Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2239-2256.doi: 10.3864/j.issn.0578-1752.2022.11.013

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Association Analysis of the ADIPOQ Variation with Sheep Growth Traits

LIANG Peng(),ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen()   

  1. College of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2021-04-09 Accepted:2021-07-27 Online:2022-06-01 Published:2022-06-16
  • Contact: DengZhen FENG E-mail:liangpeng157@126.com;fengdengzhen126@163.com.

Abstract:

【Objective】 The aim of the study was to explore the effects of genetic variation of ADIPOQ on growth traits of sheep, and to find the molecular genetic markers related to growth traits in Ningxia high-quality mutton sheep breeding, so as to achieve the purpose of molecular assisted breeding. 【Method】 The mutation sites of ADIPOQ in Dupo sheep, Tan sheep and Small-Tailed Han sheep were obtained by Allegro Targeted Genotyping. At the same time, the ear tissues of 383 different hybrid progenies of three breeds were collected. The SNPs were genotyped by Sequenom Mass ARRAY®SNP. Haploview was used to analyze linkage disequilibrium and construct haplotypes of the polymorphic loci, as well as association analysis between the SNPs in ADIPOQ with growth traits of newborn and 3-month-old sheep.【Result】 A total of 7 SNPs were screened, and 7 SNPs showed polymorphism in the hybrid population. The dominant genotypes of SNP1-SNP7 were CC, GG, GG, CT, AG, GG and AA, and the dominant alleles were C, G, G, C, G, G and A. X2 test showed that all loci were in Hardy Weinberg equilibrium (except SNP7 site deviated from the equilibrium in all individuals). SNP1 (except F2), SNP4, SNP5 and SNP6 were moderately polymorphic (0.25≤PIC<0.50) in all hybrids and all individuals, while SNP2 and SNP3 were moderately polymorphic (0.25≤PIC<0.50) in F2 and SNP7 were moderately polymorphic (0.25≤PIC<0.50) in H1, and were low polymorphic (PIC<0.25) in other populations. The results of linkage imbalance analysis showed that SNP2-SNP3 and SNP5-SNP6 formed two strong linkage, each of which constructed three haplotypes, and formed 4 and 6 genotypes after combination, respectively, among which the dominant genotype was H1H1 and H4H6. 13 genotypes were produced after the haplotypes formed by SNP2-SNP3 and SNP5-SNP6 were recombined, and the dominant genotype was H1H1H4H6. Single SNP correlation analysis revealed that: SNP1 site in F1 population, the primary chest of GG genotype was significantly higher than that of CG genotype (P<0.05); in H2 population, the primary body length of CC genotype was significantly higher than that of GG genotype (P<0.05). SNP2 site in H1 population, the primary body height of CC genotype was significantly lower than that of CG and GG genotypes (P<0.05). SNP3 site in F1 population, the three months body weight of AG genotype was significantly higher than that of GG genotype; in H1 population, the primary body height of AA genotype was significantly lower than AG and GG genotypes (P<0.05). SNP4 site in F1 population, the three months weight of CC genotype was significantly higher than that of CT and TT genotypes (P<0.05); in F2 population, the primary weight and primary chest of CT genotype were significantly higher than that of TT genotype (P<0.05), which of TT genotype was significantly lower than that of CC and CT genotype (P<0.05) in H1 population; in H2 population, the primary body height and primary body length of TT genotype were significantly higher than that of CT genotype (P<0.05). SNP5 site in F2 population, AA genotype had significantly higher primary body height and primary body length than GG genotype (P<0.05). There were significant differences in primary weight, body height, body length, three months body height and chest among different genotypes of SNP6 (P<0.05). SNP7 site in H2 population, AA genotype had significantly higher primary body length than GA genotype (P<0.05). When combined with all groups, it was found that: the primary weight and body length of CG genotype at SNP2 were significantly higher than that of GG genotype (P<0.05); the primary weight of TT genotype at SNP4 was significantly lower than CC and CT genotypes (P<0.05); the primary weight of AA genotype at SNP6 was significantly higher than GG and GA genotype (P<0.05); and the primary chest was significantly higher than GG genotypes (P<0.05). There was no significant difference in growth traits among the other five genotypes (P>0.05). The results of haplotype association analysis showed that the primary weight and primary body length of H2H3 genotype were significantly higher than those of other genotypes (P<0.05), while the primary weight of H5H5 genotype was significantly higher than that of H5H6 and H6H6 (P<0.05), the primary body height was significantly higher than that of H5H6 (P<0.05), and the primary chest was significantly higher than that of H6H6 (P<0.05); the three months weight of H4H4 genotype was significantly higher than that of H5H5 genotype (P<0.05), the body weight and body length at three months were significantly higher than those of H4H6 genotype (P<0.05), and the chest of three months was significantly higher than that of H4H5, H5H6 and H5H5 genotype (P<0.05). After SNP2-SNP3 and SNP5-SNP6 haplotypes were recombined, the primary weight, body height, body length and chest of H2H3H4H4 genotype were the highest, which were different from other genotypes, and the body length at three months of H1H1H4H6 genotype were significantly lower than that of H1H2H4H4 and H2H2H4H4 genotypes (P<0.05).【Conclusion】 The results showed that the different SNPs and combined genotypes in ADIPOQ had effect on sheep different growth traits, the seven SNPs in this study could be used as potential molecular markers for growth traits in Ningxia high quality mutton sheep breeding.

Key words: sheep, ADIPOQ, polymorphisms, growth traits, haplotype

Table 1

Population number and source of different hybrid progenies"

群体 Groups 数量 Number 父本 Male parent 母本 Female parent
F1 117 杜泊羊Dorper sheep 滩寒羊(滩羊♂×小尾寒羊♀)
Tan Han Sheep(Tan sheep♂×Small Tail Han Sheep♀)
F2 143 杜泊羊Dorper sheep F1
H1 100 F2 F2
H2 23 H1 H1
总计 Total 383

Table 2

Liquid capture sequencing results"

项目 Item 检测到的位点 Detected loci
SNPs 42
Indel 3
内含子区Intron region 31
外显子区Exon region 5
UTR3 9

Table 3

Primer information of each SNP locus"

SNPs 突变类型
Mutation type
上游引物序列
Forward primer sequence
下游引物序列
Reverse primer sequence
延伸引物序列
Extended primer sequence
SNP1 218921728
C>G
ACGTTGGATGATGAAACTCCCCAGTAAATG ACGTTGGATGTGAAGAAGACATGTCCCCTG TCTGAAACTCCCCAGTAAATGTTATCA
SNP2 218921837
C>G
ACGTTGGATGAGACTGTCCTGGGAACATAG ACGTTGGATGTACAGTGTAGTTAGGAGACC TTTCTTAGGTACTTGATCAAT
SNP3 218921856
A>G
ACGTTGGATGAGACTGTCCTGGGAACATAG ACGTTGGATGTACAGTGTAGTTAGGAGACC TACCTAGTTGGGGGATTC
SNP4 218922172
C>T
ACGTTGGATGACGTTCTGGTTCTGGAACTG ACGTTGGATGTGAAGGATGTGAAGGTCAGC GGTGAAGAGCAGGGCCTTGTCGTTC
SNP5 218922461
A>G
ACGTTGGATGCCTTCAATCCCAGTGATTCC ACGTTGGATGTTCTGTTCCTTGGGTCACTG CCCCCTCCCAGTGATTCCAGTTTCACC
SNP6 218922482
G>A
ACGTTGGATGCCTTCAATCCCAGTGATTCC ACGTTGGATGTTCTGTTCCTTGGGTCACTG TGAGGTCTTCTTGTTCTCTAGGTCT
SNP7 218923544
G>A
ACGTTGGATGAATGCCTGCCATCCAACCTG ACGTTGGATGTTCTACTGCTGCTAGCCCTG TCTCCTGCTGCTAGCCCTGCCCAGT

Fig. 1

DNA electrophoresis of sheep genome Marker S1-S23 represents 23 random samples of DNA, and M represents marker"

Fig. 2

Geno typing results of ADIPOQ gene"

Table 4

Population genetic diversity of SNPs in ADIPOQ"

SNPs 群体
Groups
数量
Number
基因型频率
Genotype frequency
基因频率
Allele frequency
纯合度
Ho
杂合度
He
有效等位基因数Ne 多态信息含量PIC X2(P值)
CC CG GG C G
SNP1 F1 116 0.63(73) 0.32(37) 0.05(6) 0.79 0.21 0.67 0.33 1.50 0.28 0.21(0.90)
F2 144 0.73(105) 0.26(37) 0.01(2) 0.86 0.14 0.76 0.24 1.32 0.21 0.39(0.82)
H1 99 0.63(62) 0.37(37) 0.00(0) 0.81 0.19 0.70 0.30 1.44 0.26 5.23(0.07)
H2 23 0.70(16) 0.26(6) 0.04(1) 0.83 0.17 0.71 0.29 1.40 0.25 0.20(0.91)
所有个体
All individuals
382 0.67(256) 0.31(117) 0.02(9) 0.82 0.18 0.71 0.29 1.41 0.25 1.06(0.59)
SNP2 CC CG GG C G
F1 113 0.02(2) 0.19(21) 0.79(90) 0.11 0.89 0.80 0.20 1.24 0.18 0.35(0.84)
F2 137 0.06(8) 0.35(48) 0.59(81) 0.23 0.77 0.64 0.36 1.56 0.29 0.06(0.97)
H1 95 0.02(2) 0.25(24) 0.73(69) 0.15 0.85 0.75 0.25 1.34 0.22 0.00(1.00)
H2 23 0.04(1) 0.09(2) 0.87(20) 0.09 0.91 0.84 0.16 1.19 0.15 4.71(0.10)
所有个体
All individuals
368 0.04(13) 0.26(95) 0.70(260) 0.16 0.84 0.73 0.27 1.38 0.24 1.34(0.51)
SNP3 AA AG GG A G
F1 113 0.02(2) 0.18(21) 0.80(90) 0.11 0.89 0.80 0.20 1.24 0.18 0.35(0.84)
F2 142 0.06(8) 0.35(50) 0.59(84) 0.23 0.77 0.64 0.36 1.55 0.29 0.02(0.99)
H1 98 0.02(2) 0.24(24) 0.74(72) 0.14 0.86 0.76 0.24 1.32 0.21 0.00(1.00)
H2 23 0.04(1) 0.09(2) 0.87(20) 0.09 0.91 0.84 0.16 1.19 0.15 4.71(0.10)
所有个体
All individuals
376 0.03(13) 0.26(97) 0.71(266) 0.16 0.84 0.73 0.27 1.38 0.24 1.23(0.54)
SNP4 CC CT TT C T
F1 117 0.27(32) 0.49(57) 0.24(28) 0.52 0.48 0.50 0.50 2.00 0.37 0.07(0.97)
F2 143 0.40(56) 0.43(62) 0.17(25) 0.61 0.39 0.52 0.48 1.91 0.36 1.16(0.56)
H1 99 0.31(31) 0.55(54) 0.14(14) 0.59 0.41 0.51 0.49 1.94 0.37 1.52(0.47)
H2 23 0.35(8) 0.35(8) 0.30(7) 0.52 0.48 0.50 0.50 2.00 0.37 2.11(0.35)
所有个体
All individuals
382 0.33(127) 0.47(181) 0.20(74) 0.57 0.43 0.51 0.49 1.96 0.37 0.44(0.80)
SNP5 AA AG GG A G
F1 106 0.14(15) 0.60(63) 0.26(28) 0.44 0.56 0.51 0.49 1.97 0.37 4.53(0.10)
F2 136 0.20(27) 0.46(63) 0.34(46) 0.43 0.57 0.51 0.49 1.96 0.37 0.41(0.81)
H1 91 0.11(10) 0.52(47) 0.37(34) 0.37 0.63 0.53 0.47 1.87 0.36 1.10(0.58)
H2 23 0.09(2) 0.43(10) 0.48(11) 0.30 0.70 0.58 0.42 1.73 0.33 0.02(0.99)
所有个体
All individuals
356 0.15(54) 0.52(183) 0.33(119) 0.41 0.59 0.52 0.48 1.94 0.37 1.44(0.49)
SNP6 GG GA AA G A
F1 116 0.60(70) 0.36(41) 0.04(5) 0.78 0.22 0.66 0.34 1.52 0.28 0.11(0.95)
F2 140 0.56(78) 0.34(48) 0.10(14) 0.73 0.27 0.60 0.40 1.65 0.32 2.48(0.29)
H1 95 0.47(45) 0.41(39) 0.12(11) 0.68 0.32 0.56 0.44 1.77 0.34 0.32(0.85)
H2 23 0.52(12) 0.48(11) 0.00(0) 0.76 0.24 0.64 0.36 1.57 0.30 2.27(0.32)
所有个体
All individuals
374 0.55(205) 0.37(139) 0.08(30) 0.73 0.27 0.61 0.39 1.64 0.31 0.87(0.65)
SNP7 GG GA AA G A
F1 108 0.00(0) 0.31(34) 0.69(74) 0.16 0.84 0.73 0.27 1.36 0.23 3.77(0.15)
F2 139 0.00(0) 0.26(36) 0.74(103) 0.13 0.87 0.77 0.23 1.29 0.20 3.08(0.21)
H1 91 0.01(1) 0.39(35) 0.60(55) 0.20 0.80 0.68 0.32 1.48 0.27 3.19(0.20)
H2 21 0.00(0) 0.19(4) 0.81(17) 0.10 0.90 0.83 0.17 1.21 0.16 0.23(0.89)
所有个体
All individuals
359 0.01(1) 0.30(109) 0.69(249) 0.15 0.85 0.74 0.26 1.35 0.23 9.37(0.01)

Table 5

Association analysis between SNP1 locus and growth traits"

月龄
Month age
群体
Group
数量
Number
体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
CC CG GG CC CG GG CC CG GG CC CG GG
初生
Primary
F1 115 3.42±0.09 3.44±0.11 3.82±0.17 34.16±0.59 33.78±0.71 35.83±1.01 33.45±0.72 32.22±1.02 34.83±2.20 39.15±1.06ab 38.25±1.39b 45.17±1.68a
F2 141 3.68±0.08 3.72±0.14 3.90±0.40 34.29±0.43 34.36±0.78 36.00±3.00 34.45±0.58 35.22±1.18 34.00±1.00 40.98±0.82 41.22±1.45 45.00±5.00
H1 99 4.14±0.10 4.25±0.10 / 36.90±0.45 37.30±0.38 / 38.40±0.71 40.00±1.05 / 45.56±0.93 45.46±1.02 /
H2 23 4.16±0.29 3.68±0.29 3.50 37.00±1.05 36.17±1.66 34.00 37.75±1.35a 34.00±0.93b 31.00 45.13±1.98 42.67±3.36 46.00
所有个体
All individuals
378 3.81±0.06 3.84±0.08 4.07±0.26 35.52±0.32 35.49±0.43 36.77±1.42 35.76±0.45 35.90±0.62 36.20±2.04 42.55±0.61 42.18±0.83 47.68±2.73
3月龄
Three months
F1 78 25.00±0.67 26.24±0.87 28.26±1.87 54.53±0.54 56.55±0.70 54.03±1.50 58.69±0.44 59.16±0.57 59.62±1.21 70.34±0.86 71.81±1.11 74.14±2.41
F2 80 25.14±0.50 24.83±0.86 23.85±2.71 54.46±0.42 54.26±0.71 56.03±2.25 57.47±0.51 55.65±0.88 56.50±2.78 70.88±0.68 71.30±1.16 69.02±3.67
H1 45 27.87±0.87 27.37±1.12 / 54.36±0.58 54.52±0.75 / 58.41±0.64 58.27±0.82 / 74.09±1.02 75.92±1.30 /
H2 23 27.97±1.42 25.82±2.24 - 54.30±0.65 52.50±1.04 - 58.52±0.98 55.44±1.56 - 73.70±1.68 70.24±2.70 -
所有个体
All individuals
217 26.29±0.43 26.53±0.58 28.22±1.60 54.25±0.33 54.91±0.44 54.06±1.22 58.19±0.35 57.55±0.46 58.51±1.29 72.02±0.55 73.05±0.74 73.85±2.06

Table 6

Association analysis between SNP2 locus and growth traits"

月龄
Month age
群体
Group
数量
Number
体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
CC CG GG CC CG GG CC CG GG CC CG GG
初生
Primary
F1 112 3.58±0.48 3.46±0.15 3.42±0.07 33.00±4.00 34.10±1.15 34.02±0.48 35.00±5.00 33.30±1.16 32.82±0.65 39.50±11.50 37.75±2.24 39.40±0.88
F2 134 4.11±0.21 3.77±0.12 3.60±0.09 37.00±1.50 34.46±0.55 34.14±0.54 38.00±1.25 35.48±0.74 33.97±0.77 42.43±1.84 41.92±1.22 40.44±0.94
H1 95 3.75±0.75 4.37±0.17 4.13±0.08 31.50±2.50b 37.46±0.55a 37.13±0.38a 33.50±5.50 40.33±1.13 38.62±0.73 39.00±4.00 45.71±1.71 45.75±0.78
H2 23 4.50 5.30±1.30 3.85±0.21 42.00 41.50±3.50 35.90±0.80 43.00 42.50±7.50 35.55±0.90 39.00 53.50±13.50 43.90±1.40
所有个体
All individuals
364 3.99±0.28ab 4.22±0.15a 3.75±0.06b 35.88±1.53 36.88±0.82 35.30±0.31 37.38±2.19ab 37.90±1.17a 35.24±0.44b 39.98±2.96 44.72±1.58 42.37±0.60
3月龄
Three months
F1 77 - 28.25±1.32 25.30±0.57 - 55.19±1.05 54.98±0.46 - 59.61±0.87 58.77±0.38 - 73.32±1.70 70.67±0.74
F2 78 24.50±2.19 25.78±0.67 24.54±0.56 56.75±1.83 54.55±0.56 54.23±0.47 58.03±2.27 57.86±0.69 56.31±0.59 72.00±2.99 70.50±0.92 71.18±0.77
H1 44 - 27.61±1.39 27.91±0.83 - 54.80±0.91 54.26±0.55 - 59.46±0.92 58.20±0.56 - 74.74±1.61 74.75±0.98
H2 14 35.80 - 26.71±1.02 56.00 - 53.62±0.57 60.00 - 57.46±1.00 82.00 - 72.00±1.34
所有个体
All individuals
213 28.32±2.17 27.71±0.67 26.08±0.41 56.81±1.65 54.66±0.50 54.28±0.31 59.59±1.74 59.05±0.53 57.70±0.32 75.60±2.82 72.80±0.87 72.16±0.53

Table 7

Association analysis between SNP3 locus and growth traits"

月龄
Month age
群体
Group
数量
Number
体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
AA AG GG AA AG GG AA AG GG AA AG GG
初生
Primary
F1 112 3.58±0.48 3.46±0.14 3.42±0.07 33.00±4.00 34.06±1.17 34.02±0.48 35.00±5.00 33.47±1.07 32.82±0.65 39.50±11.50 37.47±2.11 39.40±0.88
F2 139 4.11±0.21 3.79±0.12 3.61±0.09 37.00±1.50 34.46±0.55 34.05±0.53 38.00±1.25 35.46±0.75 33.94±0.75 42.43±1.84 41.96±1.24 40.38±0.94
H1 98 3.75±0.75 4.37±0.17 4.13±0.08 31.50±2.50b 37.46±0.55a 37.07±0.37a 33.50±5.50 40.33±1.13 38.71±0.71 39.00±4.00 45.71±1.71 45.58±0.75
H2 23 4.50 5.30±1.30 3.85±0.21 42.00 41.50±3.50 35.90±0.80 43.00 42.50±7.50 35.55±0.90 39.00 53.50±13.50 43.90±1.40
所有个体
All individuals
369 4.08±0.23 3.97±0.09 3.78±0.06 36.45±1.23 35.83±0.48 35.38±0.30 37.79±1.75 36.82±0.69 35.39±0.43 41.91±2.38 43.01±0.94 42.43±0.59
3月龄
Three months
F1 75 - 28.25±1.32a 25.30±0.57b - 55.19±1.05 54.98±0.46 - 59.61±0.87 58.77±0.38 - 73.32±1.70 70.67±0.74
F2 80 24.55±2.48 25.76±0.76 24.14±0.63 56.75±1.83 54.55±0.56 54.23±0.47 58.03±2.27 57.86±0.69 56.31±0.59 72.00±2.99 70.50±0.92 71.18±0.77
H1 45 - 27.52±1.40 27.74±0.82 - 54.79±0.90 54.29±0.54 - 59.41±0.98 57.97±0.58 - 74.72±1.60 74.80±0.96
H2 14 35.80 - 26.71±1.02 56.00 - 53.62±0.57 60.00 - 57.46±1.00 82.00 - 72.00±1.34
所有个体
All individuals
214 28.28±2.18 27.71±0.67 26.04±0.41 56.82±1.65 54.66±0.50 54.28±0.31 59.53±1.76 59.04±0.54 57.64±0.33 75.61±2.82 72.80±0.86 72.17±0.53

Table 8

Association analysis between SNP4 locus and growth traits"

月龄
Month age
群体
Group
数量
Number
体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
CC CT TT CC CT TT CC CT TT CC CT TT
初生
Primary
F1 116 3.58±0.13 3.44±0.08 3.30±0.14 35.26±0.67 33.32±0.62 34.39±1.01 34.55±0.96 32.16±0.78 33.36±1.33 40.81±1.62 38.54±1.18 38.68±1.49
F2 140 3.68±0.10ab 3.84±0.12a 3.35±0.12b 34.51±0.60 34.65±0.60 33.16±0.83 34.60±0.78 35.17±0.88 33.40±1.12 41.51±1.05ab 41.87±1.21a 37.98±1.32b
H1 99 4.30±0.11a 4.23±0.10a 3.72±0.20b 37.32±0.55 37.20±0.41 35.86±0.99 39.97±1.03 39.02±0.81 36.79±1.66 45.42±1.15 45.69±0.93 45.14±2.26
H2 23 4.19±0.42 3.61±0.15 4.26±0.52 37.88±1.77ab 34.00±1.10b 38.29±0.81a 36.88±2.34ab 33.13±0.52b 39.86±1.20a 45.13±3.95 41.50±1.88 47.29±1.61
所有个体
All individuals
378 3.91±0.08a 3.88±0.07a 3.60±0.09b 36.06±0.42 35.32±0.36 35.18±0.51 36.43±0.60 35.54±0.52 35.38±0.73 43.22±0.80 42.58±0.70 41.54±0.98
3月龄
Three months
F1 79 27.98±1.38a 25.27±0.70b 24.42±0.97b 56.19±0.90 55.13±0.59 54.45±0.81 59.77±0.70 58.82±0.46 58.35±0.64 73.71±1.36 70.35±0.90 70.25±1.25
F2 79 25.42±0.69 24.81±0.66 24.48±1.03 54.43±0.58 54.66±0.55 53.95±0.86 57.63±0.72 56.41±0.69 56.93±1.07 70.81±0.94 70.68±0.90 71.63±1.41
H1 45 27.32±1.29 27.44±0.95 28.98±1.76 54.26±0.87 54.60±0.64 54.14±1.15 58.26±0.95 58.60±0.70 57.78±1.21 74.54±1.53 75.03±1.13 74.42±1.96
H2 14 27.61±2.30 25.96±1.89 29.20±2.30 53.05±1.11 53.41±0.98 55.09±1.16 56.05±1.70 58.01±1.64 58.68±2.05 72.27±2.35 69.58±1.91 77.87±2.57
所有个体
All individuals
217 27.26±0.59 26.10±0.49 25.92±0.67 54.64±0.45 54.57±0.37 54.02±0.51 58.39±0.47 57.81±0.39 57.77±0.54 72.99±0.76 72.02±0.62 72.36±0.86

Table 9

Association analysis between SNP5 locus and growth traits"

月龄
Month age
群体
Group
数量
Number
体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
AA AG GG AA AG GG AA AG GG AA AG GG
初生
Primary
F1 105 3.47±0.16 3.43±0.08 3.35±0.16 33.57±1.17 33.92±0.58 34.00±0.97 33.36±1.44 32.38±0.75 33.32±1.26 38.43±2.56 39.17±1.09 38.54±1.71
F2 133 3.89±0.15 3.66±0.10 3.53±0.12 35.42±0.79a 34.48±0.57ab 33.25±0.69b 36.42±0.96a 34.92±0.79ab 32.70±0.96b 41.77±1.57 40.97±1.02 40.33±1.32
H1 91 4.48±0.28 4.19±0.10 4.07±0.13 37.30±1.14 36.96±0.37 36.88±0.66 41.00±2.21 39.74±0.95 37.41±0.87 45.70±2.82 45.13±0.98 46.29±1.23
H2 23 4.00±0.50 4.16±0.34 3.87±0.34 38.00±4.00 37.40±1.33 35.73±1.16 37.00±6.00 36.60±1.77 36.27±1.35 42.50±3.50 45.00±3.18 44.45±1.82
所有个体
All individuals
352 4.01±0.11 3.84±0.07 3.71±0.08 36.09±0.62 35.59±0.36 35.00±0.42 37.30±0.89 35.96±0.51 34.71±0.59 42.74±1.20 42.51±0.70 42.37±0.80
3月龄
Three months
F1 66 25.80±1.49 25.16±0.59 24.76±1.03 54.70±1.39 55.26±0.56 54.25±0.95 58.85±1.14 59.07±0.46 57.95±0.78 72.63±1.99 70.31±0.80 69.60±1.39
F2 78 25.04±0.94 25.07±0.62 24.75±0.82 55.09±0.78 54.34±0.51 54.33±0.69 57.91±0.98 56.74±0.64 56.70±0.87 71.24±1.26 70.23±0.83 71.77±1.11
H1 42 26.73±2.14 27.90±1.03 27.29±1.20 53.05±1.44 55.07±0.69 54.08±0.79 58.85±1.52 58.63±0.74 57.34±0.85 75.04±2.46 75.27±1.19 73.07±1.37
H2 13 - 25.88±1.62 27.44±1.51 - 53.00±0.88 54.11±0.83 - 56.94±1.44 58.25±1.34 - 71.69±2.11 72.38±1.97
所有个体
All individuals
199 26.61±0.81 26.32±0.46 25.95±0.55 54.62±0.65 54.58±0.37 54.13±0.44 58.72±0.6570 58.02±0.40 57.41±0.48 73.36±1.04 71.97±0.59 71.80±0.71

Table 10

Association analysis between SNP6 locus and growth traits"

月龄
Month age
群体
Group
数量
Number
体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
GG GA AA GG GA AA GG GA AA GG GA AA
初生
Primary
F1 115 3.40±0.08 3.49±0.10 3.72±0.59 33.70±0.56 34.76±0.72 34.80±2.50 32.72±0.74 33.44±0.91 36.00±3.48 38.65±0.99 40.05±1.36 42.00±5.79
F2 137 3.73±0.09 3.61±0.12 3.84±0.21 34.66±0.50 33.62±0.68 34.71±1.29 35.64±0.69a 33.11±0.92b 34.50±1.86ab 40.86±0.97 40.66±1.21 42.93±2.43
H1 95 4.08±0.12b 4.18±0.09b 4.61±0.24a 36.69±0.46b 36.82±0.42b 39.45±1.15a 38.56±1.03 39.79±0.85 38.09±1.42 44.58±1.18 45.90±0.85 48.45±2.27
H2 23 4.09±0.31 3.92±0.32 / 37.67±0.76 35.55±1.52 / 38.00±1.23 34.82±1.64 / 45.25±1.38 43.73±3.08 /
所有个体
All individuals
370 3.82±0.06b 3.82±0.07b 4.11±0.15a 35.52±0.35 35.36±0.39 36.76±0.81 36.06±0.50 35.48±0.57 35.90±1.17 42.17±0.66b 42.77±0.75ab 45.08±1.55a
3月龄
Three months
F1 78 25.89±0.64 25.40±0.91 25.90 55.29±0.53 54.99±0.76 58.00 58.71±0.42 59.15±0.59 61.00 71.69±0.82 70.17±1.15 70.00
F2 78 25.10±0.57 24.26±0.78 26.38±1.28 54.94±0.47 53.58±0.64 54.66±1.05 56.87±0.60 56.68±0.83 58.22±1.34 71.43±0.76 69.13±1.04 73.06±1.71
H1 43 27.42±0.93 29.25±1.19 27.17±1.83 53.77±0.59b 56.31±0.77a 53.00±1.18b 58.60±0.65 59.18±0.83 57.77±1.27 74.21±1.14 76.49±1.46 73.73±2.22
H2 14 29.15±1.61 25.57±1.61 / 55.26±0.69a 52.31±0.69b / 58.78±0.99 56.51±1.45 / 76.11±1.57a 69.32±1.57b /
所有个体
All individuals
213 26.62±0.46 26.19±0.55 27.09±1.14 54.65±0.35 54.30±0.42 54.35±0.88 58.05±0.37 57.95±0.44 58.53±0.91 72.99±0.59 71.42±0.70 73.20±1.46

Table 11

Association analysis between SNP7 locus and growth traits"

月龄
Month age
群体
Group
数量
Number
体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
GG GA AA GG GA AA GG GA AA GG GA AA
初生
Primary
F1 107 / 3.47±0.10 3.45±0.08 / 34.00±0.66 34.31±0.57 / 32.85±0.95 33.39±0.69 / 39.09±1.45 39.47±1.01
F2 137 / 3.82±0.13 3.64±0.08 / 34.61±0.69 34.18±0.46 / 35.19±0.96 34.25±0.61 / 41.53±1.40 40.92±0.85
H1 91 4.50 4.34±0.11 4.09±0.10 36.00 37.74±0.42 36.71±0.48 45.00 40.43±0.84 38.56±0.78 45.00 47.14±1.08 44.82±0.95
H2 21 / 3.35±0.29 4.17±0.27 / 33.50±1.55 37.24±1.01 / 32.00±0.71b 37.71±1.27a / 39.75±4.25 45.06±1.86
所有个体
All individuals
356 4.50 3.91±0.08 3.81±0.06 36.00 35.67±0.45 34.48±0.32 45.00 36.24±0.62 35.77±0.44 45.00 42.94±0.87 41.40±0.62
3月龄
Three months
F1 71 / 26.73±0.94 25.41±0.69 / 55.01±0.75 54.91±0.55 / 59.36±0.61 58.74±0.45 / 71.50±1.21 71.19±0.89
F2 78 / 24.63±0.81 25.35±0.51 / 54.54±0.66 54.50±0.41 / 55.95±0.83 57.44±0.52 / 71.18±1.10 71.00±0.69
H1 41 30.40 27.56±1.21 27.81±0.94 54.00 54.82±0.81 54.30±0.63 60.00 58.83±0.79 58.54±0.62 79.00 74.97±1.40 73.77±1.08
H2 13 / 29.16±3.06 27.63±1.28 / 54.95±1.34 54.01±0.53 / 57.67±1.64 58.42±0.67 / 71.75±4.41 73.68±1.65
所有个体
All individuals
203 30.40 26.78±0.61 26.57±0.43 54.00 54.66±0.46 54.47±0.33 60.00 57.99±0.48 58.32±0.35 79.00 72.81±0.78 72.36±0.56

Fig. 3

Linkage disequilibrium analysis"

Table 12

Association analysis of SNP2-SNP3 haplotype combination with growth traits"

月龄 Month age 组合基因型 Combined genotype 体重Weight (kg) 体高Body height (cm) 体斜长Body length (cm) 胸围Chest girth (cm)
初生
Primary
H2H2(12) 4.00±0.18ab 35.83±1.35 37.17±1.38ab 41.08±1.88
H2H3(20) 4.27±0.17a 37.20±0.61 39.60±1.03a 45.25±1.93
H1H2(74) 3.78±0.10b 34.78±0.51 35.54±0.69b 41.43±1.10
H1H1(258) 3.70±0.05b 35.03±0.28 34.93±0.41b 41.82±0.51
3月龄
Three months
H2H2(6) 25.83±1.06 55.33±1.54 59.17±2.20 71.67±2.39
H2H3(11) 24.07±0.84 53.00±0.60 57.09±0.80 70.82±1.37
H1H2(45) 24.85±0.40 54.42±0.44 57.94±0.59 70.00±0.67
H1H1(161) 23.88±0.22 53.88±0.26 56.98±0.29 69.96±0.36

Table 13

Association analysis of SNP5-SNP6 haplotype combination with growth traits"

月龄
Month age
组合基因型
Combined genotype
体重
Weight (kg)
体高
Body height (cm)
体斜长
Body length (cm)
胸围
Chest girth (cm)
初生
Primary
H4H4(55) 3.85±0.11ab 35.31±0.57ab 36.49±0.79 40.98±1.16ab
H4H6(94) 3.70±0.08bc 34.68±0.43ab 34.91±0.71 41.41±0.88ab
H4H5(88) 3.80±0.08ab 35.53±0.47ab 35.88±0.71 41.95±0.89ab
H6H6(40) 3.40±0.14c 34.43±0.76ab 34.28±1.02 39.99±1.30b
H5H6(45) 3.63±0.11bc 33.78±0.60b 33.62±0.89 42.40±1.21ab
H5H5(29) 4.07±0.18a 36.28±0.94a 36.00±1.17 44.24±1.88a
3月龄
Three months
H4H4(35) 24.92±0.48a 54.74±0.66a 58.49±0.67a 71.74±0.79a
H4H6(64) 24.28±0.34ab 50.23±1.21b 52.90±1.36b 70.09±0.50ab
H4H5(52) 23.78±0.43ab 53.65±0.47ab 56.57±0.59ab 68.90±0.62b
H6H6(23) 24.37±0.60ab 54.09±0.57a 56.13±0.63ab 72.00±1.09a
H5H6(25) 23.90±0.49ab 53.68±0.61ab 57.44±0.67a 68.88±0.89b
H5H5(13) 22.98±0.55b 53.62±0.87ab 58.08±0.88a 68.23±0.74b

Table 14

Association analysis between haplotype combinations of SNP2-SNP3 and SNP5-SNP6 loci and growth traits"

月龄
Month age
组合基因型
Combined genotype
体重
Weight (kg)
体高
Body height (cm)
体斜长
Body length (cm)
胸围
Chest girth (cm)
初生
Primary
H1H1H4H4(18) 3.64±0.16bc 34.78±1.04b 34.44±1.28bc 40.83±1.96b
H1H1H4H5(52) 3.73±0.11bc 35.50±0.64ab 35.87±1.02bc 41.56±1.10b
H1H1H4H6(62) 3.67±0.09bc 34.71±0.51b 34.44±0.92bc 41.21±1.02b
H1H1H5H5(29) 4.07±0.18abc 36.28±0.94ab 36.00±1.17bc 44.24±1.88ab
H1H1H5H6(42) 3.61±0.11bc 33.79±0.62b 33.52±0.91c 42.43±1.20b
H1H1H6H6(40) 3.40±0.14c 34.43±0.76b 34.28±1.02bc 39.99±1.30b
H1H2H4H4(16) 3.83±0.24bc 35.00±0.98b 37.56±1.68abc 38.88±2.14b
H1H2H4H5(30) 3.86±0.16bc 35.23±0.78ab 35.43±1.07bc 42.23±1.76b
H1H2H4H6(23) 3.58±0.17bc 33.91±1.02b 34.22±1.16bc 41.30±2.06b
H2H3H4H4(6) 4.62±0.25a 38.83±0.48a 41.67±0.84a 49.67±3.81a
H2H3H4H5(5) 4.18±0.22ab 37.40±1.50ab 36.80±1.66abc 43.80±2.80ab
H2H3H4H6(8) 4.14±0.37ab 36.38±0.94ab 39.63±2.17ab 43.38±3.39ab
H2H2H4H4(12) 4.00±0.18abc 35.83±1.35ab 37.17±1.38abc 41.08±1.88b
3月龄
Three months
H1H1H4H4(15) 24.61±0.68 54.73±1.15 57.93±0.95ab 71.20±1.05
H1H1H4H5(30) 22.89±0.56 53.63±0.68 56.03±0.77ab 68.50±0.82
H1H1H4H6(46) 24.34±0.43 48.60±1.61 51.21±1.82b 70.30±0.62
H1H1H5H5(13) 22.98±0.55 53.62±0.87 58.08±0.88ab 68.23±0.74
H1H1H5H6(25) 23.90±0.49 53.68±0.61 57.44±0.67ab 68.88±0.89
H1H1H6H6(23) 24.37±0.60 54.09±0.57 56.13±0.63ab 72.00±1.09
H1H2H4H4(9) 25.12±1.09 55.33±1.15 59.56±1.43a 72.11±1.81
H1H2H4H5(19) 25.21±0.61 53.63±0.71 57.18±1.03ab 69.21±1.01
H1H2H4H6(14) 24.19±0.61 54.64±0.70 57.43±0.78ab 69.79±1.08
H2H3H4H4(4) 24.65±2.05 51.75±1.31 57.00±1.29ab 72.75±2.84
H2H3H4H5(3) 23.67±1.94 54.00±0.00 58.00±2.08ab 71.00±3.46
H2H3H4H6(4) 23.80±0.50 53.50±0.87 56.50±1.32ab 68.75±0.75
H2H2H4H4(6) 25.83±1.06 55.33±1.54 59.17±2.20a 71.67±2.39
[1] 尤丽琴, 姬琛, 罗瑞明. 蛋白质组学揭示滩羊宰后成熟过程中风味前体物质的变化机理. 食品科学, 2021, 42(19) 20-27.
YOU L Q, JI C, LUO R M. Proteomic analysis revealed the change mechanism of flavour precursors in Tan sheep meat during post- mortem ageing. Food Science, 2021, 42(19) 20-27. (in Chinese)
[2] HSUEH W C, ST JEAN P L, MITCHELL B D, POLLIN T I, KNOWLER W C, EHM M G, BELL C J, SAKUL H, WAGNER M J, BURNS D K, SHULDINER A R. Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: Evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-Q24. Diabetes, 2003, 52(2): 550-557. doi: 10.2337/diabetes.52.2.550.
doi: 10.2337/diabetes.52.2.550
[3] GAO Y, ZHANG Y H, JIANG H, XIAO S Q, WANG S, MA Q, SUN G J, LI F J, DENG Q, DAI L S, ZHAO Z H, CUI X S, ZHANG S M, LIU D F, ZHANG J B. Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs. Genetics and Molecular Research: GMR, 2011, 10(2): 779-791. doi: 10.4238/vol10-2gmr1170.
doi: 10.4238/vol10-2gmr1170
[4] 张德荣, 马晓霞, 李羽翡, 赵永清, 霍生东, 马忠仁, 柏家林. 脂联素及其受体在哺乳动物中的研究进展与展望. 生物技术通报, 2020, 36(6): 236-244. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0829.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0829
ZHANG D R, MA X X, LI Y F, ZHAO Y Q, HUO S D, MA Z R, BAI J L. Research progress and prospects of adiponectin and its receptor in mammal. Biotechnology Bulletin, 2020, 36(6): 236-244. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0829. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0829
[5] ZHANG T X, LI W X, QI L, FAN M Y, SHEN J C, WANG Y H, WANG W X, HU X L, CAI R B, ZHOU R, WEI Y T, ZHOU J T, YANG S, HU D F, LIU S Q. Adiponectin plays a role in energy metabolism for musk secretion in scent glands of muskrats (Ondatra zibethicus). Endocrine Journal, 2016, 63(7): 633-641. doi: 10.1507/endocrj.EJ15-0720.
doi: 10.1507/endocrj.EJ15-0720
[6] YAMAUCHI T, KAMON J, ITO Y, TSUCHIDA A, YOKOMIZO T, KITA S, SUGIYAMA T, MIYAGISHI M, HARA K, TSUNODA M, MURAKAMI K, OHTEKI T, UCHIDA S, TAKEKAWA S, WAKI H, TSUNO N H, SHIBATA Y, TERAUCHI Y, FROGUEL P, TOBE K, KOYASU S, TAIRA K, KITAMURA T, SHIMIZU T, NAGAI R, KADOWAKI T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 2003, 423(6941): 762-769. doi: 10.1038/nature01705.
doi: 10.1038/nature01705
[7] KHARROUBI I, RASSCHAERT J, EIZIRIK D L, CNOP M. Expression of adiponectin receptors in pancreatic β cells. Biochemical and Biophysical Research Communications, 2003, 312(4): 1118-1122. doi: 10.1016/j.bbrc.2003.11.042.
doi: 10.1016/j.bbrc.2003.11.042
[8] YAMAUCHI T, HARA K, KUBOTA N, TERAUCHI Y, TOBE K, FROGUEL P, NAGAI R, KADOWAKI T. Dual roles of adiponectin/ Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2003, 3(4): 243-254. doi: 10.2174/1568008033340090.
doi: 10.2174/1568008033340090
[9] KAUR H, BADARUDDOZA B, BAINS V, KAUR A. Genetic association of ADIPOQ gene variants (-3971A>G and +276G>T) with obesity and metabolic syndrome in North Indian Punjabi population. PLoS ONE, 2018, 13(9): e0204502. doi: 10.1371/journal.pone.0204502.
doi: 10.1371/journal.pone.0204502
[10] CANTO P, GRANADOS J B, FERIA-BERNAL G, CORAL- VÁZQUEZ R M, GARCÍA-GARCÍA E, TEJEDA M E, TAPIA A, ROJANO-MEJÍA D, MÉNDEZ J P. PPARGC1A and ADIPOQ polymorphisms are associated with aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. Cancer Biomarkers: Section A of Disease Markers, 2017, 19(3): 297-303. doi: 10.3233/CBM-160467.
doi: 10.3233/CBM-160467
[11] PETERS K E, DAVIS W A, BEILBY J, HUNG J, BRUCE D G, DAVIS T M E. The relationship between circulating adiponectin, ADIPOQ variants and incident cardiovascular disease in type 2 diabetes: The fremantle diabetes study. Diabetes Research and Clinical Practice, 2018, 143: 62-70. doi: 10.1016/j.diabres.2018.06.005.
doi: 10.1016/j.diabres.2018.06.005
[12] ZHAO N, LI N X, ZHANG S J, MA Q, MA C, YANG X L, YIN J, ZHANG R, LI J, YANG X G, CUI T. Associations between two common single nucleotide polymorphisms (rs2241766 and rs1501299) of ADIPOQ gene and coronary artery disease in type 2 diabetic patients: A systematic review and meta-analysis. Oncotarget, 2017, 8(31): 51994-52005. doi: 10.18632/oncotarget.18317.
doi: 10.18632/oncotarget.18317
[13] HSUEH Y M, CHEN W J, LIN Y C, HUANG C Y, SHIUE H S, YANG S M, AO P L, PU Y S, SU C T. Adiponectin gene polymorphisms and obesity increase the susceptibility to arsenic- related renal cell carcinoma. Toxicology and Applied Pharmacology, 2018, 350: 11-20. doi: 10.1016/j.taap.2018.04.034.
doi: 10.1016/j.taap.2018.04.034
[14] 唐妮, 王书瑶, 齐锦雯, 吴源冰, 李志琼. 脂联素调控脂质代谢的研究进展. 畜牧兽医学报, 2018, 49(12): 2550-2557. doi: 10.11843/j.issn.0366-6964.2018.12.003.
doi: 10.11843/j.issn.0366-6964.2018.12.003
TANG N, WANG S Y, QI J W, WU Y B, LI Z Q. Research progress on adiponectin regulating lipid metabolism. Acta Veterinaria et Zootechnica Sinica, 2018, 49(12): 2550-2557. doi: 10.11843/j.issn.0366-6964.2018.12.003. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2018.12.003
[15] 安清明, 周辉通, 吴震洋, 罗玉柱, Jon G.Hickford. 绵羊脂联素基因(ADIPOQ)多态性及其与生长及胴体性状关联性分析. 中国农业科学, 2019, 52(10): 1807-1817. doi: 10.3864/j.issn.0578-1752.2019.10.013.
doi: 10.3864/j.issn.0578-1752.2019.10.013
AN Q M, ZHOU H T, WU Z Y, LUO Y Z, HICKFORD J G. Polymorphisms of ADIPOQ gene and their association with growth and carcass traits in sheep. Scientia Agricultura Sinica, 2019, 52(10): 1807-1817. doi: 10.3864/j.issn.0578-1752.2019.10.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.10.013
[16] 杨树猛, 马登录, 郭淑珍, 李保明, 马忠涛, 才让闹日, 牛小莹, 格桂花, 赵光平. 藏羊脂联素基因多态性及其与产肉性能的相关性分析. 中国草食动物科学, 2014, 34(2): 5-9. doi: 10.3969/j.issn.2095-3887.2014.02.001.
doi: 10.3969/j.issn.2095-3887.2014.02.001
YANG S M, MA D L, GUO S Z, LI B M, MA Z T, CAI R, NIU X Y, GE G H, ZHAO G P. SNPs of adiponectin gene and its relationship with meat traits in Tibetan sheep. China Herbivore Science, 2014, 34(2): 5-9. doi: 10.3969/j.issn.2095-3887.2014.02.001. (in Chinese)
doi: 10.3969/j.issn.2095-3887.2014.02.001
[17] 刘重旭, 王凭青, 张宝云, 储明星, 邓腊梅, 谭颖, 樊奇. 贵州白山羊和古蔺马羊脂联素基因多态性及其与繁殖性能的关联研究. 中国农业科学, 2011, 44(9): 1916-1922. doi: 10.3864/j.issn.0578-1752.2011.09.019.
doi: 10.3864/j.issn.0578-1752.2011.09.019
LIU C X, WANG P Q, ZHANG B Y, CHU M X, DENG L M, TAN Y, FAN Q. Polymorphism of adiponectin gene and its relationship with reproductive ability in Guizhou white and Gulin ma goats. Scientia Agricultura Sinica, 2011, 44(9): 1916-1922. doi: 10.3864/j.issn.0578-1752.2011.09.019. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.09.019
[18] 周胜花, 赵园园, 王媛媛, 王鹤洁, 秦本源, 张宁芳, 乐宝玉, 成志敏, 高鹏飞, 郭晓红, 李步高, 曹果清. 不同猪种ADIPOQ基因外显子2多态性及其与山西白猪体重和体尺性状的关联分析. 中国畜牧兽医, 2018, 45(12): 3497-3504. doi: 10.16431/j.cnki.1671-7236.2018.12.023.
doi: 10.16431/j.cnki.1671-7236.2018.12.023
ZHOU S H, ZHAO Y Y, WANG Y Y, WANG H J, QIN B Y, ZHANG N F, YUE B Y, CHENG Z M, GAO P F, GUO X H, LI B G, CAO G Q. Polymorphism of adiponectin gene exon 2 in different pig breeds and its relationship with body weights and body measurements in Shanxi white pig. China Animal Husbandry & Veterinary Medicine, 2018, 45(12): 3497-3504. doi: 10.16431/j.cnki.1671-7236.2018.12.023. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2018.12.023
[19] CIESLAK J, FLISIKOWSKA T, SCHNIEKE A, KIND A, SZYDLOWSKI M, SWITONSKI M, FLISIKOWSKI K. Polymorphisms in the promoter region of the adiponectin (ADIPOQ) gene are presumably associated with transcription level and carcass traits in pigs. Animal Genetics, 2013, 44(3): 340-343. doi: 10.1111/j.1365-2052.2012.02397.x.
doi: 10.1111/j.1365-2052.2012.02397.x.
[20] DAI L H, XIONG Y Z, DENG C Y, JIANG S W, ZUO B, ZHENG R, LI F E, LEI M G. Association of the A-G polymorphism in porcine adiponectin gene with fat deposition and carcass traits. Asian- Australasian Journal of Animal Sciences, 2006, 19(6): 779-783.
doi: 10.5713/ajas.2006.779
[21] SHIN S, CHUNG E. Novel SNPs in the bovine ADIPOQ and PPARGC1A genes are associated with carcass traits in Hanwoo (Korean cattle). Molecular Biology Reports, 2013, 40(7): 4651-4660. doi: 10.1007/s11033-013-2560-0.
doi: 10.1007/s11033-013-2560-0
[22] 杨彦杰, 昝林森, 王洪宝, 樊月圆. 秦川牛脂联素基因第2外显子多态性及其与部分产肉性状的相关性. 西北农林科技大学学报(自然科学版), 2009, 37(9): 53-58. doi: 10.13207/j.cnki.jnwafu.2009.09.033.
doi: 10.13207/j.cnki.jnwafu.2009.09.033
YANG Y J, ZAN L S, WANG H B, FAN Y Y. Relationship between the polymorphism in exon2 of the adiponectin gene and several production traits in Qinchuan cattle. Journal of Northwest A & F University (Natural Science Edition), 2009, 37(9): 53-58. doi: 10.13207/j.cnki.jnwafu.2009.09.033. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2009.09.033
[23] 刘大林, 俞亚波, 魏岳, 张跟喜, 王金玉. 脂联素基因对京海黄鸡体重及屠体性状的遗传效应. 扬州大学学报(农业与生命科学版), 2009, 30(1): 31-34. doi: 10.16872/j.cnki.1671-4652.2009.01.009.
doi: 10.16872/j.cnki.1671-4652.2009.01.009
LIU D L, YU Y B, WEI Y, ZHANG G X, WANG J Y. Single nucleotide polymorphism analysis in Jinghai yellow chicken adiponectin gene and its association with slaughter traits. Journal of Yangzhou University (Agricultural and Life Science Edition), 2009, 30(1): 31-34. doi: 10.16872/j.cnki.1671-4652.2009.01.009. (in Chinese)
doi: 10.16872/j.cnki.1671-4652.2009.01.009
[24] SCAGLIONE D, PINOSIO S, MARRONI F, DI CENTA E, FORNASIERO A, MAGRIS G, SCALABRIN S, CATTONARO F, TAYLOR G, MORGANTE M. Single primer enrichment technology as a tool for massive genotyping: A benchmark on black poplar and maize. Annals of Botany, 2019, 124(4): 543-551. doi: 10.1093/aob/mcz054.
doi: 10.1093/aob/mcz054
[25] 艾锦新, 龙安炬, 罗卫星, 蔡惠芬. 黔北麻羊FABP3基因多态性及其与生长性状的相关性研究. 畜牧与兽医, 2021, 53(1): 13-18.
AI J X, LONG A J, LUO W X, CAI H F. Polymorphism of the FABP3 gene and its correlation with the growth traits of Qianbei Ma goat. Animal Husbandry & Veterinary Medicine, 2021, 53(1): 13-18. (in Chinese)
[26] 张辉, 李鹏, 闫峰, 卢广林, 赵立香, 马玉杰, 任宝文. 不同品种肉牛脂联素表达与肌内脂肪沉积的关系. 黑龙江畜牧兽医, 2011(1): 36-39. doi: 10.13881/j.cnki.hljxmsy.2011.01.017.
doi: 10.13881/j.cnki.hljxmsy.2011.01.017
ZHANG H, LI P, YAN F, LU G L, ZHAO L X, MA Y J, REN B W. Relationship between adiponectin expression and intramuscular fat deposition in different breeds of beef cattle. Heilongjiang Animal Science and Veterinary Medicine, 2011(1): 36-39. doi: 10.13881/j.cnki.hljxmsy.2011.01.017. (in Chinese)
doi: 10.13881/j.cnki.hljxmsy.2011.01.017
[27] 杨洋, 陈浩林, 徐敏, 倪锴. 贵州黑山羊ADIPOQ基因组织表达分析及脂肪中表达规律研究. 中国畜牧杂志, 2020, 56(10): 56-59. doi: 10.19556/j.0258-7033.20191117-01.
doi: 10.19556/j.0258-7033.20191117-01
YANG Y, CHEN H L, XU M, NI K. Tissue expression analysis and expression regularity in adipose tissues of ADIPOQ gene in Guizhou black goat. Chinese Journal of Animal Science, 2020, 56(10): 56-59. doi: 10.19556/j.0258-7033.20191117-01. (in Chinese)
doi: 10.19556/j.0258-7033.20191117-01
[28] 刘爱菊, 赵娟, 张鑫, 周荣艳, 田树军, 白莹, 陈晓勇. 寒泊羊脂联素基因表达及生物信息学分析. 中国畜牧兽医, 2020, 47(12): 3805-3814. doi: 10.16431/j.cnki.1671-7236.2020.12.002.
doi: 10.16431/j.cnki.1671-7236.2020.12.002
LIU A J, ZHAO J, ZHANG X, ZHOU R Y, TIAN S J, BAI Y, CHEN X Y. Expression and bioinformatic analysis of ADIPOQ gene in Hanper sheep. China Animal Husbandry & Veterinary Medicine, 2020, 47(12): 3805-3814. doi: 10.16431/j.cnki.1671-7236.2020.12.002. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2020.12.002
[29] 吴芸. 猪脂联素基因遗传多态性及其与肉质性状的相关性研究[D]. 贵阳: 贵州大学, 2008.
WU Y. Study on polymorphism of pig adiponectin gene and the association with meat quality traits[D]. Guiyang: Guizhou University, 2008. (in Chinese)
[30] 李青, 卢曾奎, 金美林, 权凯, 储明星, 魏彩虹. 绵羊BMP2基因型与尾性状的关联分析. 农业生物技术学报, 2019, 27(11): 1985-1995. doi: 10.3969/j.issn.1674-7968.2019.11.009.
doi: 10.3969/j.issn.1674-7968.2019.11.009
LI Q, LU Z K, JIN M L, QUAN K, CHU M X, WEI C H. Association analysis of the BMP2 genotype with sheep (Ovis aries) tail traits. Journal of Agricultural Biotechnology, 2019, 27(11): 1985-1995. doi: 10.3969/j.issn.1674-7968.2019.11.009. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2019.11.009
[31] 安清明, 周辉通, 刘秀, 李少斌, 罗玉柱, Jon G.Hickford. ADIPOQ基因单体型与不同性别绵羊生长性状的关联分析. 畜牧兽医学报, 2018, 49(4): 825-832. doi: 10.11843/j.issn.0366-6964.2018.04.021.
doi: 10.11843/j.issn.0366-6964.2018.04.021
AN Q M, ZHOU H T, LIU X, LI S B, LUO Y Z, HICKFORD J G. Effect of haplotypes of ADIPOQ on growth traits in ovine with different genders. Acta Veterinaria et Zootechnica Sinica, 2018, 49(4): 825-832. doi: 10.11843/j.issn.0366-6964.2018.04.021. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2018.04.021
[32] 梁伟. 癌症相关的同义突变对基因翻译过程的影响[D]. 南京: 东南大学, 2012.
LIANG W. Effects of cancer-related synonymous mutations on gene translation[D]. Nanjing: Southeast University, 2012. (in Chinese)
[33] YAJIMA H, MOTOHASHI N, ONO Y, SATO S, IKEDA K, MASUDA S, YADA E, KANESAKI H, MIYAGOE-SUZUKI Y, TAKEDA S, KAWAKAMI K. Six family genes control the proliferation and differentiation of muscle satellite cells. Experimental Cell Research, 2010, 316(17): 2932-2944. doi: 10.1016/j.yexcr.2010.08.001.
doi: 10.1016/j.yexcr.2010.08.001
[34] LIU Y B, CHU A, CHAKROUN I, ISLAM U, BLAIS A. Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation. Nucleic Acids Research, 2010, 38(20): 6857-6871. doi: 10.1093/nar/gkq585.
doi: 10.1093/nar/gkq585
[35] OROZCO G, HINKS A, EYRE S, KE X Y, GIBBONS L J, BOWES J, FLYNN E, MARTIN P, CONSORTIUM W T C C, CONSORTIUM Y, WILSON A G, BAX D E, MORGAN A W, EMERY P, STEER S, HOCKING L, REID D M, WORDSWORTH P, HARRISON P, THOMSON W, BARTON A, WORTHINGTON J. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Human Molecular Genetics, 2009, 18(14): 2693-2699. doi: 10.1093/hmg/ddp193.
doi: 10.1093/hmg/ddp193
[36] HORNE B D, CAMP N J. Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation. Genetic Epidemiology, 2004, 26(1): 11-21. doi: 10.1002/gepi.10292.
doi: 10.1002/gepi.10292
[37] 马晓萌, 轩俊丽, 王慧华, 袁泽湖, 吴明明, 朱才业, 刘瑞凿, 魏彩虹, 赵福平, 杜立新, 张莉. 乌珠穆沁绵羊RIPK2基因多态性与生长性状的关联. 中国农业科学, 2016, 49(7): 173-189. doi: 10.3864/j.issn.0578-1752.2016.07.015.
doi: 10.3864/j.issn.0578-1752.2016.07.015
MA X M, XUAN J L, WANG H H, YUAN Z H, WU M M, ZHU C Y, LIU R Z, WEI C H, ZHAO F P, DU L X, ZHANG L. Association of the RIPK2 gene genetic variation with Ujumqin sheep growth traits. Scientia Agricultura Sinica, 2016, 49(7): 173-189. doi: 10.3864/j.issn.0578-1752.2016.07.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.07.015
[38] HOWARD T D, WHITTAKER P A, ZAIMAN A L, KOPPELMAN G H, XU J, HANLEY M T, MEYERS D A, POSTMA D S, BLEECKER E R. Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. American Journal of Respiratory Cell and Molecular Biology, 2001, 25(3): 377-384. doi: 10.1165/ajrcmb.25.3.4483.
doi: 10.1165/ajrcmb.25.3.4483
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[5] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[6] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[7] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[8] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[9] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[10] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[11] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[12] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[13] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[14] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[15] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!