Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1723-1734.doi: 10.3864/j.issn.0578-1752.2022.09.003
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHAO HaiXia(),XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi*()
[1] |
ZHANG L J, LI X X, MA B, GAO Q, DU H, HAN Y H, LI Y, CAO Y H, QI M, ZHU Y X, LU H W, MA M C, LIU L L, ZHOU J P, NAN C H, QIN Y J, WANG J, CUI L, LIU H M, LIANG C Z, QIAO Z J. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 2017, 10(9): 1224-1237.
doi: 10.1016/j.molp.2017.08.013 |
[2] |
ZHANG X M, ZHAO L, LARSON-RABIN Z, LI D Z, GUO Z H, NITABACH M N. De Novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS ONE, 2012, 7(8): e42082.
doi: 10.1371/journal.pone.0042082 |
[3] |
GAO F, YAO H P, ZHAO H X, ZHOU J, LUO X P, HUANG Y J, LI C L, CHEN H, WU Q. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 109: 387-396.
doi: 10.1016/j.plaphy.2016.10.022 |
[4] |
ZHOU H, WANG K L, WANG F R, ESPLEY R V, REN F, ZHAO J N, OGUTU C, HE H P, JIANG Q, ALLAN A C, HAN Y P. Activator- type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist, 2018, 221(4): 1919-1934.
doi: 10.1111/nph.15486 |
[5] |
YAO P F, ZHAO H X, LUO X P, GAO F, LI C L, YAO H P, CHEN H, PARK S U, WU Q. Fagopyrum tataricum FtWD40 functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco. Journal of Plant Growth Regulation, 2017, 36(3): 755-765.
doi: 10.1007/s00344-017-9678-6 |
[6] |
LÜ B B, WU Q, WANG A H, LI Q, DONG Q X, YANG J J, ZHAO H X, WANG X L, CHEN H, LI C L. A WRKY transcription factor, FtWRKY46, from tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 147: 43-53.
doi: 10.1016/j.plaphy.2019.12.004 |
[7] | YAMANE Y. Induced differentiation of buckwheat plants from subcultured calluses in vitro. Japanese Journal of Genetics, 1974, 49(3): 139-146. |
[8] | LEE S Y, KIM Y KY, UDDIN M R, PARK N I, PARK S U. An efficient protocol for shoot organogenesis and plant regeneration of buckwheat (Fagopyrum esculentum Moench.). Romanian Biotechnological Letters, 2009, 14(4): 4524-4529. |
[9] |
KWON S J, HAN M H, HUH Y S, ROY S K, LEE C W, WOO S H. Plantlet regeneration via somatic embryogenesis from hypocotyls of common buckwheat (Fagopyrum esculentum Moench.). Korean Journal of Crop Science, 2013, 58(4): 331-335.
doi: 10.7740/kjcs.2013.58.4.331 |
[10] | HAN M H, KAMAL A H, HUH Y S, JEON A Y, BAE J S, CHUNG K Y, LEE M S, PARK S U, JEONG H S, WOO S H. Regeneration of plantlet via somatic embryogenesis from hypocotyls of tartary buckwheat (Fagopyrum tataricum). Australian Journal of Crop Science, 2011, 5(7): 865-869 |
[11] |
HOU S Y, SUN Z X, HU B L, WANG Y G, HUANG K S, XU D M, HAN Y H. Regeneration of buckwheat plantlets from hypocotyl and the influence of exogenous hormones on rutin content and rutin biosynthetic gene expression in vitro. Plant Cell Tissue and Organ Culture, 2015, 120(3): 1159-1167.
doi: 10.1007/s11240-014-0671-5 |
[12] | JOVANKA M D, MIRJANA N, SLAVICA N, RADOMIR C. Agrobacterium-mediated transformation and plant regeneration of buckwheat (Fagopyrum esculentum Moench.). Plant Cell Tissue & Organ Culture, 1992, 29(2): 101-108. |
[13] | KOJIMA M, ARAI Y, IWASE N, SHIROTORI K, SHIOIRI H, NOZUE M. Development of a simple and efficient method for transformation of buckwheat plants (Fagopyrum esculentum) using Agrobacterium tumefaciens. Bioscience Biotechnology & Biochemistry, 2000, 64(4): 845-847. |
[14] | KIM H S, KANG H J, LEE Y T, LEE S Y, KO J A, RHA E S. Direct regeneration of transgenic buckwheat from hypocotyl segment by agrobacterium-mediated transformation. Korean Journal of Crop Science, 2001, 46(5): 375-379. |
[15] |
CHEN L H, ZHANG B, XU Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H(+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Research, 2008, 17(1): 121-132.
doi: 10.1007/s11248-007-9085-z |
[16] | 丰明, 陈庆富, 葛维德, 薛仁风. 抗旱调控基因DREB2A转化辽荞5号的研究. 东北农业科学, 2019, 44(4): 29-36. |
FENG M, CHEN Q F, GE W D, XUE R F. Research on the drought-resistant regulatory genes DREB2A transforming the ‘Liao 5 Buckwheat’. Journal of Northeast Agricultural Sciences, 2019, 44(4): 29-36. (in Chinese) | |
[17] | 李占旗. 苦荞离体再生体系的建立和遗传转化研究[D]. 西安: 西北大学, 2007. |
LI Z Q. Establishment of plant regeneration system and genetic transformation of tartary buckwheat[D]. Xian: Northwest University, 2007. (in Chinese) | |
[18] | SUN X M, CHEN X, DENG Z X, LI Y D. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry & Physics, 2003, 78(1): 99-104. |
[19] |
HUANG Y J, WU Q, WANG S, SHI J Q, DONG Q X, YAO P F, SHI G N, XU S X, DENG R Y, LI C L, CHEN H, ZHAO H X. FtMYB 8 from tartary buckwheat inhibits both anthocyanin/proanthocyanidin accumulation and marginal trichome initiation. BMC Plant Biology, 2019, 19(1): 263.
doi: 10.1186/s12870-019-1876-x |
[20] | 高飞. 苦荞光应答转录因子FtMYB5对黄酮合成的调控[D]. 成都: 四川农业大学, 2017. |
GAO F.Tartary buckwheat light-induced transcription factor FtMYB 5 involved in flavonoid biosynthesis regualtion[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese) | |
[21] |
YAO P E, HUANG Y J, DONG Q X, WAN M, WANG A H, CHEN Y W, LI C L, WU Q, CHEN H, ZHAO H X. FtMYB6, a Light-Induced SG7 R2R3-MYB transcription factor, promotes flavonol biosynthesis in tartary buckwheat (Fagopyrum tataricum). Journal of Agricultural and Food Chemistry, 2020, 68(47): 13685-13696.
doi: 10.1021/acs.jafc.0c03037 |
[22] | 王成龙. 苦荞毛状根的诱导及高频再生体系的建立[D]. 成都: 四川农业大学, 2015. |
WANG C L. Induction hairy roots and established high-frequency plant regeneration system tartary buckwheat (Fagopyrum tataricum Gaertn.)[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese) | |
[23] | 王官凤, 吕兵兵, 王安虎, 赵海霞, 王晓丽, 吴琦, 陈惠, 李成磊. 苦荞抗旱相关转录因子基因FtWRKY10的克隆及功能鉴定. 农业生物技术学报, 2020, 28(4): 629-644. |
WANG G F, LÜ B B, WANG A H, ZHAO H X, WANG X L, WU Q, CHEN H, LI C L. Cloning and functional identification of drought resistance related transcription factor gene FtWRKY10 from tartary buckwheat (Fagopyrum tataricum). Journal of Agricultural Biotechnology, 2020, 28(4): 629-644. (in Chinese) | |
[24] |
LI Q, WU Q, WANG A H, LV B B, DONG Q X, YAO Y J, WU Q, ZHAO H X, LI C L, CHEN H, WANG X L. Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. Plant Physiology and Biochemistry, 2019, 144: 312-323.
doi: 10.1016/j.plaphy.2019.10.003 |
[25] | 伍小方, 高国应, 左倩, 赵辉, 张凯旋, 严明理, 周美亮. FtMYB1转录因子调控苦荞毛状根黄酮醇合成的机理研究. 植物遗传资源学报, 2020, 21(5): 1270-1278. |
WU X F, GAO G Y, ZUO Q, ZHAO H, ZHANG K X, YAN M L, ZHOU M L. Deciphering the functional basis of FtMYB1 transcription factor in flavonol biosynthesis of tartary buckwheat hairy root. Journal of Plant Genetic Resources, 2020, 21(5): 1270-1278. (in Chinese) | |
[26] | 卢晓玲, 何铭, 张凯旋, 廖志勇, 周美亮. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究. 作物杂志, 2020(5): 33-40. |
LU X L, HE M, ZHANG K X, LIAO Z Y, ZHOU M L. Study on the cloning and transformation of rhamnose transferase FtF3GT1 gene in tartary buckwheat. Crops, 2020(5): 33-40. (in Chinese) | |
[27] | 翁文凤, 伍小方, 张凯旋, 唐宇, 江燕, 阮景军, 周美亮. 过表达FtbZIP5提高苦荞毛状根黄酮积累及其耐盐性. 作物杂志, 2021(4): 1-9. |
WENG W F, WU X F, ZHANG K X, TANG Y, JIANG Y, RUAN J J, ZHOU M L. The overexpression of FtbZIP5improves accumulation of flavonoid in the hairy roots of tartary buckwheat and its salt tolerance. Crops, 2021(4): 1-9. (in Chinese) | |
[28] |
WANG C L, DONG X N, DING M Q, TANG Y X, ZHU X M, WU Y M, ZHOU M L, SHAO J R. Plantlet regeneration of tartary buckwheat (Fagopyrum tataricum Gaertn.) in vitro tissue cultures. Protein and Peptide Letters, 2016, 23(5): 468-477.
doi: 10.2174/0929866523666160314152317 |
[29] | 侯思宇, 王欣芳, 杜伟, 冯晋华, 韩渊怀, 李红英, 刘龙龙, 孙朝霞. 苦荞WOX家族全基因组鉴定及响应愈伤诱导率表达分析. 中国农业科学, 2021, 54(17): 3573-3586. |
HOU S Y, WANG X F, DU W, FENG J H, HAN Y H, LI H Y, LIU L L, SUN Z X. Genome-wide identification of WOX family and expression analysis of callus induction rate in tartary buckwheat. Scientia Agricultura Sinica, 2021, 54(17): 3573-3586. (in Chinese) | |
[30] |
AHMAD F, DANNY G. Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolate. Plant Cell Reports, 2012, 31(8): 1517-1526.
doi: 10.1007/s00299-012-1266-4 |
[31] |
VARGAS-GUEPWARAL C, VARGAS-SESURA C, VILALTAVILALOBOS J, FERERALF P, GATIOAARIAS A. A simple and efficient agroinfiltration method in coffee leaves (Coffea arabica L.): Assessment of factors affecting transgene expression. 3 Biotech, 2018, 8(11): 471.
doi: 10.1007/s13205-018-1495-5 |
[32] |
BONDT A D, EGGERMONT K, PENWNCKX I, GODERIS I, BROEKAERT W F. Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): An assessment of factors affecting regeneration of transgenic plants. Plant Cell Reports, 1996, 15(7): 549-554.
doi: 10.1007/BF00232992 |
[33] | FEINBAUM R L, AUSUBEL F M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology, 1988, 8(5): 1985-1992. |
[34] |
KROL A R, LENTING P E, VEENSTRA J, MEER I M, KORS R E, GERATS A G, MOL J N M, STUITJE A R. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature, 1988, 333(6176): 866-869.
doi: 10.1038/333866a0 |
[35] | LOTKOWSKA M E, TOHGE T, FERNIE A R, XUE G P, BALAZADEH S, BERND M R. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiology, 2015, 169(3): 1862-1880. |
[36] |
SUN Z X, HU B L, HOU S Y, LIU R H, WANG L, HAO Y R, HAN Y H, ZHOU M L, LIU L L, LI H Y. Tartary buckwheat FtMYB31 gene encoding an R2R3-MYB transcription factor enhances flavonoid accumulation in tobacco. Journal of Plant Growth Regulation, 2020, 39(2): 564-574.
doi: 10.1007/s00344-019-10000-7 |
[1] | DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323. |
[2] | ZHENG FengSheng,WANG HaiHua,WU QingTao,SHEN Quan,TIAN JianHong,PENG XiXu,TANG XinKe. Genome-Wide Identification of VQ Gene Family in Fagopyrum tataricum and Its Expression Profiles in Response to Leaf Spot Pathogens [J]. Scientia Agricultura Sinica, 2021, 54(19): 4048-4060. |
[3] | HOU SiYu,WANG XinFang,DU Wei,FENG JinHua,HAN YuanHuai,LI HongYing,LIU LongLong,SUN ZhaoXia. Genome-Wide Identification of WOX Family and Expression Analysis of Callus Induction Rate in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2021, 54(17): 3573-3586. |
[4] | ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928. |
[5] | HAO YanRong,DU Wei,HOU SiYu,WANG DongHang,FENG HongMei,HAN YuanHuai,ZHOU MeiLiang,ZHANG KaiXuan,LIU LongLong,WANG JunZhen,LI HongYing,SUN ZhaoXia. Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum [J]. Scientia Agricultura Sinica, 2020, 53(23): 4738-4749. |
[6] | WU CaoYang,LIANG ShiHan,QIU Jun,GAO JinFeng,GAO XiaoLi,WANG PengKe,FENG BaiLi,YANG Pu. An Examination on Breeding Status Quo of Chinese Tartary Buckwheat Varieties Based on the National Cross-Country Tests of Tartary Buckwheat Varieties in China over 12 Consecutive Years [J]. Scientia Agricultura Sinica, 2020, 53(19): 3878-3892. |
[7] | WEI Xi,WANG QianHua,GE XiaoYang,CHEN YanLi,DING YanPeng,ZHAO MingZhe,LI FuGuang. Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton [J]. Scientia Agricultura Sinica, 2019, 52(6): 968-980. |
[8] | TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892. |
[9] | BIAN ShuXun,HAN XiaoLei,YUAN GaoPeng,ZHANG LiYi,TIAN Yi,ZHANG CaiXia,CONG PeiHua. Cloning and Functional Analysis of U6 Promoter in Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4364-4373. |
[10] | LIU MengQi,WU FengYing,WANG YueJin. Expression of Stilbene Synthase Gene and Resistance to Powdery Mildew Analysis of Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2019, 52(14): 2436-2449. |
[11] | YE MingWang, ZHANG ChunZhi, HUANG SanWen. Construction of High Efficient Genetic Transformation System for Diploid Potatoes [J]. Scientia Agricultura Sinica, 2018, 51(17): 3249-3257. |
[12] | LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming. Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23 [J]. Scientia Agricultura Sinica, 2016, 49(20): 3927-3933. |
[13] | QU Yang, ZHOU Yu, WANG Zhao, WANG Peng-ke, GAO Jin-feng, GAO Xiao-li, FENG Bai-li . Analysis of Genetic Diversity and Structure of Tartary Buckwheat Resources from Production Regions [J]. Scientia Agricultura Sinica, 2016, 49(11): 2049-2062. |
[14] | LIU Yan-rong, CEN Hui-fang, YAN Jian-ping, ZHANG Wan-jun. Optimizing of Agrobacterium-Mediated Transformation of Switchgrass Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(1): 80-89. |
[15] | LIU Rui, ZHANG Huan-Huan, CHEN Zhi-Xiong, SHAHID Muhammad Qasim, FU Xue-Lin, LIU Yao-Guang, LIU Xiang-Dong, LU Yong-Gen. Development of Drought-Tolerant Rice Germplasm by Screening and Transforming TAC Clones of Oryza officinalis Wall. [J]. Scientia Agricultura Sinica, 2014, 47(8): 1445-1457. |
|