Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2207-2218.doi: 10.3864/j.issn.0578-1752.2020.11.007

• PLANT PROTECTION • Previous Articles     Next Articles

Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China

QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen()   

  1. Institute of Plant Protection, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Crop Pest Control/ IPM Key Laboratory in Southern Part of North China, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002
  • Received:2019-11-07 Accepted:2019-11-28 Online:2020-06-01 Published:2020-06-09
  • Contact: ZhenChen ZHANG E-mail:zhangzhenchen@126.com

Abstract:

【Objective】The objective of this study is to clone the complete nucleotide sequence of Chinese isolate of Sweet potato feathery mottle virus (SPFMV) O and RC strains, elucidate the genomic structural characterization and variation of SPFMV-O-Ch1 and SPFMV-RC-Ch1, and to lay a foundation for the study of pathogenic mechanism of SPFMV. 【Method】According to the SPFMV genome sequences available in GenBank database, 2 pairs of degenerate primers and 3 pairs of specific primers were designed, the whole genome of SPFMV O and RC strains isolated from China was amplified by RT-PCR from sweet potato leaves infection with SPFMV and subsequently cloned into vector pMD19-T and sequenced. The complete genome sequences of SPFMV-O-Ch1 and SPFMV-RC-Ch1 isolates were assembled by using DNAMAN. Genetic variation analyses of complete genomic sequences, polyproteins, and individual protein sequences were performed using DNAMAN. Neighbor-joining phylogenetic tree of SPFMV-O-Ch1 and SPFMV-RC-Ch1 isolates with other isolates was constructed using MEGA7.0 software. Recombination analyses were carried out using RDP software. 【Result】The amplification and sequencing revealed that the complete nucleotide sequence of SPFMV-O-Ch1 and SPFMV-RC-Ch1 isolates was 10 992 nucleotides (nt) and 10 851 nt in length, respectively. The viral genome of SPFMV-O-Ch1 isolate contained a single open reading frame (ORF) of 10 557 nt encoding a polyprotein of 3 518 aa. SPFMV-RC-Ch1 isolate polyprotein consisted of 10 482 nt and encoded 3 493 aa. Two small ORFs, P1N-PISPO and P3N-PIPO were identified in the P1 and P3 proteins of these two isolates. Pairwise comparisons of the complete genome nucleotide sequence showed that O-Ch1 had 87.3% identity with RC-Ch1 isolate and shared 86.0%-95.8% sequence identity with other SPFMV isolates. It was most closely related to the isolate Ruk73 with 95.8% nt identity and lowest nt identity with 11-1 isolate (86.0%). RC-Ch1 and other SPFMV isolates shared 85.9%-98.7% sequence identity at the complete genome nucleotide sequence level. It had the highest nt identity with IS90 isolate (98.7%), and had lowest nt identity with Aus1-2B isolate (85.9%). Phylogenetic tree analysis based on polyprotein gene indicated that SPFMV-O-Ch1 formed a branch with the isolates of O strain containing Ordinary, 10-O and 17-O, and SPFMV-RC-Ch1 formed a branch with the isolates of RC strain containing S, IS90 and CW137. Recombination analysis showed that there were three potential significant recombination events occurred in 7 731- 9 710, 135-10 012 and 4 825-6 948 nt of O-Ch1 isolate genome, respectively. No recombination event was detected in the complete genome of RC-Ch1 isolate. 【Conclusion】The genomic organizations of SPFMV-O-Ch1 and SPFMV-RC-Ch1 isolates were same to other isolates. O-Ch1 isolate was closely related to the isolates of O strain and RC-Ch1 isolate was closely related to those isolates of RC strain. Three recombination events were detected in O-Ch1 isolate, but no recombination event was detected in RC-Ch1 isolate.

Key words: Sweet potato feathery mottle virus (SPFMV), strain, complete nucleotide sequence, genetic variation, recombination analysis

Table 1

Name, strain, origin and accession number of all isolates used in this study"

序号Number 分离物名称Isolate name 株系Strain 地理来源Geographic origin 登录号Accession number
1 RC-Ch1 RC 中国China KY296451
2 O-Ch1 O 中国China KY296450
3 CW137 RC 韩国South Korea KP115608
4 IS90 RC 韩国South Korea KP115610
5 GJ122 O 韩国South Korea KP115609
6 S RC 日本Japan D86371
7 10-O O 日本Japan AB439206
8 Ordinary O 日本Japan AB465608
9 17-O O 日本Japan AB509454
10 11-8 RC 美国USA MH782223
11 95-204R RC 美国USA MH782224
12 11-1 RC 美国USA MH778648
13 TFSW-1J RC 美国USA MH782227
14 95-2T O 美国USA MH782225
15 Aus7D RC 澳大利亚Australia MF572046
16 Aus12D RC 澳大利亚Australia MF572049
17 Aus8-8CA RC 澳大利亚Australia MG656422
18 Aus11D RC 澳大利亚Australia MF572048
19 Aus15-21CA RC 澳大利亚Australia MG656429
20 Aus11-13CA RC 澳大利亚Australia MG656425
21 Aus6-3B RC 澳大利亚Australia MG656420
22 Aus9-9B-2 RC 澳大利亚Australia MG656423
23 Aus10-10D RC 澳大利亚Australia MG656424
24 Aus13-18B-1 RC 澳大利亚Australia MG656427
25 Aus4D RC 澳大利亚Australia MF572047
26 Aus3D RC 澳大利亚Australia MF572052
27 Aus7-7B RC 澳大利亚Australia MG656421
28 Aus2D RC 澳大利亚Australia MF572051
29 Aus4-3A RC 澳大利亚Australia MG656418
30 Aus9D RC 澳大利亚Australia MF572054
31 Aus14-20CA RC 澳大利亚Australia MG656428
32 Aus12-16B RC 澳大利亚Australia MG656426
33 Aus16-24A RC 澳大利亚Australia MG656430
34 Aus3-2BC RC 澳大利亚Australia MG656417
35 Aus17-11D O 澳大利亚Australia MG656431
36 Aus5-3B O 澳大利亚Australia MG656419
37 Aus13B O 澳大利亚Australia MF572050
38 Aus1-2B O 澳大利亚Australia MG656415
39 Aus2-2BC O 澳大利亚Australia MG656416
40 UNB-01 RC 巴西Brazil MF185715
41 TM33C O 东帝汶East Timor MF572055
42 TM64B O 东帝汶East Timor MF572053
43 TM66B O 东帝汶East Timor MF572056
44 Ruk73 O 乌干达Uganda KP729265
45 RC-Arg RC 阿根廷Argentina KF386014
46 O-Arg O 阿根廷Argentina KF386013
47 SRF109a O 肯尼亚Kenya MH264535
48 ZA-O O 南非South Africa KT069222
49 Piu3 EA 秘鲁Peru FJ155666
50 AM-MB2 西班牙Spain KU511268

Table 2

Primer sequences and expected size of the PCR product for each primer pair"

扩增片段
Amplified fragment
引物名称
Primer name
引物序列
Primer sequence (5′→3′)
目的片段大小
Expected size (bp)
O-1/RC-1 1-F AATAACACAACWCAAYACAACAYAASAAAACT 4784/4711
4711-R GTGATATCATCTAARCTYTGATG
O-2 4689-F CATCARAGYTTAGATGATATCAC 5692
10380-R CATATCGCGCAAGACTCATATC
O-3 SPFMV-O-4160-F AAGCGACAGAGCAACAGACTTATGTACTA 1124
SPFMV-O-5284-R GATATTGCGTTGTAAATTCAACCTCACGTC
RC-2 SPFMV-RC-4260-F AAGTTTGTGAATATGCTACTAGTCATCA 3814
SPFMV-RC-8220-R TACCTTCTAGGTCTGTGATCAGTTTAGAC
RC-3 SPFMV-RC-7580-F CCGATAGCTAGCGTCATATGCCATCTCG 3426
SPFMV-11000-R TTGGCTCGATCACGAACCAAAAAGGCT

Fig. 1

RT-PCR products of different genomic segments of O-Ch1 and RC-Ch1 isolates"

Table 3

Sequence identities between O-Ch1, RC-Ch1 and other isolates at nucleotide and amino acid levels"

基因组区域
Genome region
O-Ch1蛋白大小及与48个分离物比对
Protein size of O-Ch1 and comparison with 48 isolates
RC-Ch1蛋白大小及与48个分离物比对
Protein size of RC-Ch1 and comparison with 48 isolates
O-Ch1与RC-Ch1比对
Comparison of O-Ch1 and RC-Ch1
蛋白大小
(氨基酸)
Protein size (aa)
核苷酸
一致性
nt identity (%)
氨基酸
一致性
aa identity (%)
蛋白大小
(氨基酸)
Protein size (aa)
核苷酸
一致性
nt identity (%)
氨基酸
一致性
aa identity (%)
核苷酸(氨基酸)
一致性
nt (aa) identity (%)
全长Complete sequence - 86.0-95.8 - - 85.9-98.7 - 87.3 (-)
多聚蛋白Polyprotein 3518 87.0-95.8 92.1-97.6 3493 87.0-98.8 92.8-99.3 88.2 (94.0)
P1 689 83.4-97.8 81.2-96.4 664 82.8-99.0 80.6-99.2 85.4 (83.9)
HC 458 83.3-98.2 91.9-98.9 458 83.4-99.0 92.1-100.0 84.0 (93.2)
P3 352 93.2-98.5 95.5-98.6 352 92.8-99.3 94.3-99.4 93.8 (96.0)
6K1 52 92.9-100.0 92.3-100.0 52 91.7-98.7 94.2-100.0 94.2 (98.1)
CI 643 89.0-98.0 97.0-99.7 643 89.7-98.9 97.5-99.8 89.9 (98.0)
6K2 53 91.2-98.7 94.3-100.0 53 89.3-98.7 96.2-100.0 91.8 (98.1)
NIa-VPg 192 78.1-97.7 90.6-100.0 192 83.9-99.3 89.6-100.0 84.4 (97.4)
NIa-Pro 243 83.4-96.3 93.4-98.8 243 79.0-98.6 92.6-99.6 85.9 (96.3)
NIb 521 86.3-97.3 93.1-98.5 521 85.3-98.7 92.9-99.8 89.5 (96.2)
CP 315 76.7-96.6 94.0-99.7 315 79.9-98.9 95.6-99.7 92.5 (96.8)

Fig. 2

Phylogenetic trees reconstructed using the nucleotide sequences of polyprotein and P1 protein of SPFMV isolates"

Fig. 3

Phylogenetic trees reconstructed using the nucleotide sequences of CI and CP proteins of SPFMV isolates"

Table 4

Recombination analysis of O-Ch1 isolate"

序号
Number
主要亲本
Major parent
次要亲本
Minor parent
位置
Position (nt)
PP-Value
RDP GENECONV BootScan MaxChi Chimaera SiScan 3Seq
1 Ordinary-
AB465608
TM33C-
MF572055
7731-
9710
5.583×10-33 8.317×10-17 7.407×10-31 3.758×10-20 3.466×10-22 2.430×10-25 1.095×10-44
2 EA-Piu3-
FJ155666
Aus5-3B-
MG656419
135-
10012
- - - 8.783×10-4 7.437×10-3 1.803×10-20 1.561×10-56
3 Aus13B-
MF572050
EA-Piu3-
FJ155666
4825-
6948
- - - 1.104×10-3 1.071×10-2 - 1.256×10-2
[1] RÄNNÄLI M, CZEKAJ V, JONES R A C, FLETCHER J D, DAVIS R I, MU L, VALKONEN J P T . Molecular characterization of Sweet potato feathery mottle virus (SPFMV) isolates from Easter Island, French Polynesia, New Zealand and southern Africa. Plant Disease, 2009,93(9):933-939.
doi: 10.1094/PDIS-93-9-0933
[2] 孟清, 张鹤龄, 张喜印, 杨永嘉, 邢继英, 宋伯符 . 甘薯羽状斑驳病毒的分离与提纯. 植物病理学报, 1994,24(3):227-232.
MENG Q, ZHANG H L, ZHANG X Y, YANG Y J, XING J Y, SONG B F . Isolation, purification of Sweet potato feathery mottle virus. Acta Phytopathologica Sinica, 1994,24(3):227-232. (in Chinese)
[3] MUKASA S B, TAIRO F, KREUZE J F, KULLAYA A, RUBAIHAYO P R, VALKONEN J P T . Coat protein sequence analysis reveals occurrence of new strains of Sweet potato feathery mottle virus in Uganda and Tanzania. Virus Genes, 2003,27(1):49-56.
doi: 10.1023/A:1025172402230
[4] MOYER J W, KENNEDY G G . Purification and properties of Sweet potato feathery mottle virus. Phytopathology, 1978,68:998-1004.
[5] KARYEINA R F, KREUZE J F, GIBSON R W, VALKONEN J P T . Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology, 2000,269(1):26-36.
[6] UNTIVEROS M, FUENTES S, KREUZE J . Molecular variability of Sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Archive of Virology, 2008,153(3):473-483.
[7] TAIRO F, MUKASA S B, JONES R A C, KULLAYA A, RUBAIHAYO P R, VALKONEN J P T, . Unravelling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD), and its practical implications. Molecular Plant Pathology, 2005,6(2):199-211.
[8] 李汝刚, 蔡少华, SALAZAR L F . 中国甘薯病毒的血清学检测. 植物病理学报, 1990,20(3):189-194.
LI R G, CAI S H, SALAZAR L F . Serological detection of viruses on sweet potato in China. Acta Phytopathologica Sinica, 1990,20(3):189-194. (in Chinese)
[9] 乔奇, 张振臣, 张德胜, 秦艳红, 田雨婷, 王永江 . 中国甘薯病毒种类的血清学和分子检测. 植物病理学报, 2012,42(1):10-16.
QIAO Q, ZHANG Z C, ZHANG D S, QIN Y H, TIAN Y T, WANG Y J . Serological and molecular detection of viruses infecting sweet potato in China. Acta Phytopathologica Sinica, 2012,42(1):10-16. (in Chinese)
[10] QIN Y H, ZHANG Z C, QIAO Q, ZHANG D S, TIAN Y T, WANG Y J . Molecular variability of Sweet potato chlorotic stunt virus (SPCSV) and five potyviruses infecting sweet potato in China. Archive of Virology, 2013,158(2):491-495.
doi: 10.1007/s00705-012-1503-8
[11] 王晓华, 张振臣, 乔奇, 秦艳红, 张德胜, 田雨婷 . 甘薯羽状斑驳病毒外壳蛋白基因的分子变异. 植物保护, 2012,38(2):114-116.
WANG X H, ZHANG Z C, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T . Molecular variation of Sweet potato feathery mottle virus coat protein gene. Plant Protection, 2012,38(2):114-116. (in Chinese)
[12] SAKAI J, MORI M, MORISHITA A, TANAKA M, HANADA K, USUGI T, NISHIGUCHI M . Complete nucleotide sequence and genome organization of Sweet potato feathery mottle virus (S strain) genomic RNA: The large coding region of the P1gene. Archive of Virology, 1997,142(8):1553-1562.
[13] KREUZE J F, PEREZ A, UNTIVEROS M, QUISPE D, FUENTES S, BARKER I, SIMON R . Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology, 2009,388(1):1-7.
doi: 10.1016/j.virol.2009.03.024
[14] YAMASAKI S, SAKAI J, FUJI S, KAMISOYAMA S, EMOTO K, OHSHIMA K, HANADA K . Comparisons among isolates of Sweet potato feathery mottle virus using complete genomic RNA sequences. Archive of Virology, 2010,155(5):795-800.
[15] KWAK H R, KIM J, KIM M K, SEO J K, JUNG M N, KIM J S, LEE S C, CHOI H S . Molecular characterization of five potyviruses infecting Korean sweet potatoes based on analyses of complete genome sequences. The Plant Pathology Journal, 2015,31(4):388-401.
[16] MINGOT A, VALLI A, RODAMILANS B, LEON D S, BAULCOMBE D C, GARCIA J A, LOPEZ-MOYA J J . The P1N-PISPO trans-frame gene of sweet potato feathery mottle potyvirus is produced during virus infection and functions as RNA silencing suppressor. Journal of Virology, 2016,90(7):3543-3557.
doi: 10.1128/JVI.02360-15
[17] MAINA S, BARBETTI M J, EDWARDS O, DE ALMEIDA L, XIMENES A, JONES R A C . Sweet potato feathery mottle virus and Sweet potato virus C from East Timorese and Australian sweetpotato: Biological and molecular properties, and biosecurity implications. Plant Disease, 2018,102(3):589-599.
doi: 10.1094/PDIS-08-17-1156-RE
[18] MAINA S, BARBETTI M J, MARTIN D P, EDWARDS O R, JONES R A C . New isolates of Sweet potato feathery mottle virus and Sweet potato virus C: Biological and molecular properties, and recombination analysis based on complete genomes. Plant Disease, 2018,102(10):1899-1914.
doi: 10.1094/PDIS-12-17-1972-RE
[19] CLARK C A, DAVIS J A, ABAD J A, CUELLAR W J, FUENTES S, KREUZE J F, GIBSON R W, MUKASA S B, TUGUME A K, TAIRO F D, VALKONEN J P T . Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Disease, 2012,96(2):168-185.
doi: 10.1094/PDIS-07-11-0550
[20] UNTIVEROS M, QUISPE D, KREUZE J . Analysis of complete genomic sequences of isolates of the Sweet potato feathery mottle virus strains C and EA: Molecular evidence for two distinct potyvirus species and two P1 protein domains. Archive of Virology, 2010,155(12):2059-2063.
[21] LIU Q L, WANG Y J, ZHANG Z C, LV H, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T, WANG S, LI J Q . Diversity of sweepoviruses infecting sweet potato in China. Plant Disease, 2017,101(12):2098-2103.
[22] 张凤桐, 程林发, 耿超, 田延平, 原雪峰, 白艳菊, 李向东 . 一株PVY NTN-NW黑龙江马铃薯分离物的检测鉴定 . 植物病理学报, 2019,49(4):512-519.
ZHANG F T, CHENG L F, GENG C, TIAN Y P, YUAN X F, BAI Y J, LI X D . Detection and identification of a Potato virus Y (PVY) NTN-NW isolate from potato in Heilongjiang, China. Acta Phytopathologica Sinica, 2019,49(4):512-519. (in Chinese)
[23] 李科, 时洪伟, 荆陈沉, 孙现超, 周常勇, 青玲 . ACLSV山东苹果分离物基因组重组及CP序列多样性分析. 中国农业科学, 2015,48(14):2857-2867.
LI K, SHI H W, JING C C, SUN X C, ZHOU C Y, QING L . Analysis of genome recombination and CP sequence diversity of ACLSV apple isolate from Shandong. Scientia Agricultura Sinica, 2015,48(14):2857-2867. (in Chinese)
[24] 李汝刚, 朱笑梅, 薛爱红, 蔡少华, 王小凤 . 甘薯病毒病的研究. I甘薯羽状斑驳病毒的分离、鉴定. 植物病理学报, 1992,22(4):319-322.
LI R G, ZHU X M, XUE A H, CAI S H, WANG X F . Identification of Langfang isolate of Sweet potato feathery mottle virus. Acta Phytopathologica Sinica, 1992,22(4):319-322. (in Chinese)
[25] 朱作为, 薛启汉, 杨永嘉, 邢继英 . 甘薯羽状斑驳病毒的分离和提纯. 江苏农业学报, 1994,10(1):47-49.
ZHU Z W, XUE Q H, YANG Y J, XING J Y . Isolation and purification of Sweet potato feathery mottle virus. Jiangsu Journal of Agricultural Sciences, 1994,10(1):47-49. (in Chinese)
[26] 杨崇良, 路兴波, 王升吉, 尚佑芬, 赵玖华, 李长松 . 甘薯羽状斑驳病毒(SPFMV)生物学性状研究. 山东农业科学, 2001,33(1):26-29.
YANG C L, LU X B, WANG S J, SHANG Y F, ZHAO J H, LI C S . Biological characteristics research on Sweet potato feathery mottle virus. Shandong Agricultural Sciences, 2001,33(1):26-29. (in Chinese)
[27] 张振臣, 李大伟, 陈健夫, 于嘉林, 乔奇, 靳秀兰 . 甘薯羽状斑驳病毒外壳蛋白基因在大肠杆菌中的表达及特异抗血清的制备. 农业生物技术学报, 2000,8(2):177-179.
ZHANG Z C, LI D W, CHEN J F, YU J L, QIAO Q, JIN X L . Overexpression of Sweet potato feathery mottle virus coat protein in E. coli and preparation of its specific antiserum. Journal of Agricultural Biotechnology, 2000,8(2):177-179. (in Chinese)
[28] 张盼, 兰新芝, 乔奇, 张德胜, 秦艳红, 田雨婷, 王爽, 张振臣 . 甘薯病毒病害(SPVD)的多重RT-PCR检测方法及其应用. 植物保护, 2013,39(2):86-90.
ZHANG P, LAN X Z, QIAO Q, ZHANG D S, QIN Y H, TIAN Y T, WANG S, ZHANG Z C . Development and application of a multiplex RT-PCR detection method for sweet potato virus disease (SPVD). Plant Protection, 2013,39(2):86-90. (in Chinese)
[29] 许泳清, 李华伟, 刘中华, 邱永祥, 罗文彬, 纪荣昌, 汤浩, 邱思鑫, 余华 . 甘薯羽状斑驳病毒(SPFMV)ELISA鉴定及RT-PCR检测方法的建立. 福建农业学报, 2013,28(12):1267-1272.
XU Y Q, LI H W, LIU Z H, QIU Y X, LUO W B, JI R C, TANG H, QIU S X, YU H . ELISA identification and development of RT-PCR detection of Sweet potato feathery mottle virus. Fujian Journal of Agricultural Sciences, 2013,28(12):1267-1272. (in Chinese)
[30] 王丽, 王振东, 乔奇, 秦艳红, 张德胜, 田雨婷, 王爽, 张立军, 张振臣 . 甘薯羽状斑驳病毒实时荧光定量PCR检测方法的建立. 沈阳农业大学学报, 2013,44(2):129-135.
WANG L, WANG Z D, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T, WANG S, ZHANG L J, ZHANG Z C . Development of real-time fluorescent quantitative PCR assay for detection of Sweet potato feathery mottle virus. Journal of Shenyang Agricultural University, 2013,44(2):129-135. (in Chinese)
[31] 何海旺, 何虎翼, 谭冠宁, 刘义明, 何新民, 唐洲萍, 李丽淑, 王晖 . 反向斑点杂交法快速检测甘薯羽状斑驳病毒和甘薯G病毒. 南方农业学报, 2014,45(1):43-48.
HE H W, HE H Y, TAN G N, LIU Y M, HE X M, TANG Z P, LI L S, WANG H . Detection of SPFMV and SPVG by using reverse dot blot hybridization system. Journal of Southern Agriculture, 2014,45(1):43-48. (in Chinese)
[32] 许泳清, 李华伟, 邱思鑫, 刘中华, 邱永祥, 罗文彬, 纪荣昌, 汤浩, 余华 . 甘薯羽状斑驳病毒和褪绿矮化病毒双重RT-PCR检测方法的建立. 福建农业学报, 2014,29(11):1114-1117.
XU Y Q, LI H W, QIU S X, LIU Z H, QIU Y X, LUO W B, JI R C, TANG H, YU H . Development of dutiplex RT-PCR for the detection of SPFMV and SPCSV in sweet potato. Fujian Journal of Agricultural Sciences, 2014,29(11):1114-1117. (in Chinese)
[33] 李华伟, 许泳清, 邱思鑫, 刘中华, 邱永祥, 罗文彬, 汤浩, 余华 . 侵染甘薯的SPCSV、SPVG、SPFMV多重RT-PCR检测方法的建立及应用. 核农学报, 2015,29(8):1464-1470.
LI H W, XU Y Q, QIU S X, LIU Z H, QIU Y X, LUO W B, TANG H, YU H . Establishment and application of a multiplex RT-PCR detection method for SPCSV, SPVG and SPFMV Infecting sweetpotato. Journal of Nuclear Agricultural Sciences, 2015,29(8):1464-1470. (in Chinese)
[34] 卢会翔, 吕长文, 吴正丹, 罗凯, 尹旺, 杨航, 王季春, 张凯 . 甘薯羽状斑驳病毒(SPFMV)和甘薯褪绿矮化病毒(SPCSV)荧光定量RT-PCR检测方法的建立. 中国农业科学, 2016,49(1):90-102.
LU H X, LÜ C W, WU Z D, LUO K, YIN W, YANG H, WANG J C, ZHANG K . Development of detection method for Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) through fluorescence quantitative RT-PCR. Scientia Agricultura Sinica, 2016,49(1):90-102. (in Chinese)
[35] 蒋素华, 程喜梅, 宋彩霞, 许申平, 梁芳, 崔波 . 三种甘薯病毒多重RT-PCR检测技术的建立. 植物保护, 2017,43(1):126-130.
JIANG S H, CHENG X M, SONG C X, XU S P, LIANG F, CUI B . Establishment of multiplex RT-PCR system for detection of three viruses in sweet potato. Plant Protection, 2017,43(1):126-130. (in Chinese)
[36] 姜姗姗, 冯佳, 张眉, 王升吉, 辛志梅, 吴斌, 辛相启 . 甘薯羽状斑驳病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2018,51(7):1294-1302.
JIANG S S, FENG J, ZHANG M, WANG S J, XIN Z M, WU B, XIN X Q . Development of RT-LAMP assay for rapid detection of Sweet potato feathery mottle virus (SPFMV). Scientia Agricultura Sinica, 2018,51(7):1294-1302. (in Chinese)
[37] 黄广学, 孟利前, 朱建晨, 张进, 李庞博, 肖海峻 . 甘薯羽状斑驳病毒(SPFMV)和褪绿矮化病毒(SPCSV)的双重RT-PCR检测技术体系构建. 沈阳农业大学学报, 2018,49(6):724-729.
HUANG G X, MENG L Q, ZHU J C, ZHANG J, LI P B, XIAO H J . Establishment of duplex RT-PCR detection method for SPFMV and SPCSV infecting sweet potato. Journal of Shenyang Agricultural University, 2018,49(6):724-729. (in Chinese)
[38] 肖海峻, 孟利前, 朱建晨, 张进, 李庞博, 黄广学 . 甘薯羽状斑驳病毒的RT-PCR检测技术构建. 分子植物育种, 2019,17(13):4302-4306.
XIAO H J, MENG L Q, ZHU J C, ZHANG J, LI P B, HUANG G X . Construction of RT-PCR detection technique for Sweet potato feathery mottle virus. Molecular Plant Breeding, 2019,17(13):4302-4306. (in Chinese)
[39] 张振臣, 乔奇, 秦艳红, 张德胜, 田雨婷 . 我国发现由甘薯褪绿矮化病毒和甘薯羽状斑驳病毒协生共侵染引起的甘薯病毒病害. 植物病理学报, 2012,42(3):328-333.
ZHANG Z C, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T . First evidence for occurrence of sweet potato virus disease (SPVD) caused by dual infection of Sweet potato feathery mottle virus and Sweet potato chlorotic stunt virus in China. Acta Phytopathologica Sinica, 2012,42(3):328-333. (in Chinese)
[40] 张新新, 王旭芳, 林坚淳, 余竟成, 黄立飞, 董章勇 . 甘薯毁灭性病毒病害(SPVD)的研究进展. 中国农学通报, 2019,35(1):118-126.
ZHANG X X, WANG X F, LIN J C, YU J C, HUANG L F, DONG Z Y . Sweetpotato virus diseases (SPVD): Research progress. Chinese Agricultural Science Bulletin, 2019,35(1):118-126. (in Chinese)
[41] KREUZE J F, KARYEIJA R F, GIBSON R W, VALKONEN J P T . Comparisons of coat protein gene sequences show that Ease African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Archive of Virology, 2000,145(3):567-574.
[1] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[2] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[3] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[4] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[5] ZHOU JingRu,WU Fei,CHEN XueQiu,HUANG Yan,SHI HengZhi,DU AiFang,YANG Yi. Hc-hrg-2 of Haemonchus Contortus Rescues the Growth of Heme Deficient Yeast Strain [J]. Scientia Agricultura Sinica, 2021, 54(8): 1795-1804.
[6] ZHANG HongCheng,XING ZhiPeng,WENG WenAn,TIAN JinYu,TAO Yu,CHENG Shuang,HU Qun,HU YaJie,GUO BaoWei,WEI HaiYan. Growth Characteristics and Key Techniques for Stable Yield of Growth Constrained Direct Seeding Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1322-1337.
[7] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[8] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[9] ZhengKe WU,GuoHua LIU,Yang LI,AiJuan ZHENG,WenHuan CHANG,ZhiMin CHEN,HuiYi CAI. Optimization of Solid State Fermentation for Rapeseed Meal with Mixed Strains [J]. Scientia Agricultura Sinica, 2019, 52(24): 4603-4612.
[10] ZHENG XueFang, LIU Bo, ZHU YuJing, CHEN DeJu, CHEN XiaoQiang. Heterogeneity Analysis of Ralstonia solanacearum Mutants by Tn5 Transposon Using High Performance Ion-Exchange Chromatography [J]. Scientia Agricultura Sinica, 2018, 51(2): 268-278.
[11] LU YaoYao, SU RuiJing, DONG Hui, WANG MengYao, YANG YuRong. Pathogenicity of ME 49 Strain Toxoplasma gondii Tachyzoites in Kunming Mice [J]. Scientia Agricultura Sinica, 2018, 51(19): 3800-3806.
[12] LI ChunJia, QIN Wei, XU ChaoHua, LIU HongBo, MAO Jun, LU Xin. Genetic Variations and Cluster Analysis of Photosynthetic Gas Exchange Parameters in Exotic Sugarcane Cultivars [J]. Scientia Agricultura Sinica, 2018, 51(12): 2288-2299.
[13] WANG YaFei, RUAN Tao, ZHOU Yan, WANG XueFeng, WU GenTu, SUN XianChao, ZHOU ChangYong, QING Ling. Genetic Variation of p20 of the Severe and Mild Strains of CTV in the Sweet Orange and Pummelo [J]. Scientia Agricultura Sinica, 2017, 50(7): 1343-1350.
[14] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[15] ZHAO PeiFang, ZHAO Jun, LIU JiaYong, ZAN FengGang, XIA HongMing, P.A. Jackson, J. Basnayake, N.G. Inman-Bamber, YANG Kun, ZHAO LiPing, QIN Wei, CHEN XueKuan, ZHAO XingDong, FAN YuanHong. Genetic Variation of Four Physiological Indexes as Impacted by Water Stress in Sugarcane [J]. Scientia Agricultura Sinica, 2017, 50(1): 28-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!