Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1104-1111.doi: 10.3864/j.issn.0578-1752.2021.06.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103

HanXi LIU1(),Hao LÜ1,GuangYu GUO2,DongXu LIU1,Yan SHI1,ZhiJun SUN1,ZeXin ZHANG1,YanJiao ZHANG1,YingNan WEN1,JieQi WANG1,ChunYan LIU1,QingShan CHEN1(),DaWei XIN1(),JinHui WANG1()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030
    2Harbin Academy of Agricultural Science, Harbin 150028
  • Received:2020-09-03 Accepted:2020-10-26 Online:2021-03-16 Published:2021-03-25
  • Contact: QingShan CHEN,DaWei XIN,JinHui WANG E-mail:396525797@qq.com;qshchen@126.com;dwxin@neau.edu.com;jinhuiwang113@126.com

Abstract:

【Background】 Soybean is an important economic crop, which is the main source of food and feed. Symbiosis is a special character of soybean to fix nitrogen in air and transferred into ammonia via rhizobia. Via symbiosis soybean can acquire enough nitrogen source for development. Rhizobial type Ⅲ effectors play pivotal roles in regulating the establishment of symbiosis. The rhcN gene codes an ATP transferase, which can regulate the secretion of type Ⅲ effector of rhizobium into host cells. 【Objective】To elucidate the symbiotic mechanism will help to improve the nitrogen fixation efficiency of soybean-rhizobium symbiosis system and is useful for friendly agricultural development. 【Method】In this study, rhcN mutant was constructed by tri-parental mating method and inserted a kanamycin gene in the downstream of rhcN start codon. The mutant was confirmed by PCR and Southern blot. To detect whether the expression of other type Ⅲ effectors was affected by rhcN mutant. The expression of NopC and NopT were identified by induced by genistein via Western blot method. Nodulation experiment were performed in Leonard jars, to detect the nodule phenotype of Williams82 after inoculation with the wild strain HH103 and derived HH103ΩrhcN mutant. Finally, one-hundred soybean germplasms with different genotypes were used for nodulation experiment. 【Result】The results of PCR and Southern blot confirmed that HH103ΩrhcN mutant was successful, and the extracellular protein identification supported that rhcN mutant can inhibit the secretion of type Ⅲ effectors NopC and NopT. The nodulation test of Williams82 showed that rhcN mutation can significantly inhibit the nodule number and dry weight. Using HH103ΩrhcN mutant and wild type HH103, 100 core germplasm accessions were identified, these results showed that rhcN mutation could reduce the root nodule phenotype of 80 soybean accessions, significantly increase the root nodule phenotype of 13 soybean accessions, and 7 soybean resources did not change significantly. 【Conclusion】The results showed that the abnormal secretion of type Ⅲ effector factors of rhizobium could affect the establishment of symbiotic system. rhcN played an important role in the formation of soybean rhizobium symbiosis system, and different soybean genetic background had different responses.

Key words: soybean, rhizobium, type Ⅲ effector, rhcN, symbiosis

Fig. 1

PCR analysis of HH103ΩrhcN M: Trans 2K Plus DNA marker; 1: HH103ΩrhcN(rhcN-F,rhcN-R); 2: HH103(rhcN-F,rhcN-R); 3: HH103ΩrhcN(rhcN-F,Km-SpeⅠ-R); 4: HH103(rhcN-F,Km-SpeⅠ-R)"

Fig. 2

Southern blot identification of HH103ΩrhcN 1: The genome of HH103ΩrhcN was digested by HindⅢ; 2: The genome of the wild strain HH103 was digested by HindⅢ; 3: The genome of HH103ΩrhcN was digested by SacⅠ; 4: The genome of the wild strain HH103 was digested by SacⅠ"

Fig. 3

Detection of NopC and NopT in secreted proteins +: The presence of Genistein; -: The absence of Genistein"

Fig. 4

Root morphology and nodules traits after HH103 and HH103ΩrhcN inoculation The left picture showed the information of soybean roots and nodules inoculated with HH103, and the right picture showed the information of soybean roots and nodules inoculated with HH103Ωrhcn"

Fig. 5

Nodule number and dry weight of HH103 and HH103ΩrhcN inoculation *for the difference was significant at P<0.05 level"

Table 1

Analysis of nodule traits in 100 germplasm accessions"

参数
Parameter
HH103 HH103ΩrhcN
根瘤数目 NN 根瘤干重 NDW (mg) 根瘤数目 NN 根瘤干重 NDW (mg)
平均值 Average 35.52±5.64 34.37±6.35 17.04±10.56** 16.32±11.55**
最大值 Maximum 49.60±4.67 50.84±7.49 45.20±4.87 47.68±6.58
最小值 Minimum 11.50±4.84 12.98±3.65 3.00±0.87 0.35±0.26
标准差 Standard deviation 5.64 6.35 10.56 11.55
变异系数 Coefficient of Variation 54.24 61.02 101.57 111.07
[1] 沈琼, 刘小和. 我国油料、植物油的进口特征及品种间的替代性分析. 中国农村经济, 2006(5):25-31.
SHEN Q, LIU X H. Analysis on the import characteristics of my country's oilseeds and vegetable oils and the substitution among varieties. China's Rural Economy, 2006(5):25-31. (in Chinese)
[2] 魏培梅. 国际大豆供求背景下中国大豆出口贸易现状及对策. 对外经贸实务, 2019(9):45-49.
WEI P M. China's soybean export trade status and countermeasures under the background of international soybean supply and demand. Foreign Economic and Trade Practices, 2019(9):45-49. (in Chinese)
[3] 马利平. 生物有机肥替代化肥减施对大豆土壤微生物多样性的影响[D]. 哈尔滨: 黑龙江大学, 2019.
MA L P. Effects of reduced application of bio-organic fertilizer instead of chemical fertilizer on soybean soil microbial diversity[D]. Harbin: Heilongjiang University, 2019. (in Chinese)
[4] FOLEY J A, RAMANKUTTY N, BRAUMAN K A, CASSIDY E S, GERBER J S, JOHNSTON M, MUELLER N D, CONNELL C O, RAY D K, WEST P C, BALZER C, BENNETT E M, CARPENTER S R, HILL J, MONFREDA C, POLASKY S, ROCKSTRÖM J, SHEEHAN J, SIEBERT S, TILMAN D, ZAKS D P. Solutions for a cultivated planet. Nature, 2011,478(7369):337-342.
doi: 10.1038/nature10452 pmid: 21993620
[5] ROCKSTROM J, STEFFEN W, NOONE K, PERSSON A, CHAPIN F S, LAMBIN E F, LENTON T M, SCHEFFER M, FOLKE C, SCHELLNHUBER H J, NYKVIST B, DE WIT C A, HUGHES T, DER LEEUW S V, RODHE H, SORLIN S, SNYDER P K, COSTANZA R, SVEDIN U, FALKENMARK M, KARLBERG L, CORELL R W, FABRY V J, HANSEN J, WALKER B, LIVERMAN D, RICHARDSON K, CRUTZEN P, FOLEY J A. A safe operating space for humanity. Nature, 2009,461(7263):472-475.
doi: 10.1038/461472a pmid: 19779433
[6] CONTADOR CAROLINA A, LO SIU-KIT, CHAN SIU H J, LAM H M. Metabolic analyses of nitrogen fixation in the soybean microsymbiont Sinorhizobium fredii using constraint-based modeling. Msystems, 2020,5(1):e00516-e00519.
doi: 10.1128/mSystems.00516-19 pmid: 32071157
[7] WILLEMS A, COLLINS M D. Phylogenetic analysis of Rhizobia and Agrobacteria based on 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 1993,43(2):305-313.
doi: 10.1099/00207713-43-2-305 pmid: 8494742
[8] PEOPLES M B, HERRIDGE D F, LADHA J K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production. Plant and Soil, 1995,174(1/2):3-28.
doi: 10.1007/BF00032239
[9] KIERS E T, HUTTON M G, DENISON R F. Human selection and the relaxation of legume defenses against ineffective rhizobia. Proceedings of the Royal Society B, 2007,274(1629):3119-3126.
[10] HU Y, HUANG H, CHENG X, SHU X, WHITE A P, STAVRINIDES J, KOSTER W, ZHU G, ZHAO Z, WANG Y. A global survey of bacterial type III secretion systems and their effectors. Environmental Microbiology, 2017,19(10):3879-3895.
doi: 10.1111/1462-2920.13755 pmid: 28401683
[11] HABENSTEIN B, EI MAMMERI N, TOLCHARD J, LAMON G, TAWANI A, BERBON M, LOQUET A. Structures of type III secretion system needle filaments. Current Topics in Microbiology and Immunology, 2020(427):109-131.
[12] MARTIN K, ALLAN D J. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC Genomics, 2008,9(1):55.
doi: 10.1186/1471-2164-9-55
[13] KIM W S, KRISHNAN H B. A nopA deletion mutant of Sinorhizobium fredii USDA257, a soybean symbiont, is impaired in nodulation. Current Microbiology, 2014,68(2):239-246.
doi: 10.1007/s00284-013-0469-4 pmid: 24121614
[14] LORIO J C, KIM W S, KRISHNAN H B. NopB, a soybean cultivar-specificity protein from Sinorhizobium fredii USDA257, is a type III secreted protein. Molecular Plant-Microbe Interactions, 2004,17(11):1259-1268.
pmid: 15553251
[15] MARIE C, DEAKIN W J, VIPREY V, KOPCINSKA J, GOLINOWSKI W, KRISHNAN H B, PERRET X, BROUGHTON W J. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Molecular Plant-Microbe Interactions, 2003,16(9):743-751.
doi: 10.1094/MPMI.2003.16.9.743 pmid: 12971597
[16] TAMPAKAKI A P. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Frontier in Plant Science, 2014,5:114.
[17] KRISHNAN H B, LORIO J, KIM W S, JIANG G, KIM K Y, DEBOER M, PUEPPKE S G. Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Molecular Plant-Microbe Interactions, 2003,16(7):617-625.
doi: 10.1094/MPMI.2003.16.7.617 pmid: 12848427
[18] VIPREY V, DEL GRECO A, GOLINOWSKI W, BROUGHTON W J, PERRET X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Molecular Microbiology, 1998,28(6):1381-1389.
doi: 10.1046/j.1365-2958.1998.00920.x pmid: 9680225
[19] JIMÉNEZ-GUERRERO I, PÉREZ-MONTAO F, CARLOS M, JAVIER O F, LÓPEZ-BAENA F J, PETER M. NopC is a rhizobium- specific type 3 secretion system effector secreted by sinorhizobium (ensifer) fredii HH103. PLoS ONE, 2015,10(11):e0142866.
doi: 10.1371/journal.pone.0142866 pmid: 26569401
[20] LOPEZBAENA F J, MONREAL J A, PEREZMONTANO F, GUASCHVIDAL B, BELLOGIN R A, VINARDELL J M, OLLERO F J. The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in williams soybean. Molecular Plant-Microbe Interactions, 2009,22(11):1445-1454.
doi: 10.1094/MPMI-22-11-1445 pmid: 19810813
[21] SKORPIL P, SAAD M M, BOUKLI N M, KOBAYASHI H, ARES ORPEL F, BROUGHTON W J, DEAKIN W J. NopP, a phosphory-lated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Molecular Microbiology, 2005; 57:1304-1317.
doi: 10.1111/j.1365-2958.2005.04768.x pmid: 16102002
[22] 朱华晨, 许新萍, 李宝健. 一种简捷的Southern印迹杂交方法. 中山大学学报(自然科学版), 2004(4):128-130.
ZHU H C, XU X P, LI B J. A simple southern blot hybridization method. Journal of Sun Yat-sen University (Natural Science Edition), 2004(4):128-130. (in Chinese)
[23] 龙火生, 杨公社, 庞卫军. 一种改进的Western杂交方法. 畜牧兽医杂志, 2003(3):11-13.
LONG H S, YANG G S, PANG W J. An improved western hybridization method. Journal of Animal Husbandry and Veterinary Medicine, 2003(3):11-13. (in Chinese)
[24] 李志辉, 傅豪, 靳巧玲, 段红光, 戴晋, 吴鹤敏. 大豆日光温室加代应用研究初报. 河北农业科学, 2017,21(2):88-91.
LI Z H, FU H, JIN Q L, DUAN H G, DAI J, WU H M. Preliminary report on the application of soybean solar greenhouse. Hebei Agricultural Sciences, 2017,21(2):88-91. (in Chinese)
[25] 于妍, 刘芳, 唐敬仙. 大豆生育期类型划分研究进展. 北京农业, 2015(8):27.
YU Y, LIU F, TANG J X. Research progress on classification of soybean growth period. Beijing Agriculture, 2015(8):27. (in Chinese)
[26] KIMBREL J A, THOMAS W J, JIANG Y, CREASON A L, THIREAULT C A, SACHS J L, CHANG J H. Mutualistic co-evolution of type iii effector genes in sinorhizobium fredii and bradyrhizobium japonicum. PLoS Pathogens, 2013,9(2):e1003204.
pmid: 23468637
[27] LÓPEZ-BAENA F, RUIZ-SAINZ J, RODRÍGUEZ-CARVAJAL M, VINARDELL J. Bacterial molecular signals in the Sinorhizobium fredii-soybean symbiosis. International Journal of Molecular Sciences, 2016,17(5):755.
doi: 10.3390/ijms17050755
[28] JIMÉNEZ-GUERRERO I, PEREZ-MONTANO, ZDYB A, BEUTLER M, WERNER G, GOTTFERT M, JAVIER OLLERO F, MARIA YINARDELL J, LOPEZ-BAENA F J. GunA of Sinorhizobium (Ensifer) fredii HH103 is a T3SS-secreted cellulase that differentially affects symbiosis with cowpea and soybean. Plant and Soil, 2019,435(1/2):15-26.
doi: 10.1007/s11104-018-3875-3
[29] TRIPLETT E W, SADOWSKY M J. Genetics of competition for nodulation of legumes. Annual Review of Microbiology, 1992,46:399-428.
doi: 10.1146/annurev.mi.46.100192.002151 pmid: 1444262
[30] HWANG S, RAY J D, CREGAN P B, ANDY KING C, DAVIES M K, PURCELL L C. Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L. [Merr.]). Euphytica, 2014,195(3):419-434.
doi: 10.1007/s10681-013-1005-0
[31] YANG S, TANG F, GAO M, KRISHNAN H B, ZHU H. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proceedings of the National Academy of Sciences of the USA, 2010,107(43):18735-18740.
[32] TANG F, YANG S, LIU J, ZHU H. Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiology, 2016,170(1):26-32.
doi: 10.1104/pp.15.01661 pmid: 26582727
[33] SUGAWARA M, TAKAHASHI S, UMEHARA Y, LWANO H, TSURUMARU H, ODAKE H, SUZUKI Y, KONDO H, KONNO Y, YAMAKAWA T, SATO S, MITSUI H, MINAMISAWA K. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nature Communications, 2018,9(1):3139.
pmid: 30087346
[34] FARUQUE O M, MIWA H, YASUDA M, FUJII Y, KANEKO T, SATO S, OKAZAKI S. Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Applied and Environmental Microbiology, 2015,81(19):6710-6717.
doi: 10.1128/AEM.01942-15 pmid: 26187957
[35] ZHANG Y, LIU X, CHEN L, FU Y, LI C, QI Z, ZOU J, ZHU R, LI S, WEI W, WANG J, CHANG H, SHI Y, WANG J, LI Q, ZHU J, LI J, JIANG H, WU X, JIA C, YIN Z, HU Z, LIU C, CHEN Q, XIN D. Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) recombinant inbred lines. Plant and Soil, 2018,431(1/2):245-255.
doi: 10.1007/s11104-018-3745-z
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[12] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[13] YAN DuoZi,CAI Ni,WANG Feng,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Expression in vitro of Metarhizium anisopliae Adhesin MAD1 and Its Effect on Inducing Response in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(4): 744-753.
[14] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!