Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3365-3379.doi: 10.3864/j.issn.0578-1752.2022.17.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Research on Soybean Irrigation Schedule Based on AquaCrop Model

WANG QiaoJuan1,2(),HE Hong1,2,LI Liang1,2,ZHANG Chao3(),CAI HuanJie1,2()   

  1. 1College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, Shaanxi
    2Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, Shaanxi
    3College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2021-07-29 Accepted:2021-09-15 Online:2022-09-01 Published:2022-09-07
  • Contact: Chao ZHANG,HuanJie CAI E-mail:wangqj-0407@nwafu.edu.cn;zhangc1700@yzu.edu.cn;caihj@nwafu.edu.cn

Abstract:

【Objective】 The aim of this study was to evaluate the applicability of AquaCrop model in the Guanzhong Plain and to explore the optimal irrigation schedule for summer soybean under various precipitation year types. 【Method】 AquaCrop model was calibrated by using field experiment data and then used to simulate soybean yield and water use efficiency under 14 irrigation systems with three different precipitation years from 1961 to 2019.【Result】 The determination coefficient (R2), root mean square error (RMSE), standard root mean square error (NRMSE) and Nash efficiency coefficient (EF) of simulated and measured soybean yield under the highest yield treatment by AquaCrop model were 0.96, 7.15%, 11.03% and 0.94, respectively, which of simulated and measured biomass values were 0.99, 526.04 kg·hm-2, 14.45% and 0.97, respectively. A good agreement was observed for final yield simulation with the R2, RMSE, NRMSE, and EF were 0.97, 49.98 kg·hm-2, 1.74% and 0.82, respectively. The R2 values of the measured and simulated canopy coverage and biomass of each treatment were greater than 0.95, indicating that the AquaCrop model could better simulate the growth and development dynamics and yield of soybean in Guanzhong Plain. Combined with the simulation results of the model, the water requirements of the whole growth period of soybean were 398.2 mm. The water requirements of each growth period were significantly different for three precipitation years. The water requirements in the soybean branch stage were 127.8 mm, the water requirements of flowering and podding stage were 212.6 mm, and those of grain filling stage were 57.7 mm. Combined with the simulation of different irrigation systems for three different precipitation years, it was found that the flowering and podding period stage was the key period of water demand, and the water supply in this growth period affected the final yield of soybean. Simulation resulted showed that no irrigation was needed in wet years. In the normal and dry years, it was recommended to irrigate only 45 mm and 70 mm at flowering and podding stage to achieve the maximum yield of 2 699 kg·hm-2 and 2 486 kg·hm-2, and the maximum water use efficiency of 0.74 kg·m-3 and 0.7 kg·m-3, respectively. 【Conclusion】 To ensure higher soybean yield and water use efficiency, the soybean irrigation schedule in this region should be determined based on the distribution of different precipitation years, which could be used as a reference for the soybean irrigation system in the Guanzhong Plain region.

Key words: soybean, AquaCrop model, production, irrigation schedule, Guanzhong plain

Table 1

Soil physical properties"

土壤深度
Soil depth
(cm)
黏粒
Clay
(%)
粉粒
Silt
(%)
砂粒
Sand
(%)
凋萎含水量
Wilting point (cm3·cm-3)
饱和含水量
Saturation (cm3·cm-3)
田间持水量
Field capacity (cm3·cm-3)
土壤容重
Bulk density (g·cm-3)
0-20 26.12 40.00 33.88 11.00 32.00 31.00 1.30
20-40 27.33 41.25 31.42 11.00 38.20 31.10 1.41
40-60 28.20 42.40 29.40 11.00 38.60 31.20 1.45
60-80 26.10 41.83 32.07 13.00 39.00 31.00 1.52
80-100 26.12 41.85 32.03 13.00 39.00 33.00 1.55

Fig. 1

Meteorological data during soybean growing season"

Table 2

The calibrated parameter of soybean in AquaCrop model"

符号Symbol 定义 Definition 取值 Value 单位 Unit
Tbase 基底温度 Base temperature 5
Tupper 上限温度 Upper temperature 40
CGC 冠层增长系数 Canopy growth coefficient 0.11000 ℃·d-1
CCx 最大冠层覆盖度 Maximum canopy cover 96 %
CDC 冠层衰减系数 Canopy decline coefficient 0.015 ℃·d-1
Zmin 最小有效生根深度 Minimum effective rooting depth 0.3 m
Zx 最大有效生根深度 Maxmum effective rooting depth 1.2 m
Rexshp 根区膨胀的形状因子 Shape factor for root zone expansion 1.5 m
Kcb 作物系数 Crop coefficient
KcTrx 作物蒸腾系数 Crop coefficient for transpiration 1.05 -
WP* 标准水分生产力 Water productivity normalized for ET0 and CO2 12 g·m-2
HI0 参考收获参数 Reference harvest index 38 %
Pexp,upper 限制冠层伸展的土壤水分消耗上限阈值 Soil water depletion threshold for canopy expansion-Upper threshold 0.15 -
Pexp,lower 限制冠层伸展的土壤水分消耗下限阈值 Soil water depletion threshold for canopy expansion-Lower threshold 0.65 -
Pexp,shp 限制冠层伸展的水分胁迫系数曲线的形状因子 Shape factor for coefficient for canopy expansion 2.5 -
Psto,upper 气孔控制土壤水分耗竭阈值上限阈值 Soil water depletion for stomata control-Upper threshold 0.6 -
Psen,upper 冠层衰老的土壤水分耗竭因子上限阈值Soil water depletion factor for canopy senescence-Upper threshold 0.7 -
Ppol,upper 授粉土壤水分耗竭因子上限阈值Soil water depletion factor for pollination-Upper threshold 0.8 -

Table 3

Scenarios of irrigation"

灌溉方案
Irrigation schedule
生育期阶段灌溉量Growth stage (mm) 灌溉定额
Irrigation amount (mm)
分枝期
(30 d)
Branching stage
开花-结荚期
(70 d)
Flowering and podding stage
鼓粒期
(90 d)
Seed filling stage
P1 0 0 0 0
P2 45 0 0 45
P3 0 45 0 45
P4 0 0 45 45
P5 70 0 0 70
P6 0 70 0 70
P7 0 0 70 70
P8 45 45 0 90
P9 45 0 45 90
P10 0 45 45 90
P11 70 70 0 140
P12 0 70 70 140
P13 70 0 70 140
P14 70 70 70 210

Fig. 2

Comparison between simulated and measured values of canopy cover B is the English initials of branching stage. S is the English initials of grain filling stage. Dataset (1) is used for model calibration, dataset (2) is used for model verification. The same below"

Fig. 3

Comparison of simulated and observed values of above-ground biomass of soybean"

Fig. 4

Comparison of simulated and measured soil moisture content of soybean"

Fig. 5

Comparison of simulated and observed values of soybean yield"

Table 4

Validation results of simulated and measured grain yield"

产量 Yield (kg·hm-2)
处理
Treatment
模拟值
Simulated value
实测值
Measured value
相对误差
Relative error (%)
校正
Calibration
I60BS 1 3026 2988 1.26
2 3021 2978 1.42
I0 1 2832 2785 1.66
2 2784 2717 2.41
验证
Validation
I60B 1 2924 2901 0.79
2 2984 2974 0.34
I60S 1 2890 2852 1.31
2 2861 2783 2.73

Table 5

Simulation results of different irrigation schemes in different precipitation years"

灌溉方案
Irrigation schedule
灌溉定额
Irrigation amount (mm)
产量Yield (kg·hm-2) 水分利用效率WUE (kg·m-3)
干旱年
Dry year
平水年
Normal year
湿润年
Wet year
干旱年
Dry year
平水年
Normal year
湿润年
Wet year
P1 0 1700 2455 2780 0.51 0.69 0.79
P2 45 1874 2548 2857 0.52 0.69 0.78
P3 45 2279 2699 2867 0.63 0.74 0.81
P4 45 2117 2571 2791 0.61 0.71 0.79
P5 70 1879 2554 2865 0.52 0.69 0.78
P6 70 2486 2758 2873 0.70 0.75 0.81
P7 70 2185 2581 2791 0.62 0.72 0.79
P8 90 2470 2787 2941 0.64 0.73 0.79
P9 90 2328 2667 2870 0.62 0.71 0.78
P10 90 2505 2743 2869 0.68 0.74 0.81
P11 140 2661 2843 2951 0.68 0.74 0.79
P12 140 2644 2773 2871 0.69 0.75 0.81
P13 140 2398 2679 2875 0.63 0.71 0.78
P14 210 2827 2861 2950 0.70 0.74 0.79

Fig. 6

Precipitation of soybean growth period under different year types and water demand trend"

[1] DI GIORGIO L, SALGADO P R, MAURI A N. Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids, 2019, 87: 891-901.
doi: 10.1016/j.foodhyd.2018.09.024
[2] NISHINARI K, FANG Y, GUO S, PHILLIPS G O. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids, 2014, 39: 301-318.
doi: 10.1016/j.foodhyd.2014.01.013
[3] YANG M H, JAHUFER M Z Z, HE J, DONG R, HOFMANN R, SIDDIQUE K H M, LI F M. Effect of traditional soybean breeding on water use strategy in arid and semi-arid areas. European Journal of Agronomy, 2020, 120: 126128.
doi: 10.1016/j.eja.2020.126128
[4] ZHANG L X, ZHU L L, YU M Y, ZHONG M X. Warming decreases photosynthates and yield of soybean[Glycine max (L.) Merrill] in the North China Plain. The Crop Journal, 2016, 4(2): 139-146.
doi: 10.1016/j.cj.2015.12.003
[5] HE L A, JIN N, YU Q A. Impacts of climate change and crop management practices on soybean phenology changes in China. Science of the Total Environment, 2020, 707: 135638.
doi: 10.1016/j.scitotenv.2019.135638
[6] 中华人民共和国国家统计局. 中国统计年鉴. 陕西: 中国统计出版社, 2020.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Shaanxi: China Statistics Press, 2020. (in Chinese)
[7] FIGUEIREDO MOURA DA SILVA E H, SILVA ANTOLIN L A, ZANON A J, SOARES ANDRADE A Junior, ANTUNES DE SOUZA H Junior, DOS SANTOS CARVALHO K Junior, APARECIDO VIEIRA N Junior, MARIN F R Junior. Impact assessment of soybean yield and water productivity in Brazil due to climate change. European Journal of Agronomy, 2021, 129: 126329.
doi: 10.1016/j.eja.2021.126329
[8] 李斌, 王莉. 基于降水集中度和集中期的关中地区降水时空变化特征分析. 陕西水利, 2020(2): 36-41.
LI B, WANG L. Analysis on spatial and temporal variation characteristics of precipitation in Guanzhong area based on precipitation concentration ratio and precipitation concentration period. Shaanxi Water Resources, 2020(2): 36-41. (in Chinese)
[9] PARENT B, TARDIEU F. Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature? Journal of Experimental Botany, 2014, 65(21): 6179-6189.
doi: 10.1093/jxb/eru223
[10] 闫泽宇, 史海滨, 杨树青, 王佐奎, 王美荣. 呼伦贝尔地区喷灌对大豆生长及水分利用效率的影响. 灌溉排水学报, 2019, 38(5): 19-24.
YAN Z Y, SHI H B, YANG S Q, WANG Z K, WANG M R. The use of sprinkler irrigation water by soybean and its consequence for plant growth in the regions of Hulunbeier. Journal of Irrigation and Drainage, 2019, 38(5): 19-24. (in Chinese)
[11] 由剑波, 陈志东, 高兴民. 基于干旱区的大豆高效节水灌溉制度制定. 黑龙江水利科技, 2012, 40(1): 82-83.
YOU J B, CHEN Z D, GAO X M. Formulation of high-efficiency water saving irrigation system for soya bean in dry area. Heilongjiang Science and Technology of Water Conservancy, 2012, 40(1): 82-83. (in Chinese)
[12] 毛洪霞. 滴灌大豆需水规律及灌溉制度研究. 干旱地区农业研究, 2009, 27(5): 112-117.
MAO H X. Research on soybean water requirement and schedule of drip irrigation. Agricultural Research in the Arid Areas, 2009, 27(5): 112-117. (in Chinese)
[13] 武向良, 高聚林, 王志刚, 李丽君, 张白鸽, 黄振刚, 黄复民, 王建明, 李树芳. 不同时期灌溉对大豆叶片生理特性及水分利用效率的影响. 大豆科学, 2007, 26(5): 695-699.
WU X L, GAO J L, WANG Z G, LI L J, ZHANG B G, HUANG Z G, HUANG F M, WANG J M, LI S F. Effect of irrigation at different growth stages on water use efficiency and leaf physiological characteristics of soybean. Soybean Science, 2007, 26(5): 695-699. (in Chinese)
[14] PAREDES P, WEI Z, LIU Y, XU D, XIN Y, ZHANG B, PEREIRA L S. Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agricultural Water Management, 2015, 152: 57-71.
doi: 10.1016/j.agwat.2014.12.007
[15] MORELL F J, YANG H S, CASSMAN K G, WART J V, ELMORE R W, LICHT M, COULTER J A, CIAMPITTI I A, PITTELKOW C M, BROUDER S M, THOMISON P, LAUER J, GRAHAM C, MASSEY R, GRASSINI P. Can crop simulation models be used to predict local to regional maize yields and total production in the US Corn Belt? Field Crops Research, 2016, 192: 1-12.
[16] SACKS W J, KUCHARIK C J. Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology, 2011, 151(7): 882-894.
[17] 朱秀芳, 李宜展, 潘耀忠, 史培军. AquaCrop作物模型研究和应用进展. 中国农学通报, 2014, 30(8): 270-278.
ZHU X F, LI Y Z, PAN Y Z, SHI P J. A review on the research and application of AquaCrop model. Chinese Agricultural Science Bulletin, 2014, 30(8): 270-278. (in Chinese)
[18] 李会, 刘钰, 蔡甲冰, 毛晓敏. AquaCrop模型的适用性及应用初探. 灌溉排水学报, 2011, 30(3): 28-33.
LI H, LIU Y, CAI J B, MAO X M. The applicability and application of AquaCrop model. Journal of Irrigation and Drainage, 2011, 30(3): 28-33. (in Chinese)
[19] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展. 地球科学进展, 2015, 30(10): 1100-1106.
doi: 10.11867/j.issn.1001-8166.2015.10.1100
WANG L X, WU J S, LI Q, GU J Y, XUE H X. A review on the research and application of aqua crop model. Advances in Earth Science, 2015, 30(10): 1100-1106. (in Chinese)
doi: 10.11867/j.issn.1001-8166.2015.10.1100
[20] TEDESCHI L O. Assessment of the adequacy of mathematical models. Agricultural Systems, 2006, 89(2/3): 225-247.
doi: 10.1016/j.agsy.2005.11.004
[21] VERMEIREN P, REICHERT P, SCHUWIRTH N. Integrating uncertain prior knowledge regarding ecological preferences into multi-species distribution models: Effects of model complexity on predictive performance. Ecological Modelling, 2020, 420: 108956.
doi: 10.1016/j.ecolmodel.2020.108956
[22] KELLY T D, FOSTER T. AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling. Agricultural Water Management, 2021, 254: 106976.
doi: 10.1016/j.agwat.2021.106976
[23] 刘匣, 丁奠元, 张浩杰, 褚晓升, 余坤, 冯浩. 覆膜条件下对AquaCrop模型冬小麦生长动态和土壤水分模拟效果的评价分析. 中国农业科学, 2017, 50(10): 1841-1854.
LIU X, DING D Y, ZHANG H J, CHU X S, YU K, FENG H. Evaluation analysis of AquaCrop model in modeling winter wheat growing development and soil moisture under plastic mulching. Scientia Agricultura Sinica, 2017, 50(10): 1841-1854. (in Chinese)
[24] 倪玲, 冯浩, 任小川, 郝志鹏. AquaCrop作物模型在黄土塬区夏玉米生产中的适用性评价. 干旱地区农业研究, 2015, 33(6): 40-45.
NI L, FENG H, REN X C, HAO Z P. Applicable evaluation of crop model AquaCrop for summer maize production in Loess Plateau Region. Agricultural Research in the Arid Areas, 2015, 33(6): 40-45. (in Chinese)
[25] 张卫华. AquaCrop模型在黄土高原夏玉米生产中的应用和验证. 土地开发工程研究, 2018, 3(2): 49-53, 58.
ZHANG W H. Evaluation and application of the AquaCrop model for simulating yield for maize (Zea mays L.) on Loess Plateau. Land Development and Engineering Research, 2018, 3(2): 49-53, 58. (in Chinese)
[26] 程载恒. 基于AquaCrop模型的河套灌区向日葵灌溉制度研究[D]. 银川: 宁夏大学, 2017.
CHENG Z H. Based on AquaCrop model research on sunflower irrigation schedule in Hetao irrigation area[D]. Yinchuan: Ningxia University, 2017. (in Chinese)
[27] ADEBOYE O B, SCHULTZ B, ADEBOYE A P, ADEKALU K O, OSUNBITAN J A. Application of the AquaCrop model in decision support for optimization of nitrogen fertilizer and water productivity of soybeans. Information Processing in Agriculture, 2020, 2(10): 2214-3173. DOI: 10.1016/j.inpa.2020.10.002.
doi: 10.1016/j.inpa.2020.10.002
[28] TAN S, WANG Q J, ZHANG J H, CHEN Y, SHAN Y Y, XU D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agricultural Water Management, 2018, 196: 99-113.
doi: 10.1016/j.agwat.2017.11.001
[29] XU J Z, BAI W H, LI Y W, WANG H Y, YANG S H, WEI Z. Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in Eastern China. Agricultural Water Management, 2019, 213: 289-297.
doi: 10.1016/j.agwat.2018.10.028
[30] MONTOYA F, GARCÍA C, PINTOS F, OTERO A. Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions. Agricultural Water Management, 2017, 193: 30-45.
doi: 10.1016/j.agwat.2017.08.001
[31] LIU S, ZHANG X Y, YANG J Y, DRURY C F. Effect of conservation and conventional tillage on soil water storage, water use efficiency and productivity of corn and soybean in Northeast China. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2013, 63(5): 383-394.
[32] VERGER A, MARTÍNEZ B, CAMACHO-DE COCA F, GARCÍA- HARO F J. Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area. International Journal of Remote Sensing, 2009, 30(10): 2685-2704.
doi: 10.1080/01431160802555804
[33] YAN Z X, GAO C, REN Y J, ZONG R, MA Y Z, LI Q Q. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain. Agricultural Water Management, 2017, 186: 21-28.
doi: 10.1016/j.agwat.2017.02.017
[34] VANUYTRECHT E, RAES D, STEDUTO P, HSIAO T C, FERERES E, HENG L K, GARCIA VILA M, MEJIAS MORENO P. AquaCrop: FAO's crop water productivity and yield response model. Environmental Modelling & Software, 2014, 62: 351-360.
[35] SANDHU R, IRMAK S. Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation. Agricultural Water Management, 2019, 223: 105687.
doi: 10.1016/j.agwat.2019.105687
[36] YANG J M, YANG J Y, LIU S, HOOGENBOOM G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 2014, 127: 81-89. DOI: 10.1016/j.agsy.2014.01.008.
doi: 10.1016/j.agsy.2014.01.008
[37] ARAYA A, KEESSTRA S D, STROOSNIJDER L. Simulating yield response to water of Teff (Eragrostis tef) with FAO's AquaCrop model. Field Crops Research, 2010, 116(1/2): 196-204.
doi: 10.1016/j.fcr.2009.12.010
[38] MABHAUDHI T, MODI A T, BELETSE Y G. Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) Landrace. Agricultural and Forest Meteorology, 2014, 192/193: 132-139.
doi: 10.1016/j.agrformet.2014.03.013
[39] DESPOTOVIC M, NEDIC V, DESPOTOVIC D, CVETANOVIC S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 2016, 56: 246-260.
doi: 10.1016/j.rser.2015.11.058
[40] GUO S L, ZHU H H, DANG T H, WU J S, LIU W Z, MIN D H, LI Y, SYERS J K. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China. Geoderma, 2012, 189/190: 442-450.
doi: 10.1016/j.geoderma.2012.06.012
[41] 姜浩, 聂堂哲, 陈鹏, 张忠学. 基于CROPWAT模型的大豆需水量及灌溉制度研究. 水利水电技术, 2018, 49(11): 211-217.
JIANG H, NIE T Z, CHEN P, ZHANG Z X. CROPWAT model-based study on water demand and irrigation system of soybean. Water Resources and Hydropower Engineering, 2018, 49(11): 211-217. (in Chinese)
[42] ADEBOYE O B, SCHULTZ B, ADEKALU K O, PRASAD K C. Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria. Agricultural Water Management, 2019, 213: 1130-1146.
[43] CUI Y, JIANG S M, JIN J L, NING S W, FENG P. Quantitative assessment of soybean drought loss sensitivity at different growth stages based on S-shaped damage curve. Agricultural Water Management, 2019, 213: 821-832.
doi: 10.1016/j.agwat.2018.11.020
[44] DOGAN E, KIRNAK H, COPUR O. Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Research, 2007, 103(2): 154-159.
doi: 10.1016/j.fcr.2007.05.009
[45] SUYKER A E, VERMA S B. Evapotranspiration of irrigated and rainfed maize-soybean cropping systems. Agricultural and Forest Meteorology, 2009, 149(3/4): 443-452.
doi: 10.1016/j.agrformet.2008.09.010
[46] FOROUD N, MÜNDEL H H, SAINDON G, ENTZ T. Effect of level and timing of moisture stress on soybean plant development and yield components. Irrigation Science, 1993, 13(4): 149-155.
[47] SUYKER A E, VERMA S B. Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize-soybean cropping systems and water productivity. Agricultural and Forest Meteorology, 2010, 150(4): 553-563.
doi: 10.1016/j.agrformet.2010.01.020
[48] 王龙, 魏永霞, 吴限. 黑土区调亏灌溉条件下大豆耗水规律试验研究. 节水灌溉, 2014(11): 29-33.
WANG L, WEI Y X, WU X. Experimental study on water consumption law for soybean in black soil region under regulated deficit irrigation. Water Saving Irrigation, 2014(11): 29-33. (in Chinese)
[49] DESCLAUX D, HUYNH T T, ROUMET P. Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Science, 2000, 40(3): 716-722.
doi: 10.2135/cropsci2000.403716x
[1] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[7] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[8] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[9] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[10] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[11] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[12] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[13] ZHU Lei,ZHANG HaiLiang,CHEN ShaoKan,AN Tao,LUO HanPeng,LIU Lin,HUANG XiXia,WANG YaChun. Impacts of Somatic Cell Count in Early Lactation on Production Performance over the Whole Lactation and Its Genetic Parameters in Holsteins Cattle [J]. Scientia Agricultura Sinica, 2022, 55(2): 403-414.
[14] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[15] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!