Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (11): 2107-2138.doi: 10.3864/j.issn.0578-1752.2012.11.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genetic Diversity and Population Structure of Important Chinese Maize Inbred Lines Revealed by 40 Core Simple Sequence Repeats (SSRs)

 LIU  Zhi-Zhai, WU  Xun, LIU  Hai-Li, LI  Yong-Xiang, LI  Qing-Chao, WANG  Feng-Ge, SHI  Yun-Su, SONG  Yan-Chun, SONG  Wei-Bin, ZHAO  Jiu-Ran, LAI  Jin-Sheng, LI  Yu, WANG  Tian-Yu   

  1. 1.中国农业科学院作物科学研究所,北京 100081
    2.北京市农林科学院玉米研究中心,北京 100097
    3.中国农业大学国家玉米改良中心,北京 100094
    4.西南大学玉米研究所,重庆 400715
  • Received:2011-12-25 Online:2012-06-01 Published:2012-02-29

Abstract: 【Objective】Genetic assessment, i.e. gene diversity and population structure, of representative accessions is of great importance in the utilization of these germplasm, allele mining, and analysis of association mapping. 【Method】Forty core SSRs developed for the fingerprinting and uniformity analysis of Chinese maize varieties, covered the entire maize genome, were used to genomic scanning of a total set of 820 maize inbred lines across China by the genotyping technology based on fluorescence sequencing. The genetic diversity of these inbred lines was performed via the software PowerMarker V3.25, and the population structure of these materials was revealed by Structure V2.3.3. 【Result】Among 40 SSRs, the No. of alleles of these 820 inbred lines averaged 36.87, ranging from 10 to 72, the gene diversity averaged 0.8430, ranging from 0.46 to 0.9458, and the PIC averaged 0.83, ranging from 0.43 to 0.94. Result from the clustering analysis based on a model-based method indicated that these 820 assays could be divided into 5 groups, including Lancaster, Lüda red cob (LRC), Tang si ping tou (TSPT), Reid (PA and BSSS), and P group (or PB). The corresponding average allele no. per locus of these 5 groups was 24.23, 22, 11.8, 17.45, and 14.65, and the gene diversity was 0.8145, 0.8398, 0.7054, 0.7686, and 0.7495, respectively. 【Conclusion】Results revealed by the core SSRs showed a relatively higher abundant genetic variation and a rather high level of gene diversity, while significant difference existed among 5 groups. Diversity level of Lancaster and LRC was statistically higher than that of Reid, TSPT, and P, and groups of TSPT and P possessed relatively lower genetic diversity.

Key words: maize (Zea mays L.), inbred line, gene diversity, population structure

[1] Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez J, Liu K, Buckler E S, Doebley J. Genetic diversity and population structure of teosinte. Genetics, 2005, 169: 2241-2254.

[2] Hagdorn S, Lamkey K R, Frisch M, Guimaraes P E O, Melchinger A E. Molecular genetic diversity among progenitors and derived elite lines of BSSS and BSCB1 maize populations. Crop Sciences, 2003, 43: 474-482.

[3] Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H P, Bohn M, Melchinger A E. Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theoretical and Applied Genetics, 2005, 111: 906-913.

[4] Emington D, Thornsberry J, Matsuoka Y, Wilson L, Whitt S, Doebley J, Kresovich S, Goodman M, Buckler E. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences of the USA, 2001, 98(20): 11479-11484.

[5] 王荣焕, 王天宇, 黎 裕. 植物基因组中的连锁不平衡. 遗传, 2007, 29(11): 1317-1329. Wang R H, Wang T Y, Li Y. Linkage disequilibrium in plant genomes. Hereditas, 2007, 29(11): 1317-1329. (in Chinese)

[6] 谭贤杰, 吴子恺, 程伟东, 王天宇, 黎 裕. 关联分析及其在植物 遗传学研究中的应用. 植物学报, 2011, 46(1): 108-118. Tan X J, Wu Z K, Cheng W D, Wang T Y, Li Y. Association analysis and its application in plant genetic research. Chinese Bulletin of Botany, 2011, 46(1): 108-118. (in Chinese)

[7] Lu Y, Yan J, Guimaraes C, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek B, Magorokosho C, Mugo S, Makumbi D, Parentoni S, Shah T, Rong T, Crouch J, Xu Y. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theoretical and Applied Genetics, 2009, 120: 93-115.

[8] Yan J, Shah T, Warburton M, Buckler E, McMullen M, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 2009, 4(12): e8451.

[9] Yang X, Gao S, Xu S, Zhang Z, Prasanna B, Li L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28: 511-526.

[10] Yang X, Yan J, Shah T, Warburton M, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theoretical and Applied Genetics, 2010, 121: 417-431.

[11] Li Y, Shi Y S, Cao Y S, Wang T Y. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genetic Resources and Crop Evolution, 2004, 51: 845-852.

[12] Yu Y, Wang R, Shi Y, Song Y, Wang T, Li Y. Genetic diversity and structure of the core collection for maize inbred lines in China. Maydica, 2007, 52: 181-194.

[13] Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theoretical and Applied Genetics, 2008, 117: 1141-1153.

[14] Liu Z Z, Guo R H, Zhao J R, Cai Y L, Wang F G, Cao M J, Wang R H, Shi Y S, Song Y C, Wang T Y, Li Y. Population structure and genetic diversity of maize landraces from the Southwest Maize Region of China. Maydica, 2009, 54: 63-76.

[15] Liu Z, Guo R, Zhao J, Cai Y, Wang F, Cao M, Wang R, Shi Y, Song Y, Wang T, Li Y. Genetic diversity of two important groups of maize landraces with same name in China revealed by M13 tailed-primer SSRs. Agricultural Sciences in China, 2009, 8(1): 15-23.

[16] Liu Z, Guo R, Zhao J, Cai Y, Wang F, Cao M, Wang R, Shi Y, Song Y, Wang T, Li Y. Analysis of genetic diversity and population structure of maize landraces from the South Maize Region of China. Agricultural Sciences in China, 2010, 9(9): 1251-1262.

[17] 刘志斋, 宋燕春, 石云素, 蔡一林, 程伟东, 覃兰秋, 黎 裕, 王天 宇. 中国玉米地方品种的种族划分及其特点研究. 中国农业科学, 2010, 43(5): 899-910. Liu Z Z, Song Y C, Shi Y S, Cai Y L, Cheng W D, Qin L Q, Li Y, Wang T Y. Racial classificaion and characterization of maize landraces in China. Scientia Agricltura Sinica, 2010, 43(5): 899-910. (in Chinese)

[18] Saghi-maroof M, Soliman K, Jorgensen R, Allard R. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the USA, 1984, 81: 8014-8018.

[19] 赵久然, 王凤格, 郭景伦, 陈 刚, 廖 琴, 孙世贤, 陈如明, 刘龙 洲. 中国玉米新品种DNA 指纹库建立系列研究: Ⅱ. 适于玉米自 交系和杂交种指纹图谱绘制的SSR 核心引物的确定. 玉米科学, 2003, 11(2): 3-5, 8. Zhao J R, Wang F G, Guo J L, Chen G, Liao Q, Sun S X, Chen R M, Liu L Z. Series of research on establishing DNA fingerprinting pool of Chinese new maize cultivars: Ⅱ. confirmation of a set of SSR core primer pairs. Journal of Maize Sciences, 2003, 11(2): 3-5, 8. (in Chinese)

[20] Wang F, Zhao J, Dai J, Yi H, Kuang M, Sun Y, Yu X, Guo J, Wang L. Selection and development of representative simple sequence repeat primers and multiplex SSR sets for high throughput automated genotyping in maize. Chinese Science Bulletin, 2007, 52(2): 215-223.

[21] Wang F G, Tian H L, Zhao J R, Yi H M, Wang L, Song W. Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Maydica, 2011, 56: 1693-1699.

[22] Liu J, Muse S. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.

[23] Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.

[24] Hubisz M, Falush D, Stephens M, Pritchard J. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 2009, 9(5): 1322-1332.

[25] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14: 2611-2620.

[26] 李新海, 袁力行, 李晓辉, 张世煌, 李明顺, 李文华. 利用SSR 标 记划分70 份我国玉米自交系的杂种优势群. 中国农业科学, 2003, 36(6): 622-627. Li X H, Yuan L X, Li X H, Zhang S H, Li M S, Li W H. Heterotic grouping of 70 maize inbred lines by SSR markers. Scientia Agricltura Sinica, 2003, 36(6): 622-627. (in Chinese)

[27] Reif J C, Warburton M L, Xia X C, Hoisington D A, Crossa J, Taba S, Muminovic J, Bohn M, Frisch M, Melchinger A E. Grouping of accessions of Mexican races of maize revisited with SSR markers. Theoretical and Applied Genetics, 2006, 113: 177-185.

[28] Patto M C V, Moreira P M, Almeida N, Satovic Z, Pego S. Genetic diversity evolution through participatory maize breeding in Portugal. Euphytica, 2008, 161: 283-291.

[29] Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith J S C, Jaqueth J, Smith O S, Doebley J. An analysis of genetic diversity across the maize genome using microsatellites. Genetics, 2005, 169: 1617-1630.

[30] Vigouroux Y, Glaubitz J C, Matsuoka Y, Goodman M M, Sánchez G, Doebley J. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. American Journal of Botany, 2008, 95(10): 1240-1253.

[31] Warburton M L, Reif J C, Frisch M, Bohn M, Bedoya C, Xia X, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger A E. Genetic diversity in CIMMYT nontemperate maize germplasm: Landraces, open pollinated varieties varieties, and inbred lines. Crop Sciences, 2008, 48: 617-624.

[32] Petit R, Mousadik A, Pond O. Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 1998, 12: 844-855.

[33] 王懿波, 王振华, 王永普, 张 新, 陆利行. 中国玉米主要种质杂 交优势利用模式研究. 中国农业科学, 1997, 30(4): 16-24. Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X. Studies on the deterosis utilizing models of main maize germplasm in China. Scientia Agricltura Sinica, 1997, 30(4): 16-24. (in Chinese)

[34] Senior M L, Murphy J P, Goodman M M, Stuber C W. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sciences, 1998, 38: 1088-1098.

[35] 李玉玲, 吕德彬, 王延召, 陈绍江, 汤继华. 利用SSR 标记研究爆 裂玉米自交系的遗传变异及其与普通玉米的遗传关系. 中国农业 科学, 2004, 37(11): 1604-1610. Li Y L, Lü D B, Wang Y Z, Chen S J, Tang J H. Genetic variation of popcorn inbreds and their genetic relationship with normal corn inbreds revealed by SSR markers. Scientia Agricltura Sinica, 2004, 37(11): 1604-1610. (in Chinese)

[36] 刘宗华, 汤继华, 王庆东, 胡彦民, 季洪强, 陈伟程. 河南省主要 玉米品种杂种优势利用模式分析. 中国农业科学, 2006, 39(8): 1689-1696. Liu Z H, Tang J H, Wang Q D, Hu Y M, Ji H Q, Chen W C. Analysis of heterocic patterns of maize hybrids used in China’s Henan province. Scientia Agricltura Sinica, 2006, 39(8): 1689-1696. (in Chinese)

[37] 吴承来, 张倩倩, 董炳雪, 李圣福, 张春庆. 我国部分玉米自交系 遗传关系和遗传结构解析. 作物学报, 2010, 36(11): 1820-1831. Wu C L, Zhang Q Q, Dong B X, Li S F, Zhang C Q. Analysis of genetic structure and genetic relationships of partial maize inbred lines in China. Acta Agronomica Sinica, 2010, 36(1): 1820-1831. (in Chinese)

[38] 袁力行, 傅骏骅, 张世煌, 刘新芝, 彭泽斌, 李新海. 利用RFLP 和SSR 标记划分玉米自交系杂种优势群的研究. 作物学报, 2001, 27(2): 149-156. Yuan L X, Fu J H, Zhang S H, Liu X Z, Peng Z B, Li X H. Heterotic grouping of maize inbred lines using RFLP and SSR markers. Acta Agronomica Sinica, 2001, 27(2): 149-156. (in Chinese)

[39] 宁家林, 高洪敏, 曲 岗, 于 兵, 何 晶. 旅大红骨种群在我国 玉米育种与生产中的利用. 杂粮作物, 2002, 22(2): 63-65. Ning J L, Gao H M, Qu G, Yu B, He J. Utilization of inbred lines of luda red cob group in corn breeding and produciton in China. Rain Fed Crops, 2002, 22(2): 63-65. (in Chinese)

[40] 丰 光, 李妍妍, 景希强, 王 亮, 卢秉生. 中国不同时期玉米自 交系聚类及杂优模式分析. 杂粮作物, 2010, 30(2): 63-67. Feng G, Li Y Y, Jing X Q, Wang L, Lu B S. Key inbred lines cluster analysis and heterosis model analysis of different periond maize hybrids in China. Rain Fed Crops, 2010, 30(2): 63-67. (in Chinese)

[41] 徐文伟. 自交系丹340 及其衍生系的育成对中国玉米生产的影响. 杂粮作物, 2010, 30(4): 255-257. Xu W W. Effects of inbred line Dan 340 and its derivative lines on maize production in China. Rain Fed Crops, 2010, 30(4): 255-257. (in Chinese)

[42] 滕文涛, 曹靖生, 陈彦惠, 刘向辉, 景希强, 张发军, 李建生. 十年 来中国玉米杂种优势群及其模式变化的分析. 中国农业科学, 2004, 37(12): 1804-1811. Teng W T, Cao J S, Chen Y H, Liu X H, Jing X Q, Zhang F J, Li J S. Analysis of maize heterotic groups and patterns during past decade in China. Scientia Agricultura Sinica, 2004, 37(12): 1804-1811. (in Chinese)

[43] 袁力行, 傅骏骅, 刘新芝, 彭泽斌, 张世煌, 李新海, 李连城. 利用 分子标记预测玉米杂种优势的研究. 中国农业科学, 2000, 33(6): 6-12. Yuan L X, Fu J H, Liu X Z, Peng Z B, Zhang S H, Li X H, Li L C. Study on prediction of heterosis in maize (Zea mays L.) using the molecular markers. Scientia Agricultura Sinica, 2000, 33(6): 6-12. (in Chinese)

[44] Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, Zhang X, Wang S, Chen S, Li J, Fu Y, Springer N M, Yang H, Wang J, Dai J, Schnable P S, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 2010, 42: 1027-1031.
[1] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[2] ZHANG Xiang,SHI YaXing,LU BaiShan,WU Ying,LIU Ya,WANG YuanDong,YANG JinXiao,ZHAO JiuRan. Creation of New Maize Variety with Fragrant Rice Like Flavor by Editing BADH2-1 and BADH2-2 Using CRISPR/Cas9 [J]. Scientia Agricultura Sinica, 2021, 54(10): 2064-2072.
[3] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[4] LI JianXin,XI MengHui,ZHANG JiaWei,XI MengJuan,TIAN Ding,LU YiZhe,CHEN XiaoYang,LI WeiHua,ZHANG XueHai,TANG JiHua. Construction and Utilization of Database for Chinese Maize Varieties and Their Genealogy [J]. Scientia Agricultura Sinica, 2020, 53(16): 3404-3411.
[5] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[6] WEI Xiao,ZHANG QiuPing,LIU Ning,ZHANG YuPing,XU Ming,LIU Shuo,ZHANG YuJun,MA XiaoXue,LIU WeiSheng. Genetic Diversity of the Prunus salicina L. from Different Sources and Their Related Species [J]. Scientia Agricultura Sinica, 2019, 52(3): 568-578.
[7] ZHAO JiuRan, LI ChunHui, SONG Wei, WANG YuanDong, ZHANG RuYang, WANG JiDong, WANG FengGe, TIAN HongLi, WANG Rui. Genetic Diversity and Population Structure of Important Chinese Maize Breeding Germplasm Revealed by SNP-Chips [J]. Scientia Agricultura Sinica, 2018, 51(4): 626-634.
[8] DONG HeZhong,ZHANG YanJun,ZHANG DongMei,DAI JianLong,ZHANG WangFeng. New Grouped Harvesting-Based Population Structures of Cotton [J]. Scientia Agricultura Sinica, 2018, 51(24): 4615-4624.
[9] GAO Yuan, WANG Kun, WANG DaJiang, ZHAO JiRong, ZHANG CaiXia, CONG PeiHua, LIU LiJun, LI LianWen, PIAO JiCheng. The Genetic Diversity and Population Structure Analysis on   Malus baccata (L.) Borkh from 7 Sources [J]. Scientia Agricultura Sinica, 2018, 51(19): 3766-3777.
[10] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[11] SHI Jia, ZHAI ShengNan, LIU JinDong, WEI JingXin, BAI Lu, GAO WenWei, WEN WeiE, HE ZhongHu, XIA XianChun, GENG HongWei. Genome-Wide Association Study of Grain Peroxidase Activity in Common Wheat [J]. Scientia Agricultura Sinica, 2017, 50(21): 4212-4227.
[12] WANG RuiYun, LIU XiaoYu, WANG HaiGang, LU Ping, LIU MinXuan, CHEN Ling, QIAO ZhiJun. Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) Germplasm Available in China Using High Motif Nucleotide Repeat SSR Markers [J]. Scientia Agricultura Sinica, 2017, 50(20): 3848-3859.
[13] LUO Kai, LU Hui-xiang, WU Zheng-dan, WU Xue-li, YIN Wang, TANG Dao-bin, WANG Ji-chun, ZHANG Kai. Genetic Diversity and Population Structure Analysis of Main Sweet Potato Breeding Parents in Southwest China [J]. Scientia Agricultura Sinica, 2016, 49(3): 593-608.
[14] LIU Xiu-yun, LI Hui, LIU Zhi-guo, ZHAO Jin, LIU Meng-jun. Genetic Diversity and Structure of 255 Cultivars of Ziziphus jujuba Mill. [J]. Scientia Agricultura Sinica, 2016, 49(14): 2772-2791.
[15] ZHANG Ying-hu, MENG Shan, HE Jian-bo, WANG Yu-feng, XING Guang-nan, ZHAO Tuan-jie, GAI Jun-yi. The Genetic Constitution of Transgressive Segregation of the 100-Seed Weight in A Recombinant Inbred Line Population NJRSXG of Soybean [J]. Scientia Agricultura Sinica, 2015, 48(22): 4408-4416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!