Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 451-466.doi: 10.3864/j.issn.0578-1752.2022.03.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans

JIANG FenFen(),SUN Lei,LIU FangDong,WANG WuBin,XING GuangNan,ZHANG JiaoPing,ZHANG FengKai,LI Ning,LI Yan,HE JianBo(),GAI JunYi()   

  1. Soybean Research Institute, Nanjing Agricultural University/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General)/State Key Laboratory for Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095
  • Received:2021-08-13 Accepted:2021-10-11 Online:2022-02-01 Published:2022-02-11
  • Contact: JianBo HE,JunYi GAI E-mail:2019201036@njau.edu.cn;hjbxyz@gmail.com;sri@njau.edu.cn

Abstract:

【Objective】 As a short-day (SD) and thermophilic plant, soybean is sensitive to photo-thermal(day length, temperature) conditions. The sensitivity of soybeans to photo-thermal response is an important domestication and adaptability trait of soybean. Under natural conditions, geographical location and/or sowing season are two important ecological factors that determine the differentiation of wild and cultivated soybeans, and they work together to regulate the growth and development of soybeans through environmental factors such as day length and temperature. Therefore, the study of the geographical and seasonal differentiation of photo-thermal comprehensive response characteristics during growth periods of soybeans may help soybean introduction and breeding for adaption. 【Method】 A total of 1 519 representative world wild and cultivated soybeans were selected and tested with two-year spring seeding and summer seeding field trials at Dangtu, Anhui Province. The difference in growth period between sowing seasons was used to evaluate the photo-thermal comprehensive response sensitivity (PTCRS) of each soybean accession, and to study the photo-temperature response characteristics of the growth and development stages of various geographic and ecological soybeans.【Result】 (1) The photothermal response characteristics of soybeans existed throughout the period of growth and development. (2) With the migration of wild soybeans from south to north, the PTCRS of the days from sowing to flowering (DSF) and days from sowing to maturity (DSM) decreased, the PTCRS of the days from flowering to maturity (DFM) increased, and the photothermal response type changed from the front-sensitive and post-insensitive to the front-insensitive and post-sensitive, and the photothermal response of DSM is sensitive. (3) With the domestication of wild soybeans to cultivated soybeans, the PTCRS of DSF and DSM decreased by 20% and 16%, respectively, and relatively small changes were observed for the PTCRS of DFM. The main photothermal response type changed from the front-sensitivity and post-insensitive to the front-insensitive and post-sensitive and the front-insensitive and post-insensitive. (4) The PTCRS of DSM of summer-autumn (SA) and spring (SP) sowing type soybeans both show gradual decrease from south to north. The geographical differentiation of PTCRS of DSF and DFM of SA and SP is different that when migrate from south to north, the PTCRS of DSF of SA decreased, and the PTCRS of DFM of SA first increased and then decreased, and the PTCRS of DSF of SP there was no significant change, and the PTCRS of DFM of SP decreased. (5) With the Huang-Huai and Yangtze River Valleys and South China as the origin center of cultivated soybeans, the PTCRS of DSF, DFM and DSM decreased significantly when spreading north to Northeast China, Russian Far East and Southern Sweden. The PTCRS of DSF and DSM decreased when spreading east to Korean Peninsula and Japan Island and west to Northern North America, Southern North America and the Central and South America, but no obvious change was observed for the PTCRS of DFM. When cultivated soybeans spread south to Southeast Asia, South Asia and Africa, the PTCRS of DSF and DSM increased, and there was no significant change in PTCRS of DFM. (6) Comparing the PTCRS between different ecotypes in the same eco-region, the PTCRS of DSF, DFM and DSM of SP was the smallest, and the PTCRS of DSF of wild soybeans was stronger than that of SA, and the PTCRS of DFM of wild soybeans was weaker than that of SA, and there was no significant difference between the PTCRS of DSM of wild soybeans and SA. Comparison of PTCRS between different geographic and sowing-seasonal eco-type of soybeans, PTCRS of DSF: Southern wild soybeans is the most sensitive, followed by wild soybeans in the Yangtze River Valleys and SA in the Southern, followed by Huang-Huai wild soybeans and SA in the Yangtze River Valleys, and the remaining geo-ecotypes have no significant differences, all of which are relatively insensitive; PTCRS of DFM: SA in the Yangtze River Valleys is the most sensitive, followed by the Northeast and Huang-Huai wild soybeans and the Southern and Huang-Huai SA, and the remaining geo-ecotypes have relatively small differences, all of which are relatively insensitive; PTCRS of DSM: there is no significant difference between wild soybeans and SA in the Southern and the Yangtze River Valleys, all of which are sensitive, followed by Huang-Huai wild soybeans, followed by Northeast wild soybeans and Huang-Huai SA, and the PTCRS of SP is the smallest, and it decreases significantly with the increase of latitude.【Conclusion】 The photo-thermal comprehensive conditions determined by geography and sowing season are important factors affecting soybean growth and development. Differentiation of response to photo-thermal comprehensive conditions existed in wild and cultivated soybeans of different geography and sowing season ecological types. With cultivated soybeans spread from Huang-Huai and Changjiang River Valleys and South China to geographical regions of different latitudes in the world, different changes were observed for the photo-thermal comprehensive response during growth period. Sensitivity to photo-thermal during sowing to maturity is the original trait of soybean, and the summer-autumn sowing type soybeans in the Middle and Lower Yangtze Valleys may be the most cultivated type with this wild primitive trait.

Key words: cultivated soybean (Glycine max (L.) Merr.), wild soybean (Glycine soja Sieb. and Zucc.), growth period traits, geographic and sowing-seasonal photo-thermal eco-response

Table 1

Geographic distribution of tested materials"

栽培大豆地理分布
Geographic region of cultivated soybean
中国大陆野生和栽培大豆生态区分布
Eco-region of Chinese mainland wild and cultivated soybean
地理亚群
Geo-subpopulation
地理区域
Geo-region
熟期组
Maturity group
材料数
No. of materials
类型
Type
生态区
Eco-region
熟期组
Maturity group
材料数
No. of materials
O 中国黄淮HCHN Ⅰ-Ⅴ 226 野生大豆
WA G. soja
68
中国南方SCHN 0-Ⅸ 542 76
中国台湾TCHN Ⅴ-Ⅷ 11 71
A 中国东北NCHN 000-Ⅳ 173 52
俄罗斯远东RUFE 000-Ⅲ 38 合计Sum 267
瑞典南部SSWE 000 17 栽培春大豆
SP G. max
0-Ⅴ 168
B 朝鲜半岛KORP 0-Ⅵ 20 0-Ⅳ 33
日本岛JPAN 0-Ⅶ 38 000-Ⅳ 173
C 东南亚SEAS Ⅴ-Ⅹ 25 合计Sum 374
南亚SASI Ⅳ-Ⅹ 15 栽培夏秋大豆
SA G. max
Ⅳ-Ⅸ 178
非洲AFRI Ⅵ-Ⅹ 11 Ⅲ-Ⅷ 163
D 北美北部NNAM 000-Ⅴ 69 Ⅰ-Ⅵ 226
北美南部SNAM Ⅳ-Ⅹ 37 合计Sum 567
中南美CSAM Ⅴ-Ⅹ 30 总计Total 1208
总计Total 1252

Table 2

The descriptive statistics of growth period related traits and PTCRS"

性状
Trait
环境
Env.
组距
Class interval
材料数
No. of materials
均值a
Mean
变幅
Range
遗传变
异系数
GCV (%)
遗传率
h2(%)
生育前期
DSF (d)
20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130 130-140 140-150
18SUS 278 384 310 241 185 94 27 1519 45.4 20-88 31.9 99.6
19SUS 211 461 284 241 192 80 24 1493 45.4 22-85 31.8 99.3
18SPS 26 330 389 187 61 96 124 76 89 69 57 11 1515 62.4 25-136 45.5 99.5
19SPS 7 200 304 303 138 125 119 53 84 70 47 28 1 1479 65.7 27-143 40.5 99.0
生育后期
DFM (d)
32-40 40-48 48-56 56-64 64-72 72-80 80-88 88-96 96-104 104-112 112-120 120-128 128-136 136-144
18SUS 2 121 431 480 380 95 9 1518 59.4 38-86 13.5 95.2
19SUS 14 199 603 526 114 3 1459 54.8 33-80 10.8 85.8
18SPS 19 132 140 152 114 133 175 199 144 129 85 55 16 2 1495 80.7 35-139 28.7 95.4
19SPS 4 57 156 252 247 230 232 158 71 15 4 1426 72.2 32-117 19.9 92.5
全生育期
DSM (d)
66-76 76-86 86-96 96-106 106-116 116-126 126-136 136-146 146-156 156-166 166-176 176-186 186-196 196-206
18SUS 52 254 198 321 224 235 203 30 1 1518 104.8 66-149 17.0 99.1
19SUS 16 177 379 394 260 169 63 1 1459 100.3 66-137 13.0 97.2
18SPS 46 148 44 114 18 122 136 53 121 86 273 189 146 5 1501 142.9 71-201 25.6 98.4
19SPS 2 29 74 121 216 136 82 103 209 206 143 86 30 2 1439 137.2 75-198 20.7 98.2
光温综合反
应敏感性
PTCRS (%)
0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130 130-140
生育前期
DSF
Meana 78 584 306 91 118 81 83 88 68 20 1517 32.6 0-99 69.0 95.0
生育后期
DFM
Meana 296 234 186 158 164 182 126 92 52 13 1 1 1505 35.2 0-113 64.0 82.6
全生育期
DSM
Meana 108 82 84 132 122 80 83 92 230 271 178 40 4 1 1507 66.1 0-131 46.6 90.2

Table 3

Multi-environment joint analysis of variance of growth period related traits"

变异来源
Source
生育前期 DSF 生育后期 DFM 全生育期 DSM
自由度
DF
均方
MS
F
F value
自由度
DF
均方
MS
F
F value
自由度
DF
均方
MS
F
F value
环境 Env. 3 364996.00 1951.42** 3 384088.00 989.83** 3 1370239.00 3307.50**
环境内区组 Blk (Env.) 5 61.78 10.12** 5 196.98 9.05** 5 146.96 7.65**
基因型 Geno 1518 3582.12 27.37** 1517 1059.90 4.90** 1517 4151.92 14.39**
基因型×环境 Geno×Env. 4484 134.95 22.11** 4377 226.48 10.41** 4396 302.02 15.73**
误差 Error 7171 6.10 6470 21.76 6575 19.20

Table 4

Average growth period of soybeans of different ecotypes"

群体
Population
生态区
Eco-region
生育前期DSF(d) 生育后期DFM(d) 全生育期DSM(d)
春播均值a SPS-mean 夏播均值b SUS-mean 春播均值 SPS-mean 夏播均值SUS-mean 春播均值 SPS-mean 夏播均值SUS-mean
WA 119.9±15.32 76.7±8.11 54.9±9.34 49.5±3.90 174.8±9.93 126.2±7.38
97.4±23.97 65.4±10.23 67.2±18.40 49.4±4.34 164.3±8.51 114.9±8.63
70.3±24.37 51.9±13.30 72.6±17.74 50.5±5.16 142.7±28.16 102.3±11.41
47.0±15.10 40.3±10.22 78.3±18.49 52.3±5.10 125.2±25.52 92.5±10.82
G. soja 86.1±33.39 59.8±16.91 67.7±18.33 50.3±4.72 153.6±26.79 110.0±15.51
SA 92.8±20.10 62.8±9.28 81.5±13.28 60.7±4.85 174.3±15.38 123.6±9.39
72.9±15.50 53.7±6.97 93.3±11.39 62.3±4.37 166.0±13.50 116.0±7.11
50.4±13.13 40.6±7.28 82.8±14.21 62.1±5.71 133.1±21.35 102.5±9.89
总计c Total 70.2±24.15 51.3±12.31 85.4±14.08 61.7±5.12 155.4±25.51 113.0±12.75
SP 52.1±9.64 41.9±5.77 72.1±16.47 55.7±5.26 124.2±21.69 97.6±9.26
48.5±10.61 38.7±6.87 63.0±15.05 52.8±6.28 111.7±22.08 91.5±11.28
39.4±10.93 32.0±7.38 61.1±15.36 59.3±5.35 100.1±23.45 90.9±10.53
总计d Total 45.9±12.00 37.0±8.17 66.2±16.67 57.1±5.80 112.0±25.27 94.0±10.55
G. max-CHNM 60.5±23.45 45.7±12.91 77.8±17.84 59.9±5.85 138.1±33.11 105.5±15.13
O 65.4±22.82 48.8±11.84 81.7±16.16 60.1±5.99 146.8±28.57 108.9±14.01
A 38.7±9.73 31.3±6.69 60.1±14.71 58.8±5.50 98.6±21.70 89.8±10.14
B 49.9±16.18 40.0±9.30 81.6±24.04 64.0±8.81 131.4±31.84 103.8±14.43
C 86.5±23.73 60.6±11.98 83.4±14.63 61.7±4.63 167.4±21.90 121.9±12.11
D 51.6±17.18 40.5±10.44 86.5±16.93 67.2±5.44 138.0±28.70 107.7±13.48
G. max-WLD 59.1±23.41 44.8±13.15 78.3±18.55 60.9±6.43 137.2±33.40 105.5±15.46
总计e Total 63.9±27.43 47.4±15.01 76.4±18.95 59.0±7.38 140.0±32.93 106.3±15.56
CK 70.3 48.3 98 62.8 168.3 111

Table 5

Analysis of variance of PTCRS at different growth stages"

变异来源
Source
生育前期光温综合反应敏感性 PTCRSDSF 生育后期光温综合反应敏感性 PTCRSDFM 全生育期光温综合反应敏感性 PTCRSDSM
自由度 DF 均方 MS FF value 自由度 DF 均方 MS FF value 自由度 DF 均方 MS FF value
年份 Year 1 6829.90 390.39** 1 20936.10 299.87** 1 1646.88 24.39**
基因型 Geno 1516 339.68 19.42** 1504 386.65 5.54** 1506 656.92 9.73**
误差 Error 1461 17.50 1378 69.82 1394 67.53

Table 6

Correlation between PTCRSs and growth periods"

相关系数
Correlation coefficient
PTCRSDSF PTCRSDFM PTCRSDSM DSFSp DFMSp DSMSp
PTCRSDSF
PTCRSDFM -0.19**
PTCRSDSM 0.60** 0.67**
DSFSp 0.97** -0.03 0.70**
DFMSp -0.20** 0.94** 0.62** -0.06*
DSMSp 0.72** 0.50** 0.96** 0.83** 0.51**

Fig. 1

Comparison of PTCRS in the growth stages (A: DSF, B: DFM, C: DSM) of soybeans in various geographical ecotypes of China and (D) the growth stages of the cultivated soybeans in different regions of the worldPTCRSDSF: Photothermal comprehensive response sensitivity during from sowing to flowering; PTCRSDFM: Photothermal comprehensive response sensitivity during from flowering to maturity; PTCRSDSM: Photothermal comprehensive response sensitivity during from sowing to maturity. Ⅳ: Central South、Southwest and South China soybean eco-region, Ⅲ: Middle and Lower Changjiang Valley soybean eco-region, Ⅱ: Huang-Huai-Hai soybean eco-region, Ⅰ: Northern soybean eco-region; O: The materials come from Huang-Huai River Valleys (HCHM) and Changjiang River Valleys and its south (SCHM) and China's Taiwan (TCHN). A: The materials are from Northeast China (NCHM), Far-East of Russia (RUFE) and southern Sweden (SSWE). B: The materials are from Korea Peninsular (KORP) and Japan islands (JPAN). C: The materials are from Southeast Asia (SEAS), South Asia (SASI) and Africa (AFRI). D: The materials are from northern North America (NNAM), southern North America (SNAM) and Central and South America (CSAM). G. soja: Glycine soja Sieb. and Zucc., SA: Summer-autumn sowing type soybeans, SP: Spring sowing type soybeans. “x” in the figure represents the average value of subgroup, the top and bottom represents the maximum and minimum values respectively, the shape represents distribution of the subgroup materials and the width of the shape is distribution frequency. The same as below"

Fig. 2

Comparison of PTCRS of wild soybean accessions and cultivated soybean accessions in mainland ChinaG. soja: Glycine soja Sieb. and Zucc.; G. max: Glycine max (L.) Merr.; DSF: Days from sowing to flowering; DFM: Days from flowering to maturity; DSM: Days from sowing to maturity. *** and * indicates there are extremely significant (P≤0.01) and significant difference(P≤0.05) between G. soja and G. max, respectively. The same as below"

Table 7

Comparison of PTCRS in different growth stages of different geographical ecotype soybeans (%)"

群体
Population
生态区
Eco-region
生育前期 DSF 生育后期 DFM 全生育期 DSM
均值
Mean
变幅
Range
Duncan group 均值
Mean
变幅
Range
Duncan group 均值
Mean
变幅
Range
Duncan group
WA 79.4 11.1-94.4 D 11.4 0.0-62.1 A 88.4 59.2-106.1 F
59.6 3.9-96.8 C 32.5 0.0-99.9 CD 91.5 71.9-105.6 F
35.9 3.5-80.6 B 41.2 0.0-88.3 DE 75.7 0.0-103.5 E
17.3 0.4-62.9 A 47.3 0.0-87.1 E 62.6 1.3-105.3 D
G. soja 50.1 0.4-96.8 32.3 0.0-99.9 80.9 0.0-106.1
SA 56.7 8.8-95.9 C 39.4 0.3-87.3 CDE 95.9 39.3-131.0 F
37.4 8.5-82.9 B 58.3 19.3-112.6 F 95.3 34.2-124.6 F
20.8 0.4-90.6 A 40.4 0.0-97.2 CDE 60.6 0.0-116.2 CD
总计c Total 36.9 0.4-95.9 45.3 0.0-112.6 81.6 0.0-131.0
SP 21.4 6.4-82.7 A 31.7 0.0-86.0 C 53.0 18.0-104.4 C
20.7 10.8-55.8 A 21.2 0.0-75.1 B 40.8 4.7-100.4 B
16.2 2.3-66.5 A 13.4 0.0-91.1 AB 24.2 0.0-111.0 A
总计d Total 18.9 2.3-82.8 22.3 0.0-91.1 38.7 0.0-111.0
G. max-CHNM 29.7 0.4-95.9 36.1 0.0-112.6 64.5 0.0-131.0
O 32.8 0.4-95.9 C 41.4 0.0-112.6 B 73.7 0.0-131.0 C
A 16.0 2.3-66.5 A 12.5 0.0-91.1 A 23.2 0.0-111.0 A
B 21.3 3.1-79.8 AB 38.1 0.0-90.5 B 57.5 5.7-110.5 B
C 49.7 10.1-99.4 D 39.7 0.0-81.6 B 85.8 10.2-111.4 D
D 23.2 7.3-78.5 B 40.4 0.0-87.1 B 62.6 0.0-114.9 B

Fig. 3

Variations of PTCRS of growth periods in cultivated soybeans in various geographical regions of the world Circle represents distribution of PTCRS of the subgroup materials, and blue indicates the weakest PTCRS, red indicates the strongest PTCRS and the color depth represents the size of PTCRS"

Fig. 4

Comparison of PTCRS of growth periods in wild soybeans, summer-autumn sowing type soybeans and spring sowing type soybeansNS: There is no significant differences (P>0.05) between different types of soybeans, respectively"

[1] ZHANG L X, LIU W, TSEGAW M, XU X, QI Y P, SAPEY E, LIU L P, WU T T, SUN S, HAN T F.Principles and practices of the photo-thermal adaptability improvement in soybean. Journal of Integrative Agriculture, 2020, 19(2): 295-310.
doi: 10.1016/S2095-3119(19)62850-9
[2] COULTER M W, HAMNER K C.Photoperiodic flowering response of Biloxi soybean in 72-hour cycles. Plant Physiology, 1964, 39(5): 848-856.
doi: 10.1104/pp.39.5.848
[3] 杨永华, 盖钧镒, 马育华. 大豆生育期光温反应特性的遗传. 作物学报, 1994, 20(2): 144-148.
YANG Y H, GAI J Y, MA Y H.Inheritance of photothermal response characteristics in soybean growth period. Acta Agronomica Sinica, 1994, 20(2): 144-148. (in Chinese)
[4] SONG Y H, SHIM J S, KINMONTH-SCHULTZ H A, LMAIZUMI T. Photoperiodic flowering: Time measurement mechanisms in leaves. Annual Review of Plant Biology, 2015, 66(1): 441-464.
doi: 10.1146/arplant.2015.66.issue-1
[5] MAGALÍ N, MANTESE A I, MIRALLES D J, KANTOLIC A G.Soybean fruit development and set at the node level under combined photoperiod and radiation conditions. Journal of Experimental Botany, 2016, 67(1): 1.
doi: 10.1093/jxb/erv451
[6] 李福山. 野生大豆光温反应规律的研究. 植物遗传资源学报, 2011, 12(5): 801-805.
LI F S.Response regularity of wild soybean to photoperiod and temperature in natural environment. Journal of Plant Genetic Resources, 2011, 12(5): 801-805. (in Chinese)
[7] 盖钧镒, 许东河, 高忠, 岛本义也, 阿部纯, 福士泰史, 北岛俊二. 中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究. 作物学报, 2000, 26(5): 513-520.
GAI J Y, XU D H, GAO Z, SHIMAMOTO Y, ABE J, FUSHI T S, KITAJIMA S.Studies on the evolutionary relationship among ecotypes of G. max and G. soja in China. Acta Agronomica Sinica, 2000, 26(5): 513-520. (in Chinese)
[8] 范虎, 赵团结, 丁艳来, 邢光南, 盖钧镒. 中国野生大豆群体特征和地理分化的遗传分析. 中国农业科学, 2012, 45(3): 414-425.
FAN H, ZHAO T J, DING Y L, XING G N, GAI J Y.Genetic analysis of the characteristics and geographic differentiation of Chinese wild soybean population. Scientia Agricultura Sinica, 2012, 45(3): 414-425. (in Chinese)
[41] LÜ S L.Discussion on the origin of cultivated soybean in China. Scientia Agricultura Sinica, 1978, 11(4): 90-94. (in Chinese)
[9] 朱贝贝, 孙石, 韩天富, 吴存祥. 中国不同地区野生大豆与栽培大豆生育期长度及结构性状的比较. 大豆科学, 2012, 31(6): 894-898.
ZHU B B, SUN S, HAN T F, WU C X.Comparison of growth period and its structure traits between wild and cultivated soybeans in China. Soybean Science, 2012, 31(6): 894-898. (in Chinese)
[10] 赵团结, 盖钧镒. 栽培大豆起源与演化研究进展. 中国农业科学, 2004, 37(7): 954-962.
ZHAO T J, GAI J Y.Research progress on the origin and evolution of cultivated soybean. Scientia Agricultura Sinica, 2004, 37(7): 954-962. (in Chinese)
[11] CAI Y P, WANG L W, CHEN L, WU T T, LIU L P, SUN SH, WU C X, YAO W W, JIANG B J, YUAN S, HAN T F, HOU W S.Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnology Journal, 2020, 18(1): 298-309.
doi: 10.1111/pbi.v18.1
[12] WU T T, LI J Y, WU C X, SUN S, MAO T T, JIANG B J, HOU W S, HAN T F.Analysis of the independent-and interactive-photo-thermal effects on soybean flowering. Journal of Integrative Agriculture, 2015, 14(4): 622-632.
doi: 10.1016/S2095-3119(14)60856-X
[13] MAO T T, LI J Y, WEN Z X, WU T T, WU C X, SUN S, JIANG B J, HOU W S, LI W B, SONG Q J, WANG D C, HAN T F.Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics, 2017, 18(1): 415.
doi: 10.1186/s12864-017-3778-3
[14] 潘铁夫, 张德荣, 张文广, 李长荣. 东北地区大豆气候生态的研究. 吉林农业科学, 1982, 28(2): 17-28.
PAN T F, ZHANG D R, ZHANG W G, LI C R.Agricultural climatic ecologic factor of soybean in Northeast China. Journal of Jilin Agricultural Sciences, 1982, 28(2): 17-28. (in Chinese)
[15] 潘铁夫, 张德荣, 张文广. 东北地区大豆气候区划的研究. 大豆科学, 1983, 2(1): 1-13.
PAN T F, ZHANG D R, ZHANG W G.The climatic regionalization of soybean in Northeast China. Soybean Science, 1983, 2(1): 1-13. (in Chinese)
[16] 汪越胜, 盖钧镒. 中国大豆品种光温综合反应与短光照反应的关系. 中国油料作物学报, 2001, 23(2): 40-44.
WANG Y S, GAI J Y.The relationship between the response to short light and comprehensive responses to photo-temperature condition of soybeans from China. Chinese Journal of Oil Crop Sciences, 2001, 23(2): 40-44. (in Chinese)
[17] 费志宏, 贾贞, 冷建田, 张宝石, 吴存祥. 不同生态类型大豆品种光周期反应的鉴定. 作物杂志, 2009, 24(4): 46-49.
FEI Z H, JIA Z, LENG J T, ZHANG B S, WU C X.Identification of photoperiodic responses of different soybean ecotypes. Crops, 2009, 24(4): 46-49. (in Chinese)
[18] 费志宏, 吴存祥, 孙洪波, 侯文胜, 张宝石, 韩天富. 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009, 35(8): 1525-1531.
doi: 10.3724/SP.J.1006.2009.01525
FEI Z H, WU C X, SUN H B, HOU W S, ZHANG B S, HAN T F.Identification of photothermal responses in soybean by integrating photoperiod treatments with planting-date experiments. Acta Agronomica Sinica, 2009, 35(8): 1525-1531. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01525
[19] GARNER W W, ALLARD H A.Further studies in photoperiodism: the response of the plant to relative length of day and night. Journal of Agricultural Research, 1923, 23: 871-920.
[20] GARNER W W, ALLARD H A.Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiology, 1933, 8(3): 347-356.
doi: 10.1104/pp.8.3.347
[21] BORTHWICK H A, PARKER M W.Photoperiodic responses of several varieties of soybeans. Botanical Gazette, 1939, 101(2): 341-365.
doi: 10.1086/334874
[22] UPADHYAY A P, SUMMERFIELD R H, ELLIS R H, ROBERTS R H, QI A.Variation in the durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering among eight maturity isolines of soyabean [Glycine max (L.) Merrill]. Annual Botany, 1994, 74(1): 97-101.
[23] 韩天富. 大豆开花后的光周期反应. 大豆科学, 1996, 15(1): 69-73.
HAN T F.A review on the post-flowering photoperiodic responses in soybean. Soybean Science, 1996, 15(1): 69-73. (in Chinese)
[24] 韩天富, 盖钧镒, 邱家驯. 中国大豆不同生态类型代表品种开花前、开花后光周期反应的比较研究. 大豆科学, 1998, 17(2): 35-40.
HAN T F, GAI J Y, QIU J X.A comparative study on pre-and post-flowering photoperiod response in various ecotypes of soybeans. Soybean Science, 1998, 17(2): 35-40. (in Chinese)
[25] RAHMAN M M, HAMPTON J G, HILL M J.Soybean development under the cool temperate environment of Canterbury, New Zealand. Journal of New Seeds, 2006, 7(4): 17-36.
[26] KANTOLIC A G, SLAFER G A.Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Annuals of Botany, 2007, 99(5): 925-933.
doi: 10.1093/aob/mcm033
[27] 徐豹, 路琴华. 大豆生态研究: Ⅰ.中国不同纬度野生大豆的光温生态分析. 大豆科学, 1983, 2(3): 155-168.
XU B, LU Q H.Research on soybean ecology: I. ecological analysis of light and temperature of wild soybeans in different latitudes in China. Soybean Science, 1983, 2(3): 155-168. (in Chinese)
[28] 汪越胜, 马宏惠. 中国大豆地理生态型生育前期光温综合反应. 安徽师范大学学报(自然科学版), 2000, 28(1): 40-42.
WANG Y S, MA H H.Photothermal comprehensive response of days to flowering of soybean ecotypes of China. Journal of Anhui Normal University (Natural Science Edition), 2000, 28(1): 40-42. (in Chinese)
[29] 汪越胜, 陈冬生, 马宏惠. 中国大豆成熟期光温综合反应与短光照反应间关系. 安徽师范大学学报(自然科学版), 2000, 23(3): 231-233.
WANG Y S, CHEN D S, MA H H.Relationship between photothermal comprehensive response and response to short photoperiod of Chinese soybeans in days to maturity. Journal of Anhui Normal University (Natural Science Edition), 2000, 23(3): 231-233. (in Chinese)
[30] SINGH R J, HYMOWITZ T.Soybean genetic resources and crop improvement. Genome, 1999, 42(4): 605-616.
doi: 10.1139/g99-039
[31] LIU X Q, WU J A, REN H X, QI Y X, LI C Y, CAO J Q, ZHANG X Y, ZHANG Z P, CAI Z Y, GAI J Y.Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breeding Science, 2017, 67(3): 221-232.
doi: 10.1270/jsbbs.16167
[32] 徐豹. 中国野生大豆(G. soja)研究十年.吉林农业科学, 1989, 55(1): 5-13.
XU B.Ten years of research on Chinese wild soybeans (G. soja). Journal of Jilin Agricultural Sciences, 1989, 55(1): 5-13. (in Chinese)
[33] 李莹. 野生大豆和生态环境关系的统计分析. 中国油料, 1981, 3(4): 57-60.
LI Y.Statistical analysis of the relationship between wild soybean and ecological environment. Chinese Journal of Oil Crop Sciences, 1981, 3(4): 57-60. (in Chinese)
[34] 徐树传, 童川拉, 游榕青, 陈孝宽, 危嫩弟. 野生大豆光温反应观察研究. 福建农业科技, 1985, 16(5): 19-20.
XU S Z, TONG C L, YOU R Q, CHEN X K, WEI N D.Observation and research on the photothermal response of wild soybean. Fujian Agricultural Science and Technology, 1985, 16(5): 19-20. (in Chinese)
[35] 舒世珍, 李福山, 常汝镇. 大豆主要性状演化的初步研究. 作物学报, 1986, 12(4): 255-260.
SHU S Z, LI F S, CHANG R Z.Preliminary study on the evolution of soybean main traits. Acta Agronomica Sinica, 1986, 12(4): 255-260. (in Chinese)
[36] 徐豹, 路琴华. 不同进化类型大豆花荚形成和脱落的比较研究. 大豆科学, 1988, 7(2): 103-112.
XU B, LU Q H.Comparative study on the formation and shedding of soybean flower pods with different evolution types. Soybean Science, 1988, 7(2): 103-112. (in Chinese)
[37] 韩天富, 盖钧镒, 陈风云, 邱家驯. 生育期结构不同的大豆品种的光周期反应和农艺性状. 作物学报, 1998, 24(5): 550-557.
HAN T F, GAI J Y, CHEN F Y, QIU J X.Photoperiod response and agronomic traits of soybean varieties with different growth period structures. Acta Agronomica Sinica, 1998, 24(5): 550-557. (in Chinese)
[38] 常汝镇. 关于栽培大豆起源的研究. 中国油料, 1989, 11(1): 3-9.
CHANG R Z.Research on the origin of cultivated soybean. Chinese Journal of Oil Crop Sciences, 1989, 11(1): 3-9. (in Chinese)
[39] WANG L X, GUAN R X, LIU Z X, CHANG R Z, QIU L J.Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science, 2006, 46(3): 1032-1038.
doi: 10.2135/cropsci2005.0051
[40] LI Y H, ZHANG C,SMULDERS M J M, LI W, MA Y S, XU Q, CHANG R Z, QIU L J. Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River. Genetic Resources and Crop Evolution, 2013, 60(2): 763-776.
doi: 10.1007/s10722-012-9873-z
[41] 吕世霖. 关于我国栽培大豆原产地问题的探讨. 中国农业科学, 1978, 11(4): 90-94.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!