Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2911-2926.doi: 10.3864/j.issn.0578-1752.2022.15.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean

YUAN Cheng1(),ZHANG MingCong1(),WANG MengXue1,HUANG BingLin1,XIN MingQiang2,YIN XiaoGang3,HU GuoHua1,ZHANG YuXian1()   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
    2Heilongjiang Agriculture Company Limited, Harbin 150000
    3College of Agronomy, China Agricultural University/Key Laboratory of Crop System, Ministry of Agriculture and Rural Affairs, Beijing 100193
  • Received:2021-10-26 Accepted:2021-12-27 Online:2022-08-01 Published:2022-08-02
  • Contact: MingCong ZHANG,YuXian ZHANG E-mail:1290900842@qq.com;zyx_lxy@126.com;zhangmingcong@163.com

Abstract:

【Objective】Aiming at the low temperature in early spring and poor moisture retentionability of main soybean producing areas in the northern part of Northeast China, the effects of different intertillage times and depths on soil temperature and humidity, photosynthetic characteristics and yield of soybean field under maize-soybean rotation mode were explored to provide a strong support for the stable improvement of soybean yield. 【Method】The experiment was carried out in Heshan farm, Heilongjiang province from 2019 to 2020. The plot experiment method was adopted, and Heihe 43, the main local cultivator, was used as the test material. Four different intertillage treatments were set up: conventional earthing-up (T1), advanced earthing-up (T2), conventional subsoiling (T3), and advanced subsoiling (T4). The effects of intertillage time and depth on soil temperature and humidity, plant leaf area index and height, gas exchange parameters, accumulation and distribution of photosynthetic products and yield of soybean were studied.【Result】(1) On the basis of the same intertillage depth, compared with T1, soil temperature and humidity in flowering stage (R2 stage) under T2 increased by 5.88%-6.54% and 3.57%-4.03% (P<0.05), respectively, and leaf area index, plant height and SPAD values in seed-filling stage (R6 stage) were increased by 9.48%-16.86%, 5.40%-10.57% and 2.39%-6.81% (P<0.05), respectivley. Compared with T3, T4 significantly increased leaf area index, plant height, net photosynthetic rate (Pn), grain dry matter accumulation and soybean yield at R6 stage. (2) Compared with T1, T3 increased soil temperature and humidity in R2 stage by 4.14%-6.42%, 10.08%-13.19% and plant height in R6 stage by 7.43%-8.29% (P<0.05), respectively. After pod-setting stage (R5 stage), dry matter accumulation and assimilation contribution rate increased by 49.75% and 32.95% (P<0.05), respectively. Compared with T2, T4 significantly increased soil temperature, leaf area index at R6 stage, net photosynthetic rate (Pn), dry matter accumulation after R5 stage, assimilation contribution rate and yield, among which the yield increased by 5.03%-6.02% (P<0.05). (3) Compared with T1, T4 increased soil temperature and humidity by 11.68%-17.15% and 4.70%-8.66% in R2 stage (P<0.05), respectively. Leaf area index, plant height and SPAD in R6 stage were increased by 12.64%-27.42%, 11.67%-13.50% and 5.43%-6.87% (P<0.05), respectively. T2, T3 and T4 increased gas exchange parameters and yield in R6 stage, and net photosynthetic rate (Pn) under T4 treatment increased by 14.25%-29.68%, and yield increased by 10.69%-18.71% (P<0.05).【Conclusion】T4 could improve soil temperature and humidity, increase gas exchange parameters, promote plant net photosynthate accumulation, and delay leaf senescence, finally increase soybean yield, which was suitable for the promotion and application of dry farm areas in the north of Northeast China.

Key words: intertillage, soybean, photosynthetic characteristics, dry matter, production

Fig. 1

Temperature and rainfall in 2019 and 2020"

Table 1

Experimental treatment"

中耕处理
Intertillage treatment
时期 Stage
播后4—5 d
4-5 days after the broadcast
V2—V3
V4—V5
V6—V7
T1 小培土
Little quantity of earthing-up
中培土
Medium quantity of earthing-up
大培土
Considerable quantity of earthing-up
T2 小培土
Little quantity of earthing-up
中培土
Medium quantity of earthing-up
大培土
Considerable quantity of earthing-up
T3 深松25-30 cm
Subsoiling 25-30 cm
深松30-35cm+中培土
Subsoiling 30-35 cm and medium quantity of earthing-up
大培土
Considerable quantity of earthing-up
T4 深松25-30cm
Subsoiling 25-30 cm
深松30-35cm+中培土
Subsoiling 30-35 cm and medium quantity of earthing-up
大培土
Considerable quantity of earthing-up

Fig. 2

Effects of intertillage time and depth on soil temperature Different lowercase letters in the figure indicate significant difference between treatments (P<0.05). The same as below"

Fig. 3

Effects of intertillage time and depth on soil humidity"

Fig. 4

Effects of intertillage time and depth on leaf area and plant height of soybean R2: Flowing stage; R4: Podding stage; R6: Seed-filling stage. The same as below"

Fig. 5

Effect of intertillage time and depth on SPAD value of soybean"

Fig. 6

Effects of intertillage time and depth on gas exchange parameters of soybean"

Table 2

Effects of intertillage time and depth on soybean dry matter"

生育期
Growth stage
年份
Year
处理
Treatment
叶干重
Dry weight of
leaves (kg·hm-2)
茎干重
Dry weight of stem (kg·hm-2)
荚皮干重
Dry weight of pod (kg·hm-2)
籽粒干重
Dry weight of seed (kg·hm-2)
R2 2019 T1 841.6±28.4b 595.1±20.2d
T2 998.3±45.3a 799.1±28.2c
T3 909.5±43.3a 1126.4±22.7a
T4 1036.9±26.6a 997.7±21.3b
2020 T1 1128.9±30.2a 944.6±24.4b
T2 936.8±34.3b 808.5±38.8c
T3 1009.5±25.4a 1020.1±24.2b
T4 983.1±16.8ab 1335.8±29.0a
R4 2019 T1 1905.4±23.6c 1300.5±23.5c 1140.5±25.6c
T2 2051.8±20.0b 1662.8±11.3a 1276.3±18.7a
T3 1993.6±21.3b 1469.2±12.0b 1224.5±22.5b
T4 2275.4±18.2a 1647.4±18.6a 1453.1±28.8a
2020 T1 2326.2±54.5c 1629.5±40.9b 384.1±17.2b
T2 2609.1±49.6b 1397.9±56.8b 528.4±27.1b
T3 2586.7±47.6bc 1793.2±50.3b 406.6±20.1b
T4 2967.5±33.4a 2581.9±56.6a 714.5±22.5a
R6 2019 T1 1767.8±43.5b 1318.9±38.3c 1243.0±14.8c 2225.3±14.8b
T2 1973.2±39.6a 1645.6±11.2a 1348.6±8.3b 2908.4±19.3a
T3 1886.4±16.7b 1523.5±14.1b 1318.9±28.8bc 2824.8±24.9b
T4 2054.9±19.1a 1656.6±40.3a 1496.0±11.5a 2982.1±24.3a
2020 T1 2068.0±18.3b 2240.7±20.9b 1650.0±14.9b 1128.6±15.7b
T2 2518.6±31.4a 3960.0±28.9a 3872.9±33.4a 2539.7±41.7a
T3 2419.5±17.2b 2569.4±36.3b 1770.1±24.6b 1306.1±17.6b
T4 2724.8±26.8a 3986.4±34.2a 2405.7±29.6b 1822.9±21.0ab
R8 2019 T1 1087.9±53.3d 1162.1±19.6c 2592.1±54.3c
T2 1346.4±24.0b 941.1±65.5b 3072.3±77.6a
T3 1183.1±36.7c 1269.4±33.9b 2858.3±43.0b
T4 1529.0±58.8a 1438.8±12.8a 3106.9±40.8a
2020 T1 1275.8±11.4a 1334.4±13.4b 2777.4±10.4b
T2 1374.8±20.5a 2147.5±19.3a 2709.4±20.3b
T3 1652.6±13.7a 1988.5±14.9a 2779.4±18.9b
T4 1531.9±15.6a 2174.6±27.0a 2963.2±20.0a

Table 3

Effects of intertillage time and depth on soybean dry matter allocation"

生育期
Growth stage
年份
Year
处理
Treatment

Leaves (%)

Stem (%)
荚皮
Pod (%)
籽粒
Seed (%)
R2 2019 T1 62.92±0.35a 37.07±0.35b
T2 64.07±0.81a 35.93±0.81b
T3 58.62±0.71b 41.37±0.71a
T4 63.18±1.03a 36.81±1.03b
2020 T1 52.15±0.24b 47.84±0.24a
T2 53.39±0.43a 46.61±0.43b
T3 52.57±0.41b 47.43±0.41a
T4 53.79±0.27a 46.21±0.27b
R4 2019 T1 47.21±1.82a 28.71±1.54b 24.07±0.35b
T2 45.06±0.74a 30.57±0.94ab 24.36±0.23b
T3 39.51±1.33b 32.89±1.49a 27.60±0.25a
T4 39.59±0.73b 32.16±0.81a 28.25±0.63a
2020 T1 47.30±0.32a 42.41±0.84b 10.29±0.52c
T2 42.34±0.18b 41.35±0.48c 16.31±0.36a
T3 42.58±0.42b 46.20±0.36a 11.22±0.62c
T4 41.67±0.23c 45.63±0.45a 12.70±0.61b
R6 2019 T1 31.39±0.39a 18.73±0.21c 17.46±0.35b 32.42±0.71c
T2 27.18±0.77b 19.76±0.39b 16.50±0.46c 36.56±0.90b
T3 22.42±0.27c 20.49±0.41a 18.11±0.06a 38.96±0.17a
T4 23.09±0.13c 20.45±0.26a 18.51±0.16a 37.93±0.47a
2020 T1 26.56±0.31b 32.64±0.19a 24.41±0.46a 16.38±0.10c
T2 28.25±0.12a 30.60±0.38b 21.05±0.62b 20.10±0.28b
T3 28.49±0.17a 30.49±0.36b 21.27±0.18b 19.75±0.34b
T4 25.65±0.18c 30.52±0.37b 21.25±0.22b 22.57±0.11a
R8 2019 T1 22.52±0.46a 24.39±0.38a 53.08±0.39c
T2 21.36±0.34b 23.59±0.26b 55.05±0.31b
T3 22.35±0.27a 23.72±0.31b 53.92±0.56c
T4 21.40±0.21b 21.65±0.15c 56.94±0.27a
2020 T1 26.55±0.16a 26.48±0.36c 46.97±0.41c
T2 22.32±0.32c 29.62±0.28a 48.06±0.60b
T3 25.51±0.17b 26.51±0.38c 47.97±0.40b
T4 23.28±0.44d 27.62±0.11b 49.09±0.37a

Table 4

Effects of intertillage time and depth on dry matter accumulation of soybean (2020)"

处理
Treatment
阶段积累量 Stage accumulation (t·hm-2)
V4-R2 R2-R4 R4-R6 R6-R8
T1 1.54±0.12b 2.59±0.46a 3.44±0.73b -1.56±0.14a
T2 1.58±0.39b 2.62±0.80a 3.97±1.64a -1.52±0.23a
T3 1.75±0.11ab 2.67±0.40a 3.47±0.77b -1.31±0.11a
T4 1.89±0.16a 2.87±0.56a 4.03±1.08a -1.00±0.21a

Table 5

Effects of intertillage time and depth on soybean CTA and CPA (2020)"

处理 Treatment R5期前积累量 PEA (t·hm-2) R5期后积累量 POA (t·hm-2) 转运贡献率 CTA (%) 同化贡献率 CPA (%)
T1 6.69±0.34b 1.11±0.16b 72.86±0.03a 27.14±1.45b
T2 7.23±0.21b 1.21±0.28b 69.50±0.05b 30.50±1.47b
T3 8.41±0.28a 1.47±0.33a 59.52±0.03a 40.48±2.52a
T4 8.57±0.44a 1.86±0.35a 58.23±0.02b 41.77±2.30a

Table 6

Effects of intertillage time and depth on soybean yield and yield composition"

年份
Year
处理
Treatment
单株荚数
Pod number
单株粒数
Seed number
百粒重
100-seed weight
产量
Yield (kg·hm-2)
2019 T1 16.22± 0.84bc 40.48± 0.83c 21.24± 0.38a 2384.83 ±63.51b
T2 21.07± 0.31a 51.73± 1.97a 20.43± 0.37abc 2481.05 ±102.85b
T3 15.34± 0.94d 41.50± 0.32c 20.94± 0.19ab 2570.51 ±59.29a
T4 16.94± 0.26 bc 45.31± 0.50b 20.08± 0.13cde 2639.84 ±57.56a
2020 T1 27.56±1.07b 59.04±1.64b 18.43±0.27b 3472.94±124.09b
T2 30.67±0.64ab 66.93±1.00a 18.40±0.17b 3915.32±163.53b
T3 33.24±0.49a 69.77±2.14a 18.45±0.23ab 3994.85±136.64a
T4 32.11±0.30ab 69.37±1.30a 18.64±0.19a 4122.69±143.34a

Table 7

Variance analysis of year, intertillage time and depth and their interaction with test related indexes"

因素 Element ST SH LAI PH SPAD PP DM Yield
年份Year 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.033 <0.001
中耕时间 Intertillage time <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
中耕深度 Intertillage depth <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001
年份×中耕时间 Years×Intertillage time <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
年份×中耕深度 Years×Intertillage depth <0.001 <0.001 <0.001 <0.001 0.012 <0.001 <0.001 <0.001
中耕时间×中耕深度
Intertillage time×Intertillage depth
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
年份×中耕时间×中耕深度
Years×Intertillage time×Intertillage depth
<0.001 0.447 0.100 0.703 0.537 <0.001 <0.001 <0.001
[1] 李官沫, 张文菊, 曲潇琳, 乔磊, 黄亚萍, 徐虎, 徐明岗. 旱作种植条件下基础地力贡献率演变特征及影响因素分析. 中国农业科学, 2021, 54(19): 4132-4142.
LI G M, ZHANG W J, QU X L, QIAO L, HUANG Y P, XU H, XU M G. Evolution characteristics and influencing factors on inherent soil productivity across dryland. Scientia Agricultura Sinica, 2021, 54(19): 4132-4142. (in Chinese)
[2] 杨京. 2019年中国大豆市场分析. 粮油市场报, 2020-02-25(B03).
YANG J. Analysis of soybean market in China in 2019. Cereals and Oils Market Report, 2020-02-25(B03). (in Chinese)
[3] 张明聪. 启动氮加追氮对不同密度大豆光合生产能力的影响[D]. 哈尔滨: 东北农业大学, 2013.
ZHANG M C. Effects of starting nitrogen plus topdressing nitrogen on photosynthetic productivity of soybean at different densities[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese)
[4] GUO J H, LIU X J, ZHANG Y. Significant acidification in major Chinese croplands. Science, 2010, 327: 10081010.
[5] 靳海洋, 谢迎新, 李梦达, 刘宇娟, 贺德先, 冯伟, 王晨阳, 郭天财. 连续周年耕作对砂姜黑土农田蓄水保墒及作物产量的影响. 中国农业科学, 2016, 49(16): 3239-3250.
JIN H Y, XIE Y X, LI M D, LIU Y J, HE D X, FENG W, WANG C Y, GUO T C. Effects of annual continuous tillage on soil water conservation and crop yield in lime concretion black soil farmland. Scientia Agricultura Sinica, 2016, 49(16): 3239-3250. (in Chinese)
[6] FENG X, HAO Y, LATIFMANESH H. Effects of subsoiling tillage on soil properties, maize root distribution, and grain yield on mollisols of Northeastern China. Agronomy Journal, 2018, 110(4): 1607-1615.
doi: 10.2134/agronj2018.01.0027
[7] 赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 张谋彪, 王群, 李潮海. 深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响. 中国农业科学, 2018, 51(13): 2489-2503.
ZHAO Y L, LIU W L, CHENG S X, ZHOU Y N, ZHOU J L, WANG X L, ZHANG M B, WANG Q, LI C H. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Scientia Agricultura Sinica, 2018, 51(13): 2489-2503. (in Chinese)
[8] LI H Y, ZHANG Y H, ZHANG Q, AHMAD N, LIU P Z, WANG R, LI J, WANG X L. Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the loess plateau, China. Agricultural Water Management, 2021, 256:107062.
doi: 10.1016/j.agwat.2021.107062
[9] 曾芳荣, 殷文, 张小红. 不同覆膜方式对旱地大豆农田土壤水热特征及产量的影响. 西北农业学报, 2017, 26(7): 1090-1098.
ZENG F R, YIN W, ZHANG X H. Effects of different film mulching methods on soil hydrothermal characteristics and yield of soybean farmland in dryland. Journal of Northwest Agriculture, 2017, 26(7): 1090-1098. (in Chinese)
[10] SI H, NV N. Influence of cover crop, tillage, and crop rotation management on soil nutrients. Agriculture, 2020, 10(6): 225.
doi: 10.3390/agriculture10060225
[11] 张喜亭. 黑土容重及耕层深度对大豆生长和产量影响的研究[D]. 哈尔滨: 东北农业大学, 2017.
ZHANG X T. Effects of black soil bulk density and topsoil depth on growth and yield of soybean[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)
[12] MUHAMMAD A R, LING Y F. Maize leaf-removal: A new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercropping system. Scientific Reports, 2019, 9(1): 1-13.
doi: 10.1038/s41598-018-37186-2
[13] MONZON J P, CAFARO N, CERRUDO A, CANEPA M, RATTALINO E I, SPECHT J, ANDRADE F H, GRASSINI P. Critical period for seed number determination in soybean as determined by crop growth rate, duration, and dry matter accumulation. Field Crops Research, 2021, 261: 108016.
doi: 10.1016/j.fcr.2020.108016
[14] 张玉先, 罗奥, 祁倩倩, 姜玉美, 崔洪秋. 不同耕作措施对大豆光合特性和产量影响. 土壤通报, 2010, 41(3): 672-677.
ZHANG Y X, LUO A, QI Q Q, JIANG Y M, CUI H Q. Effects of different tillage practices on photosynthetic characteristics and yield of soybean. Chinese Journal of Soil Science, 2010, 41(3): 672-677. (in Chinese)
[15] 李盛蓝, 谭婷婷, 范元芳, 杨文钰, 杨峰. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响. 中国农业科学, 2019, 52(21): 3782-3793.
LI S L, TAN T T, FAN F Y, YANG W Y, YANG F. Effects of maize shading on photosynthetic characteristics, vein and stomatal characteristics of soybean. Scientia Agricultura Sinica, 2019, 52(21): 3782-3793. (in Chinese)
[16] SOMASUNDARAM J, SINHA N K, MOHANTY M, CHAUDHARY R S, SINGH R K, BISWAS A K, SHUKLA A K, DALAL R, PATRA A K. Soil hydro-thermal regimes as affected by different tillage and cropping systems in a rainfed vertisol. Journal of the Indian Society of Soil Science, 2018, 66(4): 362-369.
doi: 10.5958/0974-0228.2018.00045.2
[17] 李刘龙, 库旭灿, 李赟, 王小燕. 花后弱光对江汉平原稻茬小麦的产量及碳、氮分配效应的影响. 麦类作物学报, 2020, 40(11): 1364-1374.
LI L L, KU X C, LI Y, WANG X Y. Effects of post-flowering low light on yield and carbon and nitrogen allocation of rice-stubble wheat in Jianghan plain. Journal of Triticeae Crops, 2020, 40(11): 1364-1374. (in Chinese)
[18] 曹玉军, 吴杨, 刘志铭, 崔红, 吕艳杰, 姚凡云, 魏雯雯, 王永军. 减源对不同密度春玉米开花后干物质及氮、磷、钾积累转运的影响. 中国农业科学, 2019, 52(20): 3536-3545.
CAO Y J, WU Y, LIU Z M, CUI H, LÜ Y J, YAO F Y, WEI W W, WANG Y J. Effects of source reduction on dry matter and accumulation and transport of N, P and K after flowering of spring maize with different densities. Scientia Agricultura Sinica, 2019, 52(20): 3536-3545. (in Chinese)
[19] 罗盛国, 王欢, 刘元英, 王丽娟, 赵广欣. 优化施肥对五优稻4号氮素吸收及转运影响. 东北农业大学学报, 2016, 47(7): 9-15.
LUO S G, WANG H, LIU Y Y, WANG L J, ZHAO G X. Effect of optimized fertilization on N uptake, transportation of rice cultivar Wuyoudao4. Journal of Northeast Agricultural Unicersity, 2016, 47(7): 9-15. (in Chinese)
[20] LILIAN W M, VERONICA A, JENNIFER D. Long term tillage, cover crop, and fertilization effects on microbial commicrobial community structure, activity: Implications for soil quality. Soil Biology and Biochemistry, 2015, 89: 24-34.
doi: 10.1016/j.soilbio.2015.06.016
[21] 张博文, 杨彦明, 李金龙, 陈新宇, 张兴隆, 徐忠山, 刘景辉. 连续深松对黑土水热酶特性及细菌群落的影响. 生态学杂志, 2018, 37(11): 3323-3332.
ZHANG B W, YANG Y M, LI J L, CHEN X Y, ZHANG X L, XU Z S, LIU J H. Effects of continuous subsoiling on temperature, water content, enzyme activity and bacterial community in black soil. Chinese Journal of Ecology, 2018, 37(11): 3323-3332. (in Chinese)
[22] CASARETTO E, SIGNORELLI S, GALLINO P, VIDAL S, BORSANI O. Endogenous NO accumulation in soybean is associated with initial stomatal response to water deficit. Physiologia Plantarum, 2021, 172(2): 564-576.
doi: 10.1111/ppl.13259
[23] 尤明东, 李海波, 葛敏, 臧淑英. 黑龙江省冻土活动层厚度年际变化影响因素分析. 冰川冻土, 2018, 40(3): 480-491.
YOU M D, LI H B, GE M, ZANG S Y. The influence factors of permafrost active layer depth and their annual change in Heilongjiang province. Journal of Glaciology and Geocryology, 2018, 40(3): 480-491. (in Chinese)
[24] 王俊霞, 潘耀忠, 朱秀芳, 孙章丽. 土壤水分反演特征变量研究综述. 土壤学报, 2019, 56(1): 23-35.
WANG J X, PAN Y Z, ZHU X F, SUN Z L. A review of researches on inversion of eigenvariance of soil water. Chinese Journal of Soil Science, 2019, 56(1): 23-35. (in Chinese)
[25] 周亚, 高晓清, 李振朝, 杨丽薇, 惠小英. 青藏高原深层土壤热扩散率的时空分布特征. 土壤学报, 2018, 55(2): 351-359.
ZHOU Y, GAO X Q, LI Z C, YANG L W, HUI X Y. Spatio-temporal distribution of thermal diffusivity in deep soil in Qinghai Tibetan plateau. Acta Pedologica Sinica, 2018, 55(2): 351-359. (in Chinese)
[26] 董建新, 宋文静, 丛萍, 李玉义, 逄焕成, 郑学博, 王毅, 王婧, 况帅, 徐艳丽. 旋耕配合秸秆颗粒还田对土壤物理特性的影响. 中国农业科学, 2021, 54(13): 2789-2803.
DONG J X, SONG W J, CONG P, LI Y Y, PANG H C, ZHENG X B, WANG Y, WANG J, KUANG S, XU Y L. Improving farmland soil physical properties by rotary tillage combined with high amount of granulated straw. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803. (in Chinese)
[27] BHARAT S A, SYAM D, LEWIS A G, MURALI D, JIM J W, SEEMA S, HARI B. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. Soil & Tillage Research, 2019, 195: 104430
[28] WEN B X, SAJAD H, YANG J Y, WANG S, ZHANG Y, QIN S S, XU M, YANG W Y, LIU W G. Rejuvenating soybean (Glycine max L.) growth and development through slight shading stress. Journal of Integrative Agriculture, 2020, 19(10): 2439-2450.
doi: 10.1016/S2095-3119(20)63159-8
[29] 程亚娇, 谌俊旭, 王仲林, 范元芳, 陈思宇, 李泽林, 刘沁林, 李中川, 杨峰, 杨文钰. 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018, 51(14): 2655-2663.
CHENG Y J, CHEN J X, WANG Z L, FAN Y F, CHEN S Y, LI Z L, LIU Q L, LI Z C, YANG F, YANG W Y. Effects of light intensity and light quality on mrphological and photosynthetic characteristics of soybean seedlings. Scientia Agricultura Sinica, 2018, 51(14): 2655-2663. (in Chinese)
[30] 罗奥. 不同耕作措施对土壤理化生物性状和大豆产量的影响[D]. 大庆: 黑龙江八一农垦大学, 2009.
LUO A. Effect of different tillage on soil physical chemistry and biology character & yield of soybean[D]. Daqing: Heilongjiang Bayi Agricultural University, 2009. (in Chinese)
[31] KUKAL M S, IRMAK S. Comparative canopy growth dynamics in four row crops and their relationships with allometric and environmental determinants. Agronomy Journal, 2019, 111(4): 1799-1816.
doi: 10.2134/agronj2019.01.0017
[32] 王诗雅, 冯乃杰, 项洪涛, 冯胜杰, 郑殿峰. 水分胁迫对大豆生长与产量的影响及应对措施. 中国农学通报, 2020, 36(27): 41-45.
WANG S Y, FENG N J, XIANG H T, FENG S J, ZHENG D F. Water stress: Effects on growth and yield of soybean and the countermeasures. Chinese Agricultural Science Bulletin, 2020, 36(27): 41-45. (in Chinese)
[33] SILVA, ALEXANDRE J, MAGALHÃES S Y, JOSÉ R, SALES G, CRISTINA G P, REGINA C M, MACHADO E C, Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit. Bragantia, 2018, 77(1): 23-35.
doi: 10.1590/1678-4499.2017010
[34] MERIEM T, BELIGH D, SALWA L, BADREDDINE C, DALENDA B, MOHAMED H. Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality. Agricultural Water Management, 2016, 178: 180-188.
doi: 10.1016/j.agwat.2016.09.023
[35] JARET1I W, BOBRETLA D, Influence of seed inoculation with commercial bacterial in oculants (Bradyrhizobium Japonicum) on growth and yield of soybean. Legume Research - An International Journal, 2019, 42(5): 688-693.
[36] KANCHAN J, VIRENDER S B. Influence of different light intensities on specific leaf weight, stomatal density photosynthesis and seed yield in soybean. Plant Physiology Reports, 2020, 25(2): 277-283.
doi: 10.1007/s40502-020-00508-6
[37] JIAN N H, SHI Y, ZHAO J Y, ZHANG Y. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling. The Crop Journal, 2020, 8(2): 327-340.
doi: 10.1016/j.cj.2019.08.007
[38] 唐江华, 苏丽丽, 李亚杰, 徐文修, 彭姜龙. 不同耕作方式对复播大豆光合特性、干物质生产及经济效益的影响. 应用生态学报, 2016, 27(1): 182-190.
TANG J H, SU L L, LI Y J, XU W X, PENG J L. Effects of different tillage methods on photosynthric characteristics, dry matter production and economic benefit of double cropping soybean. Chinese Journal of Applied Ecology, 2016, 27(1): 182-190. (in Chinese)
[39] 谢燕, 陈曦, 胡正华, 陈书涛, 张寒, 凌慧, 申双和. 短期保护性耕作措施对大豆-冬小麦轮作系统温室气体排放的影响. 环境科学, 2016, 37(4): 1499-1506.
XIE Y, CHEN X, HU Z H, CHEN S T, ZHANG H, LING H, SHEN S H. Effects of short-time conservation tillage managements on greenhouse gases emissions from soybean-winter wheat rotation system. Environmental Science, 2016, 37(4): 1499-1506. (in Chinese)
[40] 何建宁, 于振文, 石玉, 赵俊晔, 张永丽. 长期耕作方式对小麦光合特性和产量的影响. 应用生态学报, 2017, 28(4): 1204-1210.
doi: 10.13287/j.1001-9332.201704.028
HE J N, YU Z W, SHI Y, ZHAO J Y, ZHANG Y L. Effects of long-term tillage practices on photosynthetic characteristics and grain yield of wheat. Chinese Journal of Applied Ecology, 2017, 28(4): 1204-1210. (in Chinese)
doi: 10.13287/j.1001-9332.201704.028
[41] RAZA M H, YANG F, AHMED M, YANG W Y. Growth rate, dry matter accumulation, and partitioning in soyean (Glycine max L.) in response to defoliation under high-rainfall conditions. Plants, 2021, 10(8): 1497.
doi: 10.3390/plants10081497
[42] 周宝元, 孙雪芳, 丁在松, 马玮, 赵明. 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响. 中国农业科学, 2017, 50(11): 2129-2140.
ZHOU B Y, SUN X F, DING Z S, MA W, ZHAO M. Effect of tillage practice and fertilization on dry matter accumulation and grain yield of summer maize (Zea Mays L.). Scientia Agricultura Sinica, 2017, 50(11): 2129-2140. (in Chinese)
[43] 李念念, 孙敏, 高志强, 张娟, 张慧芋, 梁艳妃, 杨清山, 杨珍平, 邓妍. 极端年型旱地麦田深松和覆盖播种水分消耗与植株氮素吸收、利用关系的研究. 中国农业科学, 2018, 51(18): 3455-3469.
LI N N, SUN M, GAO Z Q, ZHANG J, ZHANG H Y, LIANG Y F, YANG Q S, YANG Z P, DENG Y. A study on the relationship between water consumption and nitrogen absorption, utilization under sub-soiling during the fallow period plus mulched-sowing in humid and dry years of dryland wheat. Scientia Agricultura Sinica, 2018, 51(18): 3455-3469. (in Chinese)
[44] 王海月, 蒋明金, 孙永健, 郭长春, 殷尧翥, 何艳, 严田蓉, 杨志远, 徐徽, 马均. 常规氮肥与缓释氮肥配施对不同株距机插杂交稻磷素吸收、转运及分配特征的影响. 作物学报, 2018, 44(1): 115-125.
doi: 10.3724/SP.J.1006.2018.00115
WANG H Y, JIANG M J, SUN Y J, GUO C C, YIN Y Z, HE Y, YAN T R, YANG Z Y, XU H, MA J. Effects of conventional urea combined with slow-release urea application on phosphorus uptake, translocation and distribution in mechanically trans-planted rice with different plant spacings. Acta Agronomica Sinica, 2018, 44(1): 115-125. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00115
[45] PAUL J. What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience? Journal of Plant Physiology, 2021, 266: 153537.
[46] 鲁伟林, 余新春, 严德远, 李彦婷, 扶定, 徐士库, 沈光辉. 不同基蘖穗肥配比对水稻氮素吸收及利用的影响. 中国农学通报, 2017, 33(1): 1-5.
LU W L, YU X C, YAN D Y, LI Y T, FU D, XU S K, SHEN G H. Effects of different ratios of base-tiller-ear fertilizer on nitrogen absorption and utilization of rice. Chinese Agricultural Science Bulletin, 2017, 33(1): 1-5. (in Chinese)
[47] 张明聪, 何松榆, 侯宇佳, 金喜军, 张玉先, 胡国华, 滕占林. 增加密度减量施氮和接种根瘤菌对红小豆氮素吸收及产量的影响. 中国土壤与肥料, 2020(2): 133-139, 165.
ZHANG M C, HE S Y, HOU Y J, JIN X J, ZHANG Y X, HU G H, TENG Z L. Effects of increasing planting density with reduced application nitrogen and rhizobium inoculation methods on N absorption and yield of adzuki bean plants. Soil and Fertilizer Sciences in China, 2020(2): 133-139, 165. (in Chinese)
[48] AO X, GUO X H, ZHU Q, ZHANG H J, WANG H Y, MA Z H, HAN X R, ZHAO M H, XIE F T. Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies. Journal of Integrative Agriculture, 2014, 13(2): 326-334.
doi: 10.1016/S2095-3119(13)60390-1
[1] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[2] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[3] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[4] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[5] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[6] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[7] LI YunJing, XIAO Fang, WU YuHua, LI Jun, GAO HongFei, ZHAI ShanShan, LIANG JinGang, WU Gang. Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5 [J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460.
[8] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[9] LIU YuYing, SHEN Feng, YANG JinFeng, CAI FangFang, FU ShiFeng, LUO PeiYu, LI Na, DAI Jian, HAN XiaoRi. Variation Characteristics of Soybean Yield and Soil Nitrogen Distribution in Brown Soil Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(10): 1920-1934.
[10] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[11] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[12] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[13] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[14] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[15] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!