Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 1903-1916.doi: 10.3864/j.issn.0578-1752.2022.10.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System

REN JunBo(),YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen(),YANG WenYu   

  1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
  • Received:2021-08-16 Accepted:2021-10-09 Online:2022-05-16 Published:2022-06-02
  • Contact: TaiWen YONG E-mail:1094186424@qq.com;scndytw@qq.com

Abstract:

【Objective】The purpose of this study was to explore the effects of interspecific distance on soil environment and root spatial distribution of maize-soybean intercropping, so as to provide a theoretical basis for crop roots to regulate the efficient utilization of nutrients.【Method】The field experiments were used one-factor randomized block design with 5 root interaction modes: maize-soybean intercropping spacing 30 cm (MS30), 45 cm (MS45), 60 cm (MS60), maize monoculture row spacing 100 cm (MM100), and soybean monoculture row spacing 100 cm (SS100). The changes of soil oxygen content, soil respiration rate, soil nutrient content, soil aggregate and root distribution were investigated.【Result】From dough stage (R4) to maturity stage (R6) of maize, as well as from the beginning seed (R5) to full maturity (R8) of soybean, the daily average soil oxygen content and soil respiration rate of intercropping treatment initially increased and then decreased later with the increase of interspecific distance; The soil oxygen content of maize was the highest in MS45, the lowest under MS30, while the soil respiration rate of intercropping was significantly lower than the monoculture. The soil respiration rate of soybean was the highest under MS45, which was 130.00% higher than that under SS100, while the soil oxygen content of intercropping was lower than that of monoculture. Compared with monoculture, the content of water-stable aggregates >5 mm in the soil of intercropping maize, the content of water-stable aggregates of 5-2 mm in the soil of intercropping soybean and the soil NO- 3-N were significantly increased, by 19.26%, 4.49%, and 18.07%, respectively; Among which, those contens under MS45 was the highest. During the co-growing period, compared with monoculture, the spatial distribution of maize and soybean roots under each intercropping treatment was asymmetrical, and the intercropping maize roots could extend horizontally below the space of soybean rows and grow deeper vertically. The root system of intercropping soybean was obviously inclined to the growth of soybean belt, and the total root length, root surface area, root volume and root dry weight of intercropping maize and soybean were lower than that of monoculture. After the maize was harvested, the intercropping soybean root system resumed growth and further extended in the horizontal and vertical directions. The root volume of MS45 was higher than those of monoculture. PCA analysis showed that soil nutrient content and water stable aggregate index were positively correlated with root morphological parameters.【Conclusion】Reasonable interspecific distance promoted the formation of soil large aggregates, increased soil oxygen content, improved soil aeration environment and soil nutrient, optimized the spatial distribution of crop roots, and promoted root growth and development.

Key words: maize-soybean intercropping, interspecific distance, soil oxygen content, soil respiration rate, soil water-stable aggregates, roots distribution

Fig. 1

Planting pattern of maize-soybean relay strip intercropping and monoculture MS30, MS45 and MS60 represent interspecific distance 30 cm, 45 cm and 60 cm of intercropping maize and soybean, respectively. MM100 and SS100 represent row spacing 100 cm of monoculture maize and soybean, respectively. The same as below"

Fig. 2

Schematic diagram of root sampling"

Table 1

Effects of different interspecific distances on morphological characteristics of root system of maize"

年份
Year
处理
Treatment
根长
Root length (cm)
根表面积
Root surface area (cm2)
根体积
Root volume (cm3)
根干重
Root dry weight (g)
根平均直径
Average root diameter (mm)
2019 MS30 3035.54±253.74b 1509.25±23.45b 25.03±1.16b 4.3±0.20b 0.57±0.08a
MS45 3376.46±200.61ab 1553.81±129.07b 26.71±4.15b 4.9±0.27b 0.54±0.09a
MS60 2392.95±11.91c 1341.97±67.88b 23.15±3.14b 4.48±0.49b 0.64±0.06a
MM100 3675.02±25.57a 1945.77±4.99a 31.23±3.07a 8.53±0.23a 0.68±0.02a
2020 MS30 3893.95±79.34bc 1154.58±20.41ab 34.8±3.59a 6.11±0.46ab 0.59±0.01a
MS45 5187.74±290.73ab 1267.58±110.99ab 38.5±2.52a 6.74±083ab 0.55±0.02b
MS60 3632.25±37.03c 1037.8±14.45b 36.8±0.44a 5.21±0.01b 0.56±0.01ab
MM100 5845.21±772.39a 1315.66±125.2a 38.86±2.16a 7.54±0.80a 0.50±0.01c
FF-value
年份 Years (Y) 46.53** 49.17** 43.75** 5.88* 2.84ns
种间距离
Interspecific distance (I)
12.50** 10.76** 3.27* 16.76* 0.50ns
年份×种间距离 Y×I 1.72ns 2.03ns 1.12ns 3.60* 1.80ns

Table 2

Effects of different interspecific distances on morphological characteristics of root system of soybean"

年份
Year
处理
Treatment
根长
Root length
(cm)
根表面积
Root surface area
(cm2)
根体积
Root volume
(cm3)
根干重
Root dry weight
(g)
根平均直径
Average root diameter (mm)
V5 R5 V5 R5 V5 R5 V5 R5 V5 R5
2019 MS30 184.32±25.89b 1763.96±16.46c 123.86±2.71b 731.08±34.28a 3.95±0.26b 20.38±1.56b 0.1±0.01b 4.53±0.21a 0.41±0.04a 0.57±0.03a
MS45 199.59±3.03b 1888.87±40.3b 131.21±7.98b 929.41±259.04a 4.24±0.36b 30.18±3.45a 0.15±0.02b 4.89±0.04a 0.42±0.03a 0.62±0.03a
MS60 283.76±25.48ab 1921.8±29.01b 149.87±15.78b 887.77±10.94a 4.74±0.38ab 27.15±0.12ab 0.16±0.03b 4.63±0.04a 0.44±0.02a 0.46±0.01b
SS100 618.77±223.59a 2509.44±7.38a 259.97±52.19a 976.92±55.63a 6.31±0.98a 27.34±3.05ab 0.48±0.05a 4.79±0.02a 0.37±0.01a 0.54±0.04ab
2020 MS30 233.42±42.44b 3451.57±33.06ab 139.99±8.48c 735.73±18.43a 3.39±0.11c 28.72±0.44b 0.23±0.05c 5.26±0.27b 0.33±0.02a 0.48±0.01b
MS45 347.75±49.28b 3699.95±112.31ab 193.35±8.65b 780.95±7.14a 3.97±0.11b 37.32±1.31a 0.55±0.04b 7.47±0.44a 0.36±0.04a 0.47±0.05b
MS60 373.8±128.96b 3162.52±249.54b 227.58±5.93b 722.74±6.23a 4.37±0.06b 29.59±0.29ab 0.31±0.14bc 6.9±0.37ab 0.4±0.03a 0.55±0.01ab
SS100 915.45±166.89a 3918.37±225.69a 303.66±25.46a 833.37±84.86a 5.69±0.30a 35.58±4.53ab 1.28±0.03a 7.65±1.00a 0.39±0.01a 0.57±0.01a
FF-value
年份 Years (Y) 3.41ns 291.45** 10.29** 2.59ns 2.32ns 14.780** 84.30** 49.55** 3.67ns 2.20ns
种间距离
Interspecific distance (I)
10.25** 11.28** 17.30** 1.09ns 11.53** 5.51** 65.14** 4.21* 0.99ns 1.26ns
年份×种间距离 Y×I 0.47ns 2.08ns 0.72ns 0.32ns 0.07ns 0.67ns 14.71** 2.51ns 1.13ns 7.63**

Fig. 3

Root spatial distribution of maize and soybean under different interspecific distances in 2020 A: Maize dough stage (R4); B: Soybean 5-trifoliate period (V5); C: Soybean beginning seed (R5). Each square represents the root dry weight of 1 800 cm3 volume soil. Plants in green are those whose root distribution is shown in the corresponding panel. Plants with gray color show positions of the co-cropped species"

Fig. 4

Diurnal variation of soil oxygen content of maize under different interspecific distances Maize R2: Blister stage; R4: Dough stage; R6: Mature stage"

Fig. 5

Diurnal variation of soil oxygen content of soybean under different interspecific distances Soybean R2: Full bloom; R5: Beginning seed; R8:Full maturity"

Fig. 6

Changes of soil respiration rate of maize and soybean under different interspecific distances A: R2, R4 and R6 represent the blister stage, dough stage and mature stage of maize, respectively; B: R2, R5 and R8 represent the full bloom, beginning seed and full maturity of soybean, respectively. Different lowercase letters indicate significant differences among different regulator treatments at 0.05 probability level. The same as below"

Fig. 7

Changes of soil water-stable aggregate content of maize and soybean under different interspecific distances"

Table 3

Effects of different interspecific distances on soil nutrients of maize and soybean"

处理
Treatment
玉米R4 Maize R4 大豆V5 Soybean V5 大豆R5 Soybean R5
土壤总氮Total N (g·kg-1) 土壤铵态氮NH+ 4-N (mg·kg-1) 土壤硝态氮NO- 3-N (mg·kg-1) 土壤总态氮Total N (g·kg-1) 土壤铵态氮NH+ 4-N (mg·kg-1) 土壤硝态氮NO- 3-N (mg·kg-1) 土壤总态氮Total N (g·kg-1) 土壤铵态氮NH+ 4-N (mg·kg-1) 土壤硝态氮NO- 3-N (mg·kg-1)
MS30 1.40±0.05ab 6.67±0.03c 32.26±2.31b 1.33±0.04ab 9.81±0.12a 35.78±0.40b 1.07±0.04a 7.49±0.29a 12.83±0.78ab
MS45 1.35±0.04bc 9.11±0.41ab 30.21±3.47b 1.26±0.02bc 10.05±0.41a 41.23±2.67a 1.16±0.13a 7.23±0.77a 11.56±0.46c
MS60 1.21±0.07c 7.35±0.13bc 13.63±0.64c 1.38±0.04a 9.05±0.73a 39.14±0.51a 1.16±0.09a 7.19±0.27a 12.00±0.24bc
MM/SS100 1.53±0.03a 10.10±1.04a 49.27±2.72a 1.18±0.03c 8.40±0.94a 34.92±2.47b 1.30±0.17a 7.95±1.32a 13.10±0.90a

Fig. 8

PCA analysis of root characteristics and soil physicochemical properties of maize and soybean A: Maize dough stage (R4); B:Soybean 5-trifoliate period (V5)"

[1] FAN Z L, CHAI Q, YU A Z, ZHAO C, YIN W, HU F L, CHEN G D, CAO W D, COULTER J A. Water and radiation use in maize-pea intercropping is enhanced with increased plant density. Agronomy Journal, 2020, 112(1): 257-273.
doi: 10.1002/agj2.20009
[2] LIU X, RAHMAN T, YANG F, SONG C, YONG T W, LIU J, ZHANG C Y, YANG W Y. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE, 2017, 12(1): e0169218.
doi: 10.1371/journal.pone.0169218
[3] BROOKER R W, BENNETT A E, CONG W F, DANIELL T J, GEORGE T S, HALLETT P D, HAWES C, IANNETTA P P, JONES H G, KARLEY A J, LI L, MCKENZIE B M, PAKEMAN R J, PATERSON E, SCHOB C, SHEN J, SQUIRE G, WATSON C A, ZHANG C, ZHANG F, ZHANG J, WHITE P J. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107-117.
doi: 10.1111/nph.13132
[4] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量,根系形态及产量的影响. 作物学报, 2015, 41(4): 642-650.
doi: 10.3724/SP.J.1006.2015.00642
YANG F, LOU Y, LIAO D P, GAO R C, YONG T W, WANG X C, LIU W G, YANG W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015, 41(4): 642-650. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00642
[5] RICH S M, WATT M. Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 2013, 64(5): 1193-1208.
doi: 10.1093/jxb/ert043
[6] DREW M C. Soil aeration and plant root metabolism. Soil Science, 1992, 154(4): 259-268.
doi: 10.1097/00010694-199210000-00002
[7] 周晚来, 易永健, 屠乃美, 谭志坚, 汪洪鹰, 杨媛茹, 王朝云, 易镇邪. 根际增氧对水稻根系形态和生理影响的研究进展. 中国生态农业学报, 2018, 26(3): 367-376.
ZHOU W L, YI Y J, TU N M, TAN Z J, WANG H Y, YANG Y R, WANG C Y, YI Z X. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367-376. (in Chinese)
[8] GAMBOA C H, VEZZANI F M, KASCHUK G, FAVARETTO N, COBOS J Y G, COSTA G A D. Soil-root dynamics in maize- beans-eggplant intercropping system under organic management in a subtropical region. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 1480-1490.
doi: 10.1007/s42729-020-00227-9
[9] LIU Y X, SUN J H, ZHANG F F, LI L. The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant and Soil, 2019, 447(1-2): 39-53.
doi: 10.1007/s11104-019-04034-9
[10] LIU Y X, ZHANG W P, SUN J H, LI X F, CHRISTIE P, LI L. High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 2015, 397(1-2): 387-399.
doi: 10.1007/s11104-015-2654-7
[11] 刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273.
LIU J Y, ZHOU Z C, SU X M. Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273. (in Chinese)
[12] 张维俊, 李双异, 徐英德, 刘旭, 安婷婷, 朱平, 彭畅, 汪景宽. 土壤孔隙结构与土壤微环境和有机碳周转关系的研究进展. 水土保持学报, 2019, 33(4): 1-9.
ZHANG W J, LI S Y, XU Y D, LIU X, AN T T, ZHU P, PENG C, WANG J K. Advances in research on relationships between soil pore structure and soil miocroenvironment and organic carbon turnover. Journal of Soil and Water Conservation, 2019, 33(4): 1-9. (in Chinese)
[13] LI L, SUN J H, ZHANG F S, GUO T W, BAO X G, SMITH F A, SMITH S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147(2): 280-290.
doi: 10.1007/s00442-005-0256-4
[14] 王鹏, 牟溥, 李云斌. 植物根系养分捕获塑性与根竞争. 植物生态学报, 2012, 36(11): 1184-1196.
doi: 10.3724/SP.J.1258.2012.01184
WANG P, MOU P, LI Y B. Review of root nutrient foraging plasticity and root competition of plants. Chinese Journal of Plant Ecology, 2012, 36(11): 1184-1196. (in Chinese)
doi: 10.3724/SP.J.1258.2012.01184
[15] XIA H Y, ZHAO J H, SUN J H, BAO X G, CHRISTIE P, ZHANG F S, LI L. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013, 150: 52-62.
doi: 10.1016/j.fcr.2013.05.027
[16] GAO Y, DUAN A W, QIU X Q, LIU Z G, SUN J S, ZHANG J P, WANG H Z. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management, 2010, 98(1): 199-212.
doi: 10.1016/j.agwat.2010.08.021
[17] LI L, LI S M, SUN J H, ZHOU L L, BAO X G, ZHANG H G, ZHANG F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192-11196.
[18] 李玉英, 胡汉升, 程序, 孙建好, 李隆. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630.
LI Y Y, HU H S, CHENG X, SUN J B, LI L. Effects of interspecific interactions and nitrogen fertilization rates on above- and below- growth in faba bean/mazie intercropping system. Acta Ecologica Sinica, 2011, 31(6):1617-1630. (in Chinese)
[19] XIA H Y, WANG Z G, ZHAO J H, SUN J H, BAO X G, CHRISTIE P, ZHANG F S, LI L. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research, 2013, 154: 53-64.
doi: 10.1016/j.fcr.2013.07.011
[20] 庞婷, 帅鹏, 陈平, 杜青, 付智丹, 杨文钰, 雍太文. 不同结瘤品种和行间距对套作大豆根瘤生长及物质积累与分配的影响. 浙江大学学报(农业与生物科学版), 2017, 43(4): 451-461.
PANG T, SHUAI P, CHEN P, DU Q, FU Z D, YANG W Y, YONG T W. Effects of different nodulation varieties and row spacings on nodule growth, dry matter accumulation and distribution of relay strip intercropping soybean. Journal of Zhejiang University(Agriculture and Life Sciences), 2017, 43(4): 451-461. (in Chinese)
[21] WANG M, LIU X T, ZHANG J T, LI X J, WANG G D, LI X Y, LU X R. Diurnal and seasonal dynamics of soil respiration at temperate Leymus chinensis meadow steppes in western Songnen plain, China. Chinese Geographical Science, 2014, 24(3): 287-296.
doi: 10.1007/s11769-014-0682-5
[22] 依艳丽. 土壤物理研究法. 北京: 北京大学出版社. 2009: 59-63.
YI Y L. Soil Physics Research Method. Beijing: Beijing University Press, 2009: 59-63. (in Chinese)
[23] 杜森. 土壤分析技术规范(第二版). 北京: 中国农业出版社, 2006: 44-49.
DU S. Technical Specification for Soil Analysis (2nd Edition). Beijing: China Agricultural Press, 2006: 44-49. (in Chinese)
[24] KRAVCHENKO A N, GUBER A K. Soil pores and their contributions to soil carbon processes. Geoderma, 2017, 287: 31-39.
doi: 10.1016/j.geoderma.2016.06.027
[25] SONG Y N, ZHANG F S, MARSCHNER P, FAN F L, GAO H M, BAO X G, SUN J H, LI L. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 2006, 43(5): 565-574.
doi: 10.1007/s00374-006-0139-9
[26] OBALUM S E, OBI M E. Physical properties of a sandy loam Ultisol as affected by tillage-mulch management practices and cropping systems. Soil and Tillage Research, 2010, 108(1-2): 30-36.
doi: 10.1016/j.still.2010.03.009
[27] RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44(2): 81-99.
[28] 雷宏军, 胡世国, 潘红卫, 臧明, 刘鑫, 李轲. 土壤通气性与加氧灌溉研究进展. 土壤学报, 2017, 54(2): 297-308.
LEI H J, HU S G, PAN H W, ZANG M, LIU X, LI K. Advancement in research on soil aeration and oxygation. Acta Pedologica Sinica, 2017, 54(2): 297-308. (in Chinese)
[29] LIU S B, CHAI Q, HUANG G B. Relationships among soil respiration, soil temperature and dry matter accumulation for wheat-maize intercropping in an arid environment. Canadian Journal of Plant Science, 2013, 93(4): 715-724.
doi: 10.4141/cjps2012-274
[30] 张静, 刘娟, 陈浩, 杜彦修, 李俊周, 孙红正, 赵全志. 干湿交替条件下稻田土壤氧气和水分变化规律研究. 中国生态农业学报, 2014, 22(4): 408-413.
ZHANG J, LIU J, CHEN H, DU Y X, LI J Z, SUN H Z, ZHAO Q Z. Change in soil oxygen and water contents under alternate wetting and drying in paddy fields. Chinese Journal of Eco-Agriculture, 2014, 22(4): 408-413. (in Chinese)
[31] 王维钰, 乔博, AKHTAR K, 袁率, 任广鑫, 冯永忠. 免耕条件下秸秆还田对冬小麦-夏玉米轮作系统土壤呼吸及土壤水热状况的影响. 中国农业科学, 2016, 49(11): 2136-2152.
WANG W Y, QIAO B, AKHTAR K, YUAN S, REN G X, FENG Y Z. Effects of straw returning to field on soil respiration and soil water heat in winter wheat-summer maize rotation system under no tillage. Scientia Agricultura Sinica, 2016, 49(11): 2136-2152. (in Chinese)
[32] HAN G X, ZHOU G S, XU Z Z, YANG Y, LIU J L, SHI K Q. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 2007, 39(2): 418-425.
doi: 10.1016/j.soilbio.2006.08.009
[33] 朱艳, 蔡焕杰, 宋利兵, 侯会静, 陈慧. 加气灌溉下气候因子和土壤参数对土壤呼吸的影响. 农业机械学报, 2016, 47(12): 223-232.
ZHU Y, CAI H J, SONG L B, HOU H J, CHEN H. Effects of climatic factors and soil parameters on soil respiration under oxygation conditions. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 223-232. (in Chinese)
[34] 赵财, 陈桂平, 柴强, 文玉良. 不同种植模式对农田土壤呼吸速率的影响. 甘肃农业大学学报, 2016, 51(6): 24-29.
ZHAO C, CHEN G P, CHAI Q, WEN Y L. Effects of different cropping systems on farmland soil respiration. Journal of Gansu Agricultural University, 2016, 51(6): 24-29. (in Chinese)
[35] 雍太文, 刘小明, 刘文钰, 周丽, 宋春, 杨峰, 蒋利, 王小春, 杨文钰. 减量施氮对玉米-大豆套作系统下作物氮素吸收和利用效率的影响. 生态学报, 2015, 35(13): 4473-4482.
YONG T W, LIU X M, LIU W Y, ZHOU L, SONG C, YANG F, JIANG L, WANG X C, YANG W Y. Effects of reduced nitrogen application on nitrogen uptake and utilization efficiency in maize- soybean relay strip intercropping system. Acta Ecologica Sinica, 2015, 35(13) :4473-4482. (in Chinese)
[36] 雍太文, 杨文钰, 任万军, 樊高琼, 向达兵. 两种三熟套作体系中的氮素转移及吸收利用. 中国农业科学, 2009, 42(9): 3170-3178.
YONG T W, YANG W Y, REN W J, FAN G Q, XIANG D B. Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. Scientia Agricultura Sinica, 2009, 42(9): 3170-3178. (in Chinese)
[37] 刘小明, 雍太文, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作体系土壤氮素残留和氮肥损失的影响. 应用生态学报, 2014, 25(8): 2267-2274.
LIU X M, YONG T W, LIU W Y, SU B Y, SONG C, YANG F, WANG X C, YANG W Y. Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system. Chinese Journal of Applied Ecology, 2014, 25(8): 2267-2274. (in Chinese)
[38] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38(5): 965-973.
XIAO Y B, LI L, ZHANG F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean. Scientia Agricultura Sinica, 2005, 38(5): 965-973. (in Chinese)
[39] GEISLER G. Interactive Effects of CO2 and O2 in soil on root and top growth of barley and peas. Plant Physiology, 1967, 42(3): 533-542.
[40] LIU Z, ZHU K L, DONG S T, LIU P, ZHAO B, ZHANG J W. Effects of integrated agronomic practices management on root growth and development of summer maize. European Journal of Agronomy, 2017, 84: 140-151.
doi: 10.1016/j.eja.2016.12.006
[41] YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 2014, 155: 245-253.
doi: 10.1016/j.fcr.2013.08.011
[42] LI L, SUN J H, ZHANG F S, LI X L, RENGEL Z, YANG S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 2001, 71(3): 173-181.
doi: 10.1016/S0378-4290(01)00157-5
[1] YU Ru, SONG JiaShen, ZHANG HongYuan, CHANG FangDi, WANG YongQing, WANG XiQuan, WANG Jing, WANG WeiNi, LI YuYi. Effects of Straw Interlayer Combined with Spring Irrigation on Saline- Alkali Soil Respiration and Its Temperature Sensitivity in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2023, 56(12): 2341-2353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!