Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 2983-3004.doi: 10.3864/j.issn.0578-1752.2020.15.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genotyping by Target Sequencing (GBTS) and Its Applications

XU Yunbi1,3,4,7(),YANG QuanNü3,ZHENG HongJian4,XU YanFen2,SANG ZhiQin5,GUO ZiFeng1,PENG Hai6,ZHANG Cong2,LAN HaoFa2,WANG YunBo3,WU KunSheng2,TAO JiaJun2,ZHANG JiaNan2()   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
    2MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035
    3School of Food Science and Engineering, Foshan University/CIMMYT-China Tropical Maize Research Center, Foshan 528225, Guangdong
    4Institute of Crops, Shanghai Academy of Agricultural Sciences/CIMMYT-China Specialty Maize Research Center, Shanghai 201403
    5Xinjiang Academy of Agricultural Reclamation, Shihezi 832000, Xinjiang
    6Jianghan University, Wuhan 430056
    7International Maize and Wheat Improvement Center (CIMMYT), El Batan Texcoco 56130, Mexico
  • Received:2020-05-06 Accepted:2020-06-16 Online:2020-08-01 Published:2020-08-06
  • Contact: Yunbi XU,JiaNan ZHANG E-mail:xuyunbi@caas.cn;algol@molbreeding.com

Abstract:

Genotyping technology, via molecular markers, has been playing a key role in many biological fields including genetic improvement. Genotyping has been widely applied in multi-national seed companies due to their high-throughput, automatic, large-scale and shared genotyping platforms. Genotyping has moved from its third generation (G3), dominated by expensive DNA chips and random genotyping by sequencing (GBS), to the fourth generation (G4), characterized by low-cost, less facility-demanding and performed via genotyping by target sequencing (GBTS). In this article, we first introduced two GBTS protocols, GenoPlexs, based on multiplexing PCR, and GenoBaits, based on sequence capture in-solution (also called liquid chip). For both protocols, multiple single-nucleotide-polymorphisms (mSNP) or multiple dispersed nucleotide polymorphisms (MNP) can be generated to reveal the genetic variation hidden within each amplified locus (amplicon). Compared to DNA chips and GBS, GBTS has several advantages, including wide applicability to genotyping facilities, very flexible marker types, highly efficient genotyping, sharable and accumulative marker data, less required information management and support, and wide suitability in biological applications. With the same marker panel (for example, 40K maize mSNPs), three types of genotyping (40K mSNPs, 260K SNPs, and 754K haplotypes) can be achieved, and multiple panels with various marker densities (1K to 40K mSNPs) can be generated by sequencing at different depths. Applications of GenoPlexs and GenoBaits in biology were then reviewed, including biological evolution, germplasm evaluation, genetic map construction, gene mapping and cloning, marker-trait association (genome-wide association study and bulked sample analysis, BSA), progeny testing, gene introgression, gene pyramiding, variety right protection, variety quality monitoring, transgenic event and gene editing detection, and bioassay. More 50 marker panels have been developed so far for more than 20 plant, animal and microorganism species and applied in some of the fields described above. Lastly, we prospected for future GBTS by looking insights into carry-on, automatic, high-throughput and intelligent genotyping platforms, multi-functional marker panels with various marker densities designed to meet specific requirements, integration with other technologies such as KASP, high-density DNA chips and BSA strategies, and open-source breeding by sharing germplasm and breeding materials and information. The development in these fields will greatly facilitate the applications of GBTS in genetic improvement and other fields of animals, plants and microorganisms.

Key words: genotyping by target sequencing (GBTS), multiplexing PCR, sequence capture in-solution (liquid chip), multiple single-nucleotide-polymorphisms (mSNP), multiple dispersed nucleotide polymorphisms (MNP), haplotypes, genetic improvement, open-source breeding

Fig. 1

Evolution of genotyping platforms from G1 to G5"

Fig. 2

Evolution of genotyping platforms from random whole genome resequencing to reduced genome resequencing and target sequencing (SNP and mSNP)"

Fig. 3

Flowchart for genotyping by target sequencing with GenoPlexs"

Fig. 4

Flowchart for genotyping by target sequencing with GenoBaits"

Table 1

Platforms and advantages of genotyping by target sequencing (GBTS)"

优势
Advantages
具体特征
Description of advantages
展望
Prospects
平台
Platform
广适性
Wide suitability
适合所有二代和三代测序系统,包括Illumina、Ion Torrent和MGI
Applicable to the second and third generations of sequencing facilities, including Illumina, Ion Torrent and MGI
与下一代测序或其他检测设备兼容
Also applicable to the next generation of sequencing and other genotyping facilities
标记
Markers
灵活性
Flexibility
适合各种标记类型(SNP、短SSR、长/短InDel、已知融合基因、甲基化位点);不同的标记密度;一款多用
Suitable for various marker types (SNPs, short SSRs, long/short InDels, known fusion genes and methylated loci), densities and applications
广泛利用单倍型、LD区段和其他标记衍生物
Wide applications with haplotypes, LD blocks and other marker-derivatives
检测
Genotyping
高效性
High efficiency
样本多重化、多重PCR;开发和升级简便;设计、测试和检测成本低
Sample- and PCR-multiplexing, readily development and upgrade of marker panels, and low cost in design, test and genotyping
随检测技术进步推动检测的自动化、智能化、超高通量
More robotic, intelligent, and high-throughput with advanced genotyping facilities
信息
Information
可加性
Accumulativity
数据重复率高,缺失数据少;不同时间、地点、项目间的数据可比和累加;整合度高
High duplication rate; less missing; accumulative across times, locations and projects; integrative
可加性程度随技术进步而增强
Increasingly accumulative with technical advancement
支撑
Support systems
便捷性
Less demanding
不依赖检测技术或专业化的生物信息团队;通用而简化的实验室信息管理系统;通用的信息整合、处理、分析流程
Independent of professional genotyping and informatics supports, manageable through regular LIMS and data integration, treatment and analytical protocols
随技术进步而更加便捷、快速、智能化
Less demanding, much quicker but more intelligent, with technical development
应用
Applications
广谱性
Wide application
广泛应用于动物、植物、微生物及其互作群体的进化、遗传、育种、知识产权保护等领域
Wide application in the fields of evolution, genetics, breeding and variety right protection in animals, plants and microorganisms
随着海量信息的累计,将拓展在群体生物学、生态学等领域的应用
Applications extended to population biology and ecology as huge data accumulated

Table 2

Applications of Genotyping by Target Sequencing (GBTS)"

应用领域
Applications
40K+ 30K 20K 10K 5K 1K <200
生物进化Biological evolution +++ +++ ++ ++ +
种质资源评价Germplasm evaluation +++ +++ ++ ++ + +
分类Classification +++ +++ +++ +++ ++ ++
图谱构建Linkage map construction +++ +++ +++ ++ + +
基因定位和克隆Gene mapping/cloning +++ +++ +++ +++ ++ +
标记-性状关联Marker-trait association +++ ++ ++ +
后裔测验Progeny testing +++ +++ +++ +++ +++ +++ +++
基因渐渗Gene introgression +++ +++ +++ +++ +++ ++ +
基因累加Gene pyramiding +++ +++ +++ +++ ++ + +
品种权保护Variety right protection +++ +++ +++ +++ ++ ++ +
质量控制Quality control +++ +++ +++ +++ ++ ++ +
生物检测Bioassay +++ +++ +++ +++ ++ + +

Fig. 5

Four applications of GBTS in the tests of variety identity, seed purity, transgenic events and gene editing"

Table 3

GenoPlexs and GenoBaits marker panels developed for animals and plants"

物种名称
Species names
GenoBaits 标记集GenoBaits panels GenoPlexs 标记集GenoPlexs panels
40K 20K 10K 500-1K <100 功能标记
Functional markers
玉米 Zea mays L.
水稻Oryza sativa L.
棉花Gossypium spp
大豆Glycine max (Linn.) Merr.
花生 Arachis hypogaea L.
小麦Triticum aestivum L.
谷子 Setaria italica
大麦 Hordeum vulgare L.
番茄Solanum lycopersicum
黄瓜 Cucumis sativus L.
辣椒 Capsicum annuum L.
西瓜Citrullus lanatus (Thunb.) Matsum. et Nakai
白菜Brassica pekinensis (Lour.) Rupr.
荔枝Litchi chinensis Sonn.
猕猴桃Actinidia spp.
甘蓝Brassica oleracea L.
胡萝卜Daucus carota L. var. sativa Hoffm.
西葫芦Cucurbita pepo L.
白萝卜 Raphanus sativus
苹果Malus domestica
Bos holsatiae
[1] DAVEY J W, HOHENLOHE P A, ETTER P D, BOONE J Q, CATCHEN J M, BLAXTER M L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 2011,12:499-510.
doi: 10.1038/nrg3012 pmid: 21681211
[2] TANKSLEY S D, RICK C M. Isozyme gene linkage map of the tomato: Applications in genetics and breeding. Theoretical and Applied Genetics, 1980,57:161-170.
[3] XU Y, XIE C, WAN J, HE Z, PRASANNA B M. Marker-assisted selection in cereals: Platforms, strategies and examples// GUPTA P K, VARSHNEY R K. eds.. Cereal Genomics II. Springer Science+ Business, Media Dordrecht, 2013: 375-411.
[4] EATHINGTON S R. Practical applications of molecular technology in the development of commercial maize hybrids// Proceedings of the 60th Annual Corn and Sorghum Seed Research Conference. Chicago [CD-ROM]. 7-9 Dec. 2005. Am. Seed Trad Assoc., Washington, DC. 2005.
[5] XU Y, CROUCH J H. Marker-assisted selection in plant breeding: From publications to practice. Crop Science, 2008,48:391-407.
doi: 10.2135/cropsci2007.04.0191
[6] XU Y, LI P, ZOU C, LU Y, XIE C, ZHANG X, PRASANNA B M, OLSEN M S. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 2017,68:2641-2666.
doi: 10.1093/jxb/erx135 pmid: 28830098
[7] VOSS-FELS K P, COOPER M, HAYES B J. Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 2019,132:669-686.
pmid: 30569365
[8] XU Y, LIU X, FU J, WANG H, WANG J, HUANG C, PRASANNA B M, OLSEN M S, WANG G, ZHANG A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Communications, 2020,1:100005.
doi: 10.1016/j.xplc.2019.100005
[9] BURRIDGE A J, WILKINSON P A, WINFIELD M O, BARKER G L A, ALLEN A M, COGHILL J A, WATERFALL C, EDWARDS K J. Conversion of array-based single nucleotide polymorphic markers for use in targeted genotyping by sequencing in hexaploid wheat (Triticum aestivum). Plant Biotechnology Journal, 2018,16:867-876.
doi: 10.1111/pbi.12834 pmid: 28913866
[10] JOHNSON M G, POKORNY L, DODSWORTH S, BOTIGUÉ L R, COWAN R S, DEVAULT A, EISERHARDT WL, EPITAWALAGE N, FOREST F, KIM J T, LEEBENS-MACK J H, LEITCH I J, MAURIN O, SOLTIS D E, SOLTIS P S, WONG G K S, BAKER W J, WICKETT N J. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology, 2018,68:594-606.
doi: 10.1093/sysbio/syy086 pmid: 30535394
[11] GUO Z, WANG H, TAO J, REN Y, XU C, WU K, ZOU C, ZHANG J, XU Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019,39:37.
doi: 10.1007/s11032-019-0940-4
[12] BAIRD N A, ETTER P D, ATWOOD T S, CURREY M C, SHIVER A L, LEWIS Z A, SELKER E U, CRESKO W A, JOHNSON E A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 2008,3(10):1-7.
[13] ELSHIRE R J, GLAUBITZ J C, SUN Q, POLAND J A, KAWAMOTO K, BUCKLER E S, MITCHELL S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011,6:e19379.
doi: 10.1371/journal.pone.0019379 pmid: 21573248
[14] MARCHINI J, HOWIE B. Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 2010,11:499-511.
pmid: 20517342
[15] GLAUBITZ J C, CASSTEVENS T M, LU F, HARRIMAN J, ELSHIRE R J, SUN Q, BUCKLER E S. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE, 2014,9:e90346.
doi: 10.1371/journal.pone.0090346 pmid: 24587335
[16] MAMANOVA L, COFFEY A J, SCOTT CE, KOZAREWA I, TURNER E H, KUMAR A, HOWARD E, SHENDURE J, TURNER D J. Target enrichment strategies for next-generation sequencing. Nature Methods, 2010,7:111-118.
pmid: 20111037
[17] SAMORODNITSKY E, DATTA J, JEWELL B M, HAGOPIAN R, MIYA J, WING M R, DAMODARAN S, LIPPUS J M, REESER J W, BHATT D, TIMMERS C D, ROYCHOWDHURY S. Comparison of custom capture for targeted next-generation DNA sequencing. The Journal of Molecular Diagnostics, 2015,17:64-75.
pmid: 25528188
[18] CHIA J M, SONG C, BRADBURY P J, COSTICH D, DE LEON N, DOEBLEY J, ELSHIRE R J, GAUT B, GELLER L, GLAUBITZ J C, GORE M, GUILL K E, HOLLAND J, HUFFORD M B, LAI J, LI M, LIU X, LU Y, MCCOMBIE R, NELSON R, POLAND J, PRASANNA B M, PYHÄJÄRVI T, RONG T, SEKHON R S, SUN Q, TENAILLON M I, TIAN F, WANG J, XU X, ZHANG Z, KAEPPLER S M, ROSS-IBARRA J, MCMULLEN M D, BUCKLER E S, ZHANG G, XU Y, WARE D. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012,44:803-807.
doi: 10.1038/ng.2313
[19] BUKOWSKI R, GUO X, LU Y, ZOU C, HE B, RONG Z, WANG B, XU D, YANG B, XIE C, FAN L, GAO S, XU X, ZHANG G, LI Y, JIAO Y, DOEBLEY J F, ROSS-IBARRA J, LORANT A, BUFFALO V, TOMAY M C, BUCKLER E S, WARE D, LAI J, SUN Q, XU Y. Construction of the third generation Zea mays haplotype map. GigaScience, 2018,7:1-12.
pmid: 29342277
[20] XU Y. Molecular Plant Breeding. Wallingford: CABI Press, 2010.
[21] YU J, BUCKLERE S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006,17:155-160.
doi: 10.1016/j.copbio.2006.02.003
[22] RAFALSKI J A. Association genetics in crop improvement. Current Opinion in Plant Biology, 2010,13:174-180.
doi: 10.1016/j.pbi.2009.12.004
[23] WAUGH R, JANNINK J L, MUEHLBAUER G J, RAMSAY L. The emergence of whole genome association scans in barley. Current Opinion in Plant Biology, 2009,12:218-222.
pmid: 19185530
[24] CHAN E K, ROWE H C, KLIEBENSTEIN D J. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genomewide association mapping. Genetics, 2010,85:991-1000.
[25] GIOVANNONI J J, WING R A, GANAL M W, TANKSLEY S D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 1991,19:6553-6568.
doi: 10.1093/nar/19.23.6553 pmid: 1684420
[26] MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991,88:9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[27] ZOU C, WANG P, XU Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016,14:1941-1955.
doi: 10.1111/pbi.12559 pmid: 26990124
[28] ARORA S, STEUERNAGEL B, GAURAV K, CHANDRAMOHAN S, LONG Y, MATNY O, JOHNSON R, ENK J, PERIYANNAN S, SINGH N, MD HATTA M A, ATHIYANNAN N, CHEEMA J, YU G, KANGARA N, GHOSH S, SZABO L J, POLAND J, BARIANA H D. G. JONES J D G, BENTLEY A R, AYLIFFE M, OLSON E, XU S S, STEFFENSON B J, LAGUDAH E, WULFF B B H. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nature Biotechnology, 2019,37:139-143.
doi: 10.1038/s41587-018-0007-9 pmid: 30718880
[29] 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019,30(10):1032-1037.
GUO T, YU H, QIU J, LI J Y, HAN B, LIN H X. Advances in rice genetics and breeding by molecular design in China. Scientia Sinica (Vitae), 2019,30(10):1032-1037. (in Chinese)
[30] BECKMANN J S, SOLLER M. Restriction fragment length polymorphisms in plant genetic improvement. Oxford Surveys of Plant Molecular and Cell Biology, 1986,3:196-250.
[31] TANKSLEY S D, YOUNG N D, PATERSON A H, BONIERBALE M W. RFLP mapping in plant breeding: New tools for an old science. Bio/Technology, 1989,7:257-263.
[32] RAGOT M, LEE M. Marker-assisted selection in maize: Current status, potential, limitations and perspectives from the private and public sectors// GUIMARAES E P, RUANE J, SCHERF B D, SONNINO A, DARGIE J D. eds. Marker-Assisted Selection, Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish. Rome: Food and Agriculture Organization of the United Nations Press, 2007: 117-150.
[33] CROSBIE T M, EATHINGTON S R, JOHNSON G R, EDWARDS M, REITER R, STARK S, MOHANTY R G, OYERVIDES M, BUEHLER R E, WALKER A K, DOBERT R, DELANNAY X, PERSHING J C, HALL M A, LAMKEY K R. Plant breeding: Past, present and future// LAMKEY K R, LEE M. eds. Plant Breeding: The Arnel R. Hallauer International Symposium. Oxford, UK: Blackwell Press, 2006: 3-50.
[34] EDWARDS M, JOHNSON L. RFLPs for rapid recurrent selection// Proceedings of Symposium on Analysis of Molecular Marker Data. Corvallis, Oregon: American Society of Horticultural Science and Crop Science Society of America Press, 1994: 33-40.
[35] LEE M. DNA markers and plant breeding programs. Advances in Agronomy, 1995,55:265-344.
[36] STAM P. Marker-assisted breeding// VAN OOIJEN J W, JANSEN J. eds. Biometrics in Plant Breeding: Applications of Molecular Markers. Proceedings of the 9th Meeting of EUCARPIA Section on Biometrics in Plant Breeding (1994). Wageningen, Netherlands: Centre for Plant Breeding and Reproduction Research Press, 1995: 32-44.
[37] MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001,157:1819-1829.
pmid: 11290733
[38] HEFFNER E L, LORENZ A J, JANNINK J L, SORRELLS M E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Science, 2010,50:1681-1690.
doi: 10.2135/cropsci2009.11.0662
[39] JONAS E, DE KONING D J. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Frontiers in Genetics, 2015,6:49.
doi: 10.3389/fgene.2015.00049 pmid: 25750652
[40] HEITZ A. Intellectual property rights and plant variety protection in relation to demands of the world trade organization and farmers in sub-Saharan Africa// Available at: Proceedings of the Regional Technical Meeting on Seed Policy and Programmes for Sub-Saharan Africa, Abidjan, Cote d’Ivoire, 23-27 November 1998. Available at: http://www.fao.org/ag/agp/AGPS/abidjan/tabcont.htm, 1998.
[41] TRIPP R, LOUWAARS N P, EATON D. Intellectual property rights for plant breeding and rural development: Challenges for agricultural policymakers. Agricultural and Rural Development Notes, 2006,12:1-4.
[42] 彭海, 方治伟, 李论, 马爱进, 周俊飞, 温常龙, 李甜甜, 唐浩, 陈红, 崔野韩, 张嘉楠, 贾英民, 许娜, 宋书锋, 胡美霞, 符习勤, 赵治海, 梁勇, 徐振江, 高利芬, 陈利红, 韩瑞玺, 张蝶, 张静, 余进文. 《植物品种鉴定 MNP 标记法》国家标准; 标准号:GB/T 38551-2020, 2020.
PENG H, FANG Z W, LI L, MA A J, ZHOU J F, WEN C L, LI T T, TANG H, CHEN H, CUI Y H, ZHANG J N, JIA Y M, XU N, SONG S F, HU M X, FU X Q, ZHAO Z H, LIANG Y, XU Z J, GAO L F, CHEN L H, HAN R X, ZHANG D, ZHANG J, YU J W. Identification of plant varieties - MNP marker method. National Standard of the P.R.C. GB/T 38551-2020, 2020. (in Chinese)
[43] ISAAA. Brief 54: Global Status of Commercialized Biotech/GM Crops: 2018. http://www.isaaa.org/resources/publications/briefs/54/default.asp, 2019.
[44] 彭海, 陈利红, 方治伟, 张嘉楠, 李甜甜, 李论, 崔野韩, 马爱进, 陈红, 周俊飞, 翟文学, 许娜, 梁勇, 高利芬, 宋书锋, 胡美霞, 符习勤, 张静, 余进文. 《植物转基因成份测定目标区域测序法》国家标准; 标准号: GB/T 38570-2020, 2020.
PENG H, CHEN L H, FANG Z W, ZHANG J N, LI T T, LI L, CUI Y H, MA A J, CHEN H, ZHOU J F, ZHAI W X, XU N, LIANG Y, GAO L F, SONG S F, HU M X, FU X Q, ZHANG J, YU J W. Determination for ingredients of genetically modified plants - Target sequencing methods. National Standard of the P.R.C. GB/T 38570-2020, 2020. (in Chinese)
[45] CONG L, RAN F A, COX D, LIN S, BARRETTO R, HABIB N, HSU P D, WU X, JIANG W, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339:819-823.
doi: 10.1126/science.1229223
[46] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157:1262-1278.
pmid: 24906146
[47] ZHANG Y, PRIBIL M, PALMGREN M, GAO C. A CRISPR way for accelerating improvement of food crops. Nature Food, 2020,1:200-205.
doi: 10.1038/s43016-020-0051-8
[48] LIU H J, WANG X, XIAO Y, LUO J, QIAO F, YANG W, ZHANG R, MENG Y, SUN J, YAN S, PENG Y, NIU L, JIAN L, SONG W, YAN J, LI C, ZHAO Y, LIU Y, WARBURTON M L, ZHAO J, YAN J. CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020,21:20.
doi: 10.1186/s13059-020-1930-x pmid: 31980033
[49] XU C, REN Y, JIAN Y, GUO Z, ZHANG Y, XIE C, FU J, WANG H, WANG G, XU Y, LI P, ZOU C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 2017,37:20.
doi: 10.1007/s11032-017-0622-z pmid: 28255264
[50] SUN C, DONG Z, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020,18:1354-1360.
doi: 10.1111/pbi.13361 pmid: 32065714
[1] ZHAI ShengNan,LIU AiFeng,LI FaJi,LIU Cheng,GUO Jun,HAN Ran,ZI Yan,WANG XiaoLu,LÜ YingYing,LIU JianJun. Improvement and Application of the Method for Determining Yellow Pigment Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(2): 239-247.
[2] WANG FuJun, ZHAO KaiJun. Progress and Challenge of Crop Genetic Improvement via Genome Editing [J]. Scientia Agricultura Sinica, 2018, 51(1): 1-16.
[3] TENG Fei, LI Sheng-you, RAO De-min, YAO Xing-dong, ZHANG Hui-jun, AO Xue, WANG Hai-ying, Steven St.Martin, XIE Fu-ti. Effects of Super-High-Yield Soybean Cultivars as Rootstock on Some Physiological and Yield Traits of Cultivars Released in Different Decades [J]. Scientia Agricultura Sinica, 2016, 49(23): 4531-4543.
[4] GUO Xiao-hong, WANG Xing-cai, MENG Tian, ZHANG Hui-jun, AO Xue, WANG Hai-ying, XIE Fu-ti. Comparison on Morphological, Yield, and Quality Traits of Soybean Cultivars Developed in Different Years from Liaoning and Ohio [J]. Scientia Agricultura Sinica, 2015, 48(21): 4240-4253.
[5] LI Tian-Ke-1, 2 , LIANG Chun-Nian-1, 2 , LANG Xia-1, 2 , PEI Jie-1, 2 , WU Xiao-Yun-1, 2 , CHU Min-1, 2 , QIN Wen-1, 2 , YAN Ping-1, 2 . GDF-10 Gene Polymorphism and Its Association with Production Traits in Gannan Yak [J]. Scientia Agricultura Sinica, 2014, 47(1): 161-169.
[6] TANG Sheng-Xiang, WANG Xiu-Dong, LIU Xu. Study on the Renewed Tendency and Key Backbone-Parents of Inbred Rice Varieties (O. sativa L.) in China [J]. Scientia Agricultura Sinica, 2012, 45(8): 1455-1464.
[7] YU Hui, LIU Rong-Hui, ZUO Qi-Zhen, LI Yan, LI Hua. The Association Between the SLA Microsatellites Typing and the Immune Parameters of Introduced Pig Breeds [J]. Scientia Agricultura Sinica, 2012, 45(5): 981-989.
[8] TIAN Zhong-Wei, WANG Fang-Rui, DAI Ting-Bo, CAI Jian, JIANG Dong, CAO Wei-Xing. Characteristics of Dry Matter Accumulation and Translocation During the Wheat Genetic Improvement and Their Relationship to Grain Yield [J]. Scientia Agricultura Sinica, 2012, 45(4): 801-808.
[9] PENG Qin, GUO Qian-Huan, ZHANG Xi-Bin, CHENG Dun-Gong, DAI Shuang, LI Hao-Sheng, ZHAO Shi-Jie, SONG Jian-Min. Evolution in Photosynthetic Characteristics of Wheat Cultivars Widely Planted in Shandong Province Since 1950s [J]. Scientia Agricultura Sinica, 2012, 45(18): 3883-3891.
[10] ZHAO Kai-Jun, YANG Bing. TALENs: Molecular Scissors for Site-specific Genome Editing in Plants [J]. Scientia Agricultura Sinica, 2012, 45(14): 2787-2792.
[11] LIU Chuan-guang,ZHANG Gui-quan,ZHOU Han-qin,FENG Dao-ji,ZHENG Hai-bo
. Genetic Improvement of Yield and Plant-Type Traits of Inbred Indica Rice Cultivars in South China
[J]. Scientia Agricultura Sinica, 2010, 43(19): 3901-3911 .
[12] MIN Jie,TANG Sheng-xiang,SHI Jian-hua,ZHU Zhi-wei
. Analysis of Grain Quality and Superior Quality Rate of Glutinous Rice Cultivars Bred Since the 1980s of the 20th Century in China
[J]. Scientia Agricultura Sinica, 2010, 43(1): 12-19 .
[13] . Research Advance and Development Trends of Biology Water Saving [J]. Scientia Agricultura Sinica, 2007, 40(7): 1456-1462 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!