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 2003,45(7):795-801.
[55] ARAVIND P, PRASAD M N V. Modulation of cadmium- induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate- glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry, 2005,43(2):107-116.
doi: 10.1016/j.plaphy.2005.01.002 pmid: 15820657
[56] 杨庆贺, 郑成淑. 低温弱光胁迫下外源ASA与CaCl2对菊花叶片AsA-GSH循环的影响. 山东农业大学学报(自然科学版), 2018,49(3):495-499.
YANG Q H, ZHENG C S. Effects of exogenous acetylsalicylic acid and calcium chloride on AsA-GSH cycle in chrysanthemum leaves under stress of low temperature and poor light. Journal of Shandong Agricultural University(Natural Science Edition), 2018,49(3):495-499. (in Chinese)
[57] UCHIDA A, JAGENDORF A T, HIBINO T, TAKABE T, TAKABE T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002,163(3):515-523.
doi: 10.1016/S0168-9452(02)00159-0
[58] 顾帆, 季梦成, 顾翠花, 郑钢, 郑绍宇. 高温干旱胁迫对黄薇抗氧化防御系统的影响. 浙江农林大学学报, 2019,36(5):894-901.
GU F, JI M C, GU C H, ZHENG G, ZHENG S Y. Heat and drought stress with an antioxidant defense system in Heimia myrtifolia. Journal of Zhejiang A&F University, 2019,36(5):894-901. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] LÜ ZhiWei,DU Kang,ZHOU ZhiGuo,ZHAO WenQing,HU Wei,ZHAO JianMing,ZHU SuQin,WANG YouHua. Research on Senescence Process and Suitable Indicators of Maize Ear Leaves [J]. Scientia Agricultura Sinica, 2022, 55(12): 2311-2323.
[11] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[12] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[13] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[14] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[15] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!