Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (1): 122-132.doi: 10.3864/j.issn.0578-1752.2020.01.012
• SPECIAL FOCUS: MOLECULAR BIOLOGY OF CUCUMBER • Previous Articles Next Articles
HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU(),ShengPing ZHANG(
)
[1] | LIN Y, SCHIEFELBEIN J . Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis. Development, 2001,128(19):3697-3705. |
[2] | 金正爱, 司龙亭, 李丹丹, 高兴 . 弱光下黄瓜幼苗叶片下胚轴长的遗传分析. 江苏农业科学, 2009(3):158-161. |
JIN Z A, SI L T, LI D D, GAO X . Genetic analysis of hypocotyl length in cucumber seedling leaves under weak light. Jiangsu agricultural science, 2009(3):158-161.(in Chinese) | |
[3] | 李丹丹, 司龙亭, 罗晓梅, 李涛 . 弱光胁迫下黄瓜苗期下胚轴性状的遗传分析. 西北农林科技大学学报(自然科学版), 2009,37(11):113-119. |
LI D D, SI L T, LUO X M, LI T . Genetic analysis of hypocotyl traits in cucumber seedling under low light stress. Journal of Northwestern Agricultural and Forestry University (Natural Science Edition), 2009,37(11):113-119. (in Chinese) | |
[4] | 张冠英, 司龙亭, 李丹丹 . 弱光胁迫下黄瓜幼苗下胚轴性状QTL分析. 园艺学报, 2011,38(2):295-302. |
ZHANG G Y, SI L T, LI D D . QTL analysis for hypocotyl traits of cucumber seedlings under low light stress. Acta Horticulturae Sinica, 2011,38(2):295-302. (in Chinese) | |
[5] | 邹士成, 李丹丹, 孙博华, 张成凤, 于思琦 . 黄瓜幼苗下胚轴响应弱光胁迫的研究. 安徽农学通报, 2015,21(19):29-30. |
ZOU S C, LI D D, SUN B H, ZHANG C F, YU S Q . Response of hypocotyl of cucumber seedlings to light stress. Anhui Agricultural Science Bulletin, 2015,21(19):29-30. (in Chinese) | |
[6] | SONG J L, CAO K, HAO Y W, SONG S W, SU W, LIU H C . Hypocotyl elongation is regulated by supplemental blue and red light in cucumber seedling. Gene, 2019,707:117-125. |
[7] | 肖苏琪, 王冰华, 曲梅, 高丽红 . 冬春季节育苗温室补光光强对黄瓜幼苗质量的影响. 中国蔬菜, 2018(10):40-45. |
XIAO S Q, WANG B H, QU M, GAO L H . Effect of supplementary light intensity on quality of winter-spring cucumber seedling in solar greenhouse. Chinese Vegetables, 2018(10):40-45. (in Chinese) | |
[8] | 张子默, 卢俊成, 齐晓花, 许学文, 陈学好, 徐强 . 高温下黄瓜幼苗下胚轴长度遗传效应的研究. 分子植物育种, 2019,17(4):1326-1332. |
ZHANG Z M, LU J C, QI X H, XU X W, CHEN X H, XU Q . Study on genetic effects of hypocotyl length in cucumber seedlings under high temperature. Molecular Plant Breeding, 2019,17(4):1326-1332. (in Chinese) | |
[9] | 董春娟, 曹宁, 王玲玲, 张焕欣, 王红飞, 台连丽, 尚庆茂 . 黄瓜子叶源生长素对下胚轴不定根发生的调控作用. 园艺学报, 2016,43(10):1929-1940. |
DONG C J, CAO N, WANG L L, ZHANG H X, WANG H F, TAI L L, SHANG Q M . Regulatory roles of cotyledon-generated auxin in adventitious root formation on the hypocotyls of cucumber seedling. Acta Horticulturae Sinica, 2016,43(10):1929-1940. (in Chinese) | |
[10] | LOPEZ-JUEZ E, KOBAYASHI M, SAKURAI A, KAMIYA Y, KENDRICK R E . Phytochrome, gibberellins, and hypocotyl growth (a study using the cucumber (Cucumis sativus L.) long hypocotyl mutant). Plant Physiology, 1995,107(1):131-140. |
[11] | DAN H, IMASEKI H, WASTENEYS G O, KAZAMA H . Ethylene stimulates endoreduplication but inhibits cytokinesis in cucumber hypocotyl epidermis. Plant Physiology, 2003,133(4):1726-1731. |
[12] | BO K L, WANG H, PAN Y P, BEHERA T K, PANDEY S, WEN C L, WANG Y H, SIMON P W, LI Y H, CHEN J F, WENG Y Q . SHORT HYPOCOTYL 1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation. Plant Physiology, 2016,172:1273-1292. |
[13] | 苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨, 方智远 . 黄瓜苗期主要农艺性状相关QTL定位分析. 园艺学报, 2012,39(5):879-887. |
MIAO H, GU X F, ZHANG S P, ZHANG Z H, HUANG S W, WANG Y, FANG Z Y . Mapping QTLs for seedling-associated traits in cucumber. Acta Horticulturae Sinica, 2012,39(5):879-887. (in Chinese) | |
[14] | ATWELL S, HUANG Y S, VILHJALMSSON B J, WILLEMS G, HORTON M, LI Y, MENG D, PLATT A, TARONE A M, HU T T, JIANG R, MULIYATI N W, ZHANG X, AMER M A, BAXTER I, BRACHI B, CHORY J, DEAN C, DEBIEU M, DE MEAUX J, ECKER J R, FAURE N, KNISKERN J M, JONES J D, MICHAEL T, NEMRI A, ROUX F, SALT D E, TANG C, TODESCO M, TRAW M B, WEIGEL D, MARJORAM P, BOREVITZ J O, BERGELSON J, NORDBORG M . Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010,465(7298):627-631. |
[15] | BRACHI B, MORRIS G P, BOREVITZ J O . Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology, 2011,12(10):232. |
[16] | WANG M, YAN J B, ZHAO J R, SONG W, ZHANG X B, XIAO Y N, ZHENG Y L . Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Science, 2012,196:125-131. |
[17] | HUANG X H, WEI X H, SANG T, ZHAO Q A, FENG Q, ZHAO Y, LI C L, ZHU C R, LU T T, ZHANG Z W, LI M, FAN D L, GUO Y L, WANG A H, WANG L, DENG L W, LI W J, LU Y Q, WENG Q J, LIU K Y, HUANG T, ZHOU T Y, JING Y F, LI W, LIN Z, BUCKLER E S, QIAN Q, ZHANG Q F, LI J Y, HAN B . Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010,42(11):961-967. |
[18] | QI J J, LIU X, SHEN D, MIAO H, XIE B Y, LI X X, ZENG P, WANG S H, SHANG Y, GU X F, DU Y C, LI Y, LIN T, YUAN J H, YANG X Y, CHEN J F, CHEN H M, XIONG X Y, HUANG K, FEI Z J, MAO L Y, TIAN L, STADLER T, RENNER S S, KAMOUN S, LUCAS W J, ZHANG Z H, HUANG S W . A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013,45(12):1510-1515. |
[19] | YANG J A, LEE S H, GODDARD M E, VISSCHER P M . A tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 2011,88(1):76-82. |
[20] | BARRETT J C, FRY B, MALLER J, DALY M J . Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics, 2005,21(2):263-265. |
[21] | ZHANG Z W, ERSOZ E, LAI C Q, TODHUNTER R J, TIWARI H K, GORE M A, BRADBURY P J, YU J M, ARNETT D K, ORDOVAS J M, BUCKLER E S . Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010,42(4):355-360. |
[22] | BRADBURY P J, ZHANG Z W, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S . TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23(19):2633-2635. |
[23] | ZHANG Z W, ERSOZ E, LAI C Q, TODHUNTER R J, TIWARI H K, GORE M A, BRADBURY P J, YU J M, ARNETT D K, ORDOVAS J M, BUCKLER E S . Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010,42(4):355-360. |
[24] | DAN H, IMASEKI H, WASTENEYS G O, KAZAMA H . Ethylene stimulates endoreduplication but inhibits cytokinesis in cucumber hypocotyl epidermis1. Plant Physiology, 2003,133(4):1726-1731. |
[25] | ZHAO Q X, YUAN S, WANG X, ZHANG Y L, ZHU H, LU C M . Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and egta in vitro. Plant Physiology, 2008,147(4):1874-1885. |
[26] | KOEDA S, SATO K, SAITO H, NAGANO A J, YASUGI M, KUDOH H, TANAKA Y . Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theoretical and Applied Genetics, 2019,132(1):65-80. |
[27] | ZHAO L M, PENG T, CHEN C Y, JI R J, GU D C, LI T T, ZHANG D D, TU Y S, WU K Q, LIU X C . HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomorphogenesis. Plant Physiology, 2019,180(3):1450-1466. |
[28] | CHENGE-ESPINOSA M, CORDOBA E, ROMERO-GUIDO C, TOLEDO-ORTIZ G, LEON P . Shedding light on the methylerythritol phosphate (MEP)-pathway: Long hypocotyl 5 (HY5)/phytochrome- interacting factors (PIFs) transcription factors modulating key limiting steps. Plant Journal, 2018,96(4):828-841. |
[29] | RAIJMAKERS R, NOORDMAN Y E, VAN VENROOIJ W J, PRUIJN G J M . Protein-protein interactions of hCsl4p with other human exosome subunits. Journal of Molecular Biology, 2002,315(4):809-818. |
[30] | BREMBU T, WINGE P, SEEM M, BONES A M . NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. The Plant Cell, 2004,16(9):2335-2349. |
[1] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[2] | LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629. |
[3] | ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081. |
[4] | LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768. |
[5] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[6] | KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766. |
[7] | BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628. |
[8] | CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081. |
[9] | LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499. |
[10] | WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277. |
[11] | CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232. |
[12] | CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683. |
[13] | ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326. |
[14] | YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047. |
[15] | SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944. |
|