Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1763-1780.doi: 10.3864/j.issn.0578-1752.2022.09.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China

GUO ShiBo(),ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang*()   

  1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
  • Received:2021-06-08 Revised:2021-09-06 Online:2022-05-01 Published:2022-05-19
  • Contact: XiaoGuang YANG E-mail:gsb@cau.edu.cn;yangxg@cau.edu.cn

Abstract:

Objective Soybean is an important oil-seeds crop, and Northeast China (NEC) is the main soybean productive region of China. It is important to investigate the distribution of zones both high yield and high yield stability of rain-fed potential yield and to identify the major agro-meteorological disasters, which could provide important scientific references for the reasonable layout of soybean.【Method】The year 1981 was taken as a time node wan divided the period 1961-2019 into two sub-periods (1961-1981 and 1981-2019). The well-calibrated DSSAT-CROPGRO-Soybean model was applied to simulate rain-fed soybean potential yield at each stations in possible planting area of NEC to clarify the distribution of zones both high yield and high yield stability. The distribution and temporal changes of cold damage and drought were identified in different high-yield and stable-yield zones. Coupled with statistical methods, the limitations of major agro-meteorological disasters on soybean high-stable-yield were further analyzed. 【Result】 (1) Compared with 1961 to 1980 (period Ⅰ), the soybean possible planting area was increased by 2.81×106 hm2 (3.57% of the whole land area in NEC). (2) Compared with periodⅠ, the percentage of high stability yield zones area of possible planting area increasing in periodⅡ. The percentage of high-stable zones area in possible planting area decreased from 17.67% to 17.11%, and the percentage of high-unstable yield zones area increased from 34.98% to 38.17%, while the percentage of low-stable area increased from 34.98% to 38.17% and the percentage of low-unstable zones area decreased from 18.58% to 18.49%. (3) During the study period, the frequency of cold damage during soybean growing season showed a trend of increasing and then decreasing. High-stable zones and high-unstable zones showed higher cold damage frequency, especially serious cold damage. The frequency of light drought and moderate drought increased, but the serious drought frequency decreased during the soybean growing season. (4) The yield changes of soybean in zones both high yield and high yield stability were negatively correlated with cold damage frequency, and yield variation changes of soybean were negatively correlated with both cold damage and drought frequencies. 【Conclusion】Under the background of climate warming, the soybean possible planting area expanded northward and westward in NEC, and the area increased. The area of high-unstable and low-stable zones increased, while the area of high-stable and low-unstable zones decreased. The main agro-meteorological disasters were different in zones both high yield and high yield stability. The frequency of cold damage in low yield zones was higher than that in high yield zones, while the frequency of drought in unstable yield zones was higher than stable yield zones. However, in areas with the change in high yield and high yield staiblity zones, the frequency of cold damage decreased and the frequency of drought increased. In summary, the cold damage was the main limiting factor in soybean yield increasing, while cold damage and drought were the main limiting factors in yield stability increasing.

Key words: climate change, soybean of Northeast China, high yield zones, stable yield zones, cold damage, drought

Fig. 1

Distribution of study area, agro-meteorological stations (a) and meteorological stations (b)"

Table1

The growth period of soybean in Northeast China"

省份
Province
播种日期
Sowing date
分枝日期
Branch date
开花日期
Flowering date
成熟日期
Maturity date
辽宁 Liaoning 4下-5上 L-Apr. to E-May 6中-下 M-Jun. to L-Jun. 7上 E-Jul. 9中 M-Sep.
吉林 Jilin 5上-中 E-May to M-May 6中-下 M-Jun. to L-Jun. 7上 E-Jul. 9中-下 M-Sep. to L-Sep.
黑龙江 Heilongjiang 5中 M-May 6下 L-Jun. 7上-中 E-Jul. to M-Jul. 9下 L-Sep.

Table 2

Description of genetic coefficients of soybean in the DSSAT-CSM-Soybean (v4.7) model"

作物参数
Crop parameter
单位
Unit
描述
Description
EM-FL d 出苗到初花所需的日数(R1,光温日数)
Time between plant emergence and flower appearance (R1, photothermal days)
FL-SH d 初花到第一个荚所需的日数(R3,光温日数)
Time between first flower and first pod (R3, photothermal days)
FL-SD d 初花到初粒所需的日数(R5,光温日数)
Time between first flower and first seed (R5, photothermal days)
SD-PM d 初粒到生理成熟所需日数(R7,光温日数)
Time between first seed (R5) and physiological maturity (R7, photothermal days)
FL-LF d 第一朵花到叶片完全伸展所需的日数(光温日数)
Time between first flower (R1) and end of leaf expansion (photothermal days)
LFMAX mg CO2·m-2·s-1 光饱和状态下,最适宜温度条件下最大叶片光合速率
Maximum leaf photosynthesis rate at 30℃, 350 vpm CO2, and high light
SLAVR cm2·g-1 代表性叶面积或营养生长高峰期通过环境因子修正的新叶比叶面积
Specific leaf area of cultivar under standard growth conditions
SIZLF cm2 标准生长条件下,全部叶片的最大面积 Maximum size of full leaf (three leaflets)
XFRT 分配到种子和荚皮的每日生长最大百分数
Maximum fraction of daily growth that is partitioned to seed + shell
WTPSD g 每粒种子的最大重量 Maximum weight per seed
SFDUR d 标准生长状况下,籽粒灌浆所需日数(光温日数)
Seed filling duration for pod cohort at standard growth conditions (photothermal days)
SDPDV #/pod 标准生长状况下,每个豆荚的平均籽粒数 Average seed per pod under standard growing conditions
PODUR d 品种在最佳状态下,达到豆荚最大数量时所经历的日数(光温日数)
Time required for cultivar to reach final pod load under optimal conditions (photothermal days)

Table 3

Calibration and evaluation datasets for soybean in three provinces of Northeast China"

熟期组
Maturity group (MG)
站点
Station
数据集
Subset
试验年份或参数来源
Experiment data or parameters source
MG00 嫩江
Nenjiang
调参 Calibration 1991-1994
验证 Evaluation 1995, 1997-2000
MG0 宝清
Baoqing
调参 Calibration 1991, 1992, 1994
验证 Evaluation 1995-1997
MGⅠ 哈尔滨
Haerbin
调参 Calibration 1992-1995
验证 Evaluation 1997-2000
MGⅡ 双阳
Shuangyang
调参 Calibration 1991-1994
验证 Evaluation 1996, 1997, 1999, 2000
MGⅢ 新民
Xinmin
调参 Calibration 1992-1995
验证 Evaluation 1998-2000

Table 4

Soybean cold damage indicators"

冷害强度
Cold damage intensity
T5-9≤80 80<T5-9≤85 85<T5-9≤90 90<T5-9≤95 95<T5-9≤100 100<T5-9≤105
∆T5-9 一般冷害
Gentle cold damage
-1.7<∆T5-9≤-1.1 -2.4<∆T5-9≤-1.4 -3.1<∆T5-9≤-1.7 -3.7<∆T5-9≤-2.0 -4.1<∆T5-9≤-2.2 -4.4<∆T5-9≤-2.3
严重冷害
Serious cold damage
∆T5-9≤-1.7 ∆T5-9≤-2.4 ∆T5-9≤-3.1 ∆T5-9≤-3.7 ∆T5-9≤-4.1 ∆T5-9≤-4.4

Table 5

Agricultural drought levels based on CWDI"

干旱等级 Drought level 作物水分亏缺指数(CWDI,%)
无旱 No drought CWDI≤35
轻旱 Light drought 35<CWDI≤45
中旱 Moderate drought 45<CWDI≤55
重旱 Severe drought 55<CWDI≤65
特旱 Extreme drought CWDI>65

Fig. 2

Changes and distributions of possible boundary for soybean in Northeast China from 1961 to 1980 and 1981 to 2019"

Fig. 3

Simulated days and observed days from sowing to flowering, days from sowing to maturity, and grain yield for soybean of Northeast China (a), (b) and (c) were the calibrated result of days from sowing to flowering, days from sowing to maturity and yield, (d), (e) and (f) were the validated result of days from sowing to flowering, days from sowing to maturity and yield"

Fig. 4

Spatial distribution of areas with different high and stable soybean rain-fed potential yield in Northeast China from 1961 to 2019"

Table 6

Changes of areas space with different high and stable soybean rain-fed potential yield in Northeast China from 1961 to 2019"

时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
与时段I相比面积变化
Change in area compared to periodⅠ
面积
Area
(×106 hm2)
占潜在种植区土地面积比例
Percentage in research area (%)
面积
Area
(×106 hm2)
占研究种植区土地面积比例
Percentage in research area (%)
面积
Area
(×106 hm2)
占研究种植区土地面积比例
Percentage in research area (%)
高产稳产区
High-stable
11.99 17.67 11.62 17.11 -0.37 -0.54
高产不稳产区
High-unstable
9.19 13.54 10.28 15.13 1.08 1.59
低产稳产区
Low-stable
23.75 34.98 25.92 38.17 2.17 3.19
低产不稳产区
Low-unstable
18.58 27.36 18.49 27.24 -0.08 -0.12

Fig. 5

Spatial distribution of cold damage and characteristics of changes in station-to-station ratio during the growing season of soybean in the study area from 1961 to 2019"

Table 7

Frequency of cold damage as well as drought in areas with different high and stable soybean production potential in the study region from 1961 to 2019"

冷害发生频次 Frequency of cold damage (%) 干旱发生频次 Frequency of drought (%)
一般冷害
Gentle cold damage
严重冷害
Serious cold damage
总冷害
Sum cold damage
轻旱
Light drought
中旱
Moderate drought
重旱
Severe drought
轻旱及以上干旱
Light drought and above
时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
时段Ⅰ
PeriodⅠ
时段Ⅱ
PeriodⅡ
高产稳产区
High-stable
10.0 13.3 10.2 11.7 20.2 25.0 21.8 22.9 15.2 13.8 5.1 5.6 42.1 42.4
高产不稳产区
High-unstable
7.1 14.3 8.9 9.6 16.1 24.1 25.7 18.4 24.6 22.8 17.5 16.0 67.9 57.2
低产稳产区
Low-stable
9.2 10.6 18.8 20.2 28.1 30.8 31.5 27.3 13.8 12.6 1.5 4.0 46.9 43.9
低产不稳产区
Low-unstable
8.2 13.1 18.8 17.6 27.1 30.8 23.2 25.4 24.7 28.8 16.2 19.5 64.1 73.7

Fig. 6

Spatial distribution of different levels of drought and characteristics of changes in station-to-station ratio during the growing season of soybean in the study area from 1961 to 2019"

Fig. 7

Areas of variation in different high and stable yields of soybean in the study area and changes in the frequency of cold damage and drought (a)Area1: Low-yielding unstable production areas become low-yielding stable production areas; Area2: High-yielding and unstable production areas become low-yielding and unstable; Area3: High and stable yielding areas become high and unstable yielding areas; (b) Change in frequency of cold damage; (c) Change in frequency of drought"

Table 8

High and stable yield of soybean in relation to the frequency of cold damage and drought"

农业气象灾害
Agro-meteorological disasters
高产性 High yield 稳产性 High yield stability
高产稳产区
High-stable
高产不稳产区
High-unstable
低产稳产区
Low-stable
低产不稳产区
Low-unstable
高产稳产区
High-stable
高产不稳产区
High-unstable
低产稳产区
Low-stable
低产不稳产区
Low-unstable
一般冷害
Gentle cold damage
-29.08 1.59** 0.60
严重冷害
Serious cold damage
-110.85** -27.75* 2.43**
轻旱
Light drought
0.61** 0.92**
中旱
Moderate drought
-43.33** 0.71* 0.55
重旱
Serious drought
-41.39** 0.95* 0.82** 2.25** 0.53
[1] IPCC. Climate Change 2013: The Physical Science Basis. Working Group Ⅰ contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
[2] KAN H D. Climate change and human health in China. Environmental Health Perspectives, 2011, 119(2): A60-A61.
[3] 刘志娟, 杨晓光, 王文峰, 李克南, 张晓煜. 气候变化背景下我国东北三省农业气候资源变化特征. 应用生态学报, 2009, 20(9): 2199-2206.
LIU Z J, YANG X G, WANG W F, LI K N, ZHANG X Y. Characteristics of agricultural climate resources in three provinces of Northeast China under global climate change. Chinese Journal of Applied Ecology, 2009, 20(9): 2199-2206. (in Chinese)
[4] 中华人民共和国国家统计局. 中国统计年鉴(2019). 北京: 中国统计出版社, 2020. http://www.stats.gov.cn/
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook (2019). Beijing: China Statistics Press, 2020. http://www.stats.gov.cn/(in Chinese)
[5] 赵锦, 杨晓光, 刘志娟, 吕硕, 王静, 陈阜. 全球气候变暖对中国种植制度的可能影响Ⅹ. 气候变化对东北三省春玉米气候适宜性的影响. 中国农业科学, 2014, 47(16): 3143-3156.
ZHAO J, YANG X G, LIU Z J, LÜ S, WANG J, CHEN F. The possible effects of global warming on cropping systems in China Ⅹ. The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China. Scientia Agricultura Sinica, 2014, 47(16): 3143-3156. (in Chinese)
[6] HE L, JIN N, YU Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Science of the Total Environment, 2020, 707: 135638.
doi: 10.1016/j.scitotenv.2019.135638
[7] ITTERSUN M V, CASSMAN K G, GRASSINI P, WOLF J, TITTONELL P, HOCHMAN Z. Yield gap analysis with local to global relevance-A review. Field Crops Research, 2013, 143: 4-17.
doi: 10.1016/j.fcr.2012.09.009
[8] ZHANG L L, ZHANG Z, LUO Y C, CAO J, LI Z Y. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Science of the Total Environment, 2020, 728: 138614.
doi: 10.1016/j.scitotenv.2020.138614
[9] LIU Z J, YANG X G, LIN X M, GOWDA P, LÜ S, WANG J. Climate zones determine where substantial increases of maize yields can be attained in Northeast China. Climatic Change, 2018, 149(3): 473-487.
doi: 10.1007/s10584-018-2243-x
[10] ZHAO J, YANG X G. Distribution of high-yield and high- yield-stability zones for maize yield potential in the main growing regions in China. Agricultural and Forest Meteorology, 2018, 248: 511-517.
doi: 10.1016/j.agrformet.2017.10.016
[11] WANG X Y, LI T, YANG X G, ZHANG T Y, LIU Z J, GUO E J, LIU Z Q, QU H H, CHEN X, WANG L Z, XIANG H T, LAI Y C. Rice yield potential, gaps and constraints during the past three decades in a climate-changing Northeast China. Agricultural and Forest Meteorology, 2018, 259: 173-183.
doi: 10.1016/j.agrformet.2018.04.023
[12] 黄兴成, 石孝均, 李渝, 张雅蓉, 刘彦伶, 张文安, 蒋太明. 基础地力对黄壤区粮油高产、稳产和可持续生产的影响. 中国农业科学, 2017, 50(8): 1476-1485.
HUANG X C, SHI X J, LI Y, ZHANG Y R, LIU Y L, ZHANG W A, JIANG T M. Effect of the inherent soil productivity on high, stable and sustainable yield of grain and oil crops in yellow soil region. Scientia Agricultura Sinica, 2017, 50(8): 1476-1485. (in Chinese)
[13] 何学敏, 刘笑, 殷红, 游松财. 1986-2015年中国东北地区主要农业气象灾害变化特征. 沈阳农业大学学报, 2019, 50(4): 392-398.
HE X M, LIU X, YIN H, YOU S C. Characteristics of major agricultural meteorological disasters in Northeast China from 1986 to 2015. Journal of Shenyang Agricultural University, 2019, 50(4): 392-398. (in Chinese)
[14] 曹娟, 张朝, 张亮亮, 骆玉川, 李子悦, 陶福禄. 基于Google Earth Engine和作物模型快速评估低温冷害对大豆生产的影响. 地理学报, 2020, 75(9): 1249-1265.
CAO J, ZHANG Z, ZHANG L L, LUO Y C, LI Z Y, TAO F L. Damage evaluation on soybean chilling injury based on Google Earth Engine (GEE) and crop growth model. Acta Geographica Sinica, 2020, 75(9): 1249-1265. (in Chinese)
[15] 殷世平, 朱海霞, 赵慧颖, 孙安辉, 宫丽娟, 李百超, 李秀芬, 姜丽霞. 大豆生育性状与产量因子对不同土壤干旱等级的响应. 中国农学通报, 2020, 36(28): 111-117.
YIN S P, ZHU H X, ZHAO H Y, SUN A H, GONG L J, LI B C, LI X F, JIANG L X. Breeding traits and yield factors of soybean: Response to soil with different drought grades. Chinese Agricultural Science Bulletin, 2020, 36(28): 111-117. (in Chinese)
[16] ARAYA A, HOOGENBOOM G, LUEDELING E, HADGU K M, KISEKKA I, MARTORANO L G. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology, 2015, 214-215: 252-265.
doi: 10.1016/j.agrformet.2015.08.259
[17] JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T. The DSSAT cropping system model. European Journal of Agronomy, 2003, 18(3-4): 235-265.
doi: 10.1016/S1161-0301(02)00107-7
[18] LIU T, YANG X G, BATCHELOR W D, LIU Z J, ZHANG Z T, WAN N H, SUN S, HE B, GAO J Q, BAI F, ZHANG F L, ZHAO J. A case study of climate-smart management in foxtail millet (Setaria italica) production under future climate change in Lishu county of Jilin, China. Agricultural and Forest Meteorology, 2020, 292-293: 108131.
[19] CHEN S, JIANG T C, MA H J, HE C, XU F, MALONE R W, FENG H, YU Q, SIDDIQUE K H M, DONG Q G, HE J Q. Dynamic within-season irrigation scheduling for maize production in Northwest China: A method based on weather data fusion and yield prediction by DSSAT. Agricultural and Forest Meteorology, 2020, 285-286: 107928.
[20] FENSTERSEIFER C A, STRECK N A, BAIGORRIA G A, TIMILSINA A P, ZANON A J, CERA J C, ROCHA T S M. On the number of experiments required to calibrate a cultivar in a crop model: The case of CROPGRO-soybean. Field Crops Research, 2017, 204: 146-152.
doi: 10.1016/j.fcr.2017.01.007
[21] 傅蒙蒙, 王燕平, 任海祥, 王德亮, 包荣军, 杨兴勇, 田忠艳, 曹景举, 傅连舜, 程延喜, 苏江顺, 孙宾成, 杜维广, 赵团结, 盖钧镒. 东北春大豆熟期组的划分与地理分布. 大豆科学, 2016, 35(2): 181-192.
FU M M, WANG Y P, REN H Y, WANG D L, BAO R J, YANG X Y, TIAN Z Y, CAO J J, FU L S, CHENG Y X, SU J S, SUN B C, DU W G, ZHAO T J, GAI J Y. Identification and distribution of maturity groups for spring-sowing soybeans in Northeast China. Soybean Science, 2016, 35(2): 181-192. (in Chinese)
[22] 宋雯雯. 中国大豆品种生育期组的精细划分与应用[D]. 北京: 中国科学院大学, 2016.
SONG W W. Digitized classification and application of soybean variety maturity groups in China[D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese)
[23] 张镇涛, 杨晓光, 高继卿, 王晓煜, 白帆, 孙爽, 刘志娟, 明博, 谢瑞芝, 王克如, 李少昆. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018, 51(17): 3258-3274.
ZHANG Z T, YANG Y X, GAO J Q, WANG X Y, BAI F, SUN S, LIU Z J, MING B, XIE R Z, WANG K R, LI S K. Analysis of suitable sowing date for summer maize in North China Plain under climate change. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274. (in Chinese)
[24] 潘铁夫, 张德荣, 张文广. 东北地区大豆气候区划的研究. 大豆科学, 1983(1): 1-13.
PAN T F, ZHANG D R, ZHANG W G. The climatic regionalization of soybean in Northeast China. Soybean Science, 1983(1): 1-13. (in Chinese)
[25] ZHAO J, YANG X G, LV S, LIU Z J, WANG J. Variability of available climate resources and disaster risks for different maturity types of spring maize in Northeast China. Regional Environmental Change, 2014, 14: 17-26.
doi: 10.1007/s10113-013-0476-9
[26] 孙玉亭, 王书裕, 杨永岐. 东北地区作物冷害的研究. 气象学报, 1983(3): 59-67.
SUN Y T, WANG S Y, YANG Y Q. Studies on cool summer and crop yield in Northeast China. Acta Meteorological Sinica, 1983(3): 59-67. (in Chinese)
[27] 万能涵, 杨晓光, 刘志娟, 何斌, 孙爽. 气候变化背景下中国主要作物农业气象灾害时空分布特征(Ⅲ): 华北地区夏玉米干旱. 中国农业气象, 2018, 39(4): 209-219.
WAN N H, YANG X G, LIU Z J, HE B, SUN S. Temporal and spatial variations of agro-meteorological disasters of main crops in China in a changing climate (Ⅲ): Drought of summer maize in North China Plain. Chinese Journal of Agrometeorology, 2018, 39(4): 209-219. (in Chinese)
[28] 黄晚华, 杨晓光, 李茂松, 张晓煜, 王明田, 代姝玮, 马洁华. 基于标准化降水指数的中国南方季节性干旱近58a演变特征. 农业工程学报, 2010, 26(7): 50-59.
HUANG W H, YANG X G, LI M S, ZHANG X Y, WANG M T, DAI S W, MA J H. Evolution characteristics of seasonal drought in the south of China during the past 58 years based on standardized precipitation index. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 50-59. (in Chinese)
[29] 解文娟, 杨晓光, 杨婕, 刘利民, 叶清, 董朝阳, 刘志娟, 赵锦. 气候变化背景下东北三省大豆干旱时空特征. 生态学报, 2014, 34(21): 6232-6243.
XIE W J, YANG X G, YANG J, LIU L M, YE Q, DONG C Y, LIU Z J, ZHAO J. Spatio-temporal characteristics of drought for soybean under climate change in the three provinces of Northeast China. Acta Ecologica Sinica, 2014, 34(21): 6232-6243. (in Chinese)
[30] 石延英, 郭尔静, 张镇涛, 朱茜, 杨晓光. 东北三省水稻生长季农业气候资源及障碍型冷害的时空特征. 应用生态学报, 2020, 31(5): 1625-1635.
SHI Y Y, GUO E J, ZHANG Z T, ZHU X, YANG X G. Spatial- temporal characteristics of agricultural climate resources and sterile- type chilling injury in rice growing season in three provinces of Northeast China. Chinese Journal of Applied Ecology, 2020, 31(5): 1625-1635. (in Chinese)
[31] 郑金涛, 彭涛, 董晓华, 刘冀, 常文娟, 林青霞, 王佳宝. 三峡库区气象干旱演变特征及致灾因子危险性评价. 水土保持研究, 2020, 27(5): 213-220.
ZHENG J T, PENG T, DONG X H, LIU J, CHANG W J, LIN Q X, WANG J B. Evolution characteristics of meteorological drought and assessment of risk of disaster factors in the Three Reservoir Area. Research of Soil and Water Conservation, 2020, 27(5): 213-220. (in Chinese)
[32] 李斌, 解建仓, 胡彦华, 姜仁贵. 基于标准化降水指数的陕西省干旱时空变化特征分析. 农业工程学报, 2017, 33(17): 113-119.
LI B, XIE J C, HU Y H, JIANG R G. Analysis on spatiotemporal variability characteristics of drought in Shaanxi province using standard precipitation index. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 113-119. (in Chinese)
[33] 孙爽, 杨晓光, 赵锦, 陈阜. 全球气候变暖对中国种植制度的可能影响 Ⅺ. 气候变化背景下中国冬小麦潜在光温适宜种植区变化特征. 中国农业科学, 2015, 48(10): 1926-1941.
SUN S, YANG X G, ZHAO J, CHEN F. The possible effects of global warming on cropping systems in China Ⅺ. The variation of potential light-temperature suitable cultivation zone of winter wheat in China under climate change. Scientia Agricultura Sinica, 2015, 48(10): 1926-1941. (in Chinese)
[34] CHEN X X, WANG L C, NIU Z G, ZHANG M, LI C A, LI J R. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agricultural and Forest Meteorology, 2020, 282/283: 107867.
doi: 10.1016/j.agrformet.2019.107867
[35] YE Z, QIU X L, CHEN J, CAMMARANO D, GE Z L, RUANE A C, LIU L L, TANG L, CAO W X, LIU B, ZHU Y. Impacts of 1.5°C and 2.0°C global warming above pre-industrial on potential winter wheat production of China. European Journal of Agronomy, 2020, 120: 126149.
doi: 10.1016/j.eja.2020.126149
[36] GUO S B, YANG X G, ZHANG Z T, ZHANG F L, LIU T. Spatial distribution and temporal trend characteristics of agro-climatic resources and extreme climate events during the soybean growing season in Northeast China from 1981 to 2017. Journal of Meteorological Research, 2021, 34(6): 1309-1323.
doi: 10.1007/s13351-020-0061-3
[37] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47(10): 1843-1853.
doi: 10.3724/SP.J.1006.2021.13012
ZHOU B Y, HE J Z, SUN X F, HAN Y L, MA W, DING Z S, LI C F, ZHAO M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow- Huaihe-Haihe Rivers plain. Acta Agronomica Sinica, 2021, 47(10): 1843-1853. (in Chinese)
doi: 10.3724/SP.J.1006.2021.13012
[38] 潘晓卉, 张平宇, 刘世薇. 东北地区主要粮食作物种植结构时空变化分析. 土壤与作物, 2018, 7(3): 303-311.
PAN X H, ZHANG P Y, LIU S W. Temporal-spatial changes of planting structure from main grain crops in Northeast China. Soils and Crops, 2018, 7(3): 303-311. (in Chinese)
[39] 刘志娟, 杨晓光, 吕硕, 王静, LIN X M. 气候变化背景下东北三省春玉米产量潜力的时空特征. 应用生态学报, 2018, 29(1): 103-112.
LIU Z J, YANG X G, LÜ S, WANG J, LIN X M. Spatial-temporal variations of spring maize potential yields in a changing climate in Northeast China. Chinese Journal of Applied Ecology, 2018, 29(1): 103-112. (in Chinese)
[40] LIN Y M, FENG Z M, WU W X, YANG Y Z, ZHOU Y, XU C. Potential impacts of climate change and adaptation on maize in Northeast China. Agronomy Journal, 2017, 109(4): 1476-1490.
doi: 10.2134/agronj2016.05.0275
[41] LIU X B, JIN J, WANG G H, HERBERT S J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Research, 2008, 105(3): 157-171.
doi: 10.1016/j.fcr.2007.09.003
[42] LIU Y J, TANG L, QIU X L, LIU B, CHANG X N, LIU L L, ZHANG X H, CAO W X, ZHU Y. Impacts of 1.5 and 2.0℃ global warming on rice production across China. Agricultural and Forest Meteorology, 2020, 284: 107900.
doi: 10.1016/j.agrformet.2020.107900
[43] 李秀芬, 郭昭滨, 朱海霞, 王萍, 宫丽娟, 姜丽霞, 赵慧颖. 黑龙江省大豆生长季旱涝时序特征及其对产量的影响. 应用生态学报, 2020, 31(4): 1223-1232.
LI X F, GUO Z B, ZHU H X, WANG P, GONG L J, JIANG L X, ZHAO H Y. Time-series characteristics of drought and flood in spring soybean growing season and its effect on soybean yield in Heilongjiang province, China. Chinese Journal of Applied Ecology, 2020, 31(4): 1223-1232. (in Chinese)
[1] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[2] LIU ZiGang, WEI JiaPing, CUI JunMei, WU ZeFeng, FANG Yan, DONG XiaoYun, ZHENG GuoQiang. Status, Existing Problems and Strategy Discussion on Northward Expansion of Winter Rapeseed in China [J]. Scientia Agricultura Sinica, 2023, 56(15): 2854-2862.
[3] ZHANG WenJing, ZHAO Jin, CUI WenQian, LI ManYao, LI E, GONG XiaoYa, YANG XiaoGuang. Effects of Changing Normal and Extreme Climate States on Maize Meteorological Yield in Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1859-1870.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[6] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[7] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[8] YIN YanYu, XING YuTong, WU TianFan, WANG LiYan, ZHAO ZiXu, HU TianRan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[9] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[10] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[11] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[12] XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[13] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[14] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[15] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!